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Combinatorics is an area of mathematics that has experienced tremendous growth
during the last few decades. Combinatorial mathematics was pursued since antiquity,
but the subject was considered as lying at the periphery of mathematics, being mostly
associated with basic counting, puzzles, and games. As Anders Björner and Richard
Stanley point out in [3], the reasons for the recent growth of combinatorics come from
its relationship with areas at the center stage of mathematics on the one hand, and
with other disciplines (most of all computer science), on the other hand. This is a two-
way relationship: combinatorics has found important applications to other areas of pure
mathematics and computer science, while certain mathematical techniques (for instance,
from linear algebra, group theory, geometry, probability theory, statistical mechanics
etc.) and computer experiments are now used in combinatorics.

Let us look more closely at the factors which stimulated the recent developments in
combinatorics. We already mentioned computer science as one of these factors, due
to its many mathematical problems and needs, plus potential for mathematical experi-
ments. Combinatorics turned out to be the area of mathematics that best fit the needs
of computer science. Indeed, combinatorics had an essential contribution to the formal-
ization of structures, methods, and problems in computer science, and provided some
of the tools for solving these problems. New areas, with a highly combinatorial charac-
ter, were born out of this interaction, such as: combinatorial optimization, complexity
theory, randomized algorithms, computational geometry, computational group theory,
and computational molecular biology. On the other hand, combinatorial structures are
very well suited for experiments using computer algebra systems such as Mathematica
and Maple. At this moment, there are a great number of combinatorial packages for the
above systems, which enable combinatorialists to gain a lot of insight into their problems,
by experimenting with their structures up to reasonably high orders of magnitude.

Beside computer science, developments within mathematics itself also influenced com-
binatorics. One of these developments, mentioned in [3], is that after an era where
the fashion was to seek generality and abstraction, there is now much appreciation and
emphasis for concrete calculations, which are the “hard” problems. The picture of con-
tributions of combinatorics to mathematical calculations can be sketched by referring
to three major areas of mathematics. The first two are geometry and topology, with
their complicated and hard to manipulate objects. Then comes algebra, which associates
various invariants and structures with these objects (such as homotopy and homology
groups); they capture some of the geometric and topological information, but not all of it,
of course. Although passing to algebra is an important simplification, even calculations
in this world can be very hard. This is the moment when combinatorics comes into play,
since it turns out that many calculations can be done in terms of combinatorial objects.
For instance, think of a summation, where the index is running from 1 to n; next, by
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contrast, think of a summation with the index running over a set of certain puzzles; it
turns out that this situation arises frequently when one wants to do concrete calculations.
Furthermore, if the sum consists of both positive and negative terms, one might be able
to cancel the negative ones by combinatorially mapping the associated objects to the
objects associated with the positive terms. Finally, one might be able to prove identities
by constructing a combinatorial bijection between the objects corresponding to the terms
on the two sides of the identity. Another situation is that in which one is able to find a
combinatorial interpretation for positive integer cofficients appearing in several areas of
mathematics. In many cases, this interpretation turns out to be very useful for computa-
tional purposes and for studying the properties of the mentioned coefficients; moreover,
it sometimes points to deeper algebraic or geometric phenomena. Of course, mathe-
maticians continue to invent more and more general algebraic and geometric structures.
Unfortunately, the gap between the level of generality of the newly introduced structures
and the level at which most concrete calculations can be done is wider than ever. Let us
just mention some simple geometric structures, such as Grassmannians and flag varieties,
for which we still cannot do certain basic calculations (see section 7 below).

Speaking about developments within mathematics which led to the recent growth of
combinatorics, we must also mention the discovery of deep connections with mainstream
areas of mathematics, such as algebra, geometry, topology, and probability theory, to
mention just a few. For instance, it might look like a miracle that the best frameworks
for certain combinatorial problems which are easy to explain, even to the layman, are
related to topology, group theory, or statistical mechanics (see some of the examples
below). Indeed, tools from the mentioned areas sometimes offer more insight into the
structure of combinatorial configurations. On the other hand, it turns out that certain
algebraic and geometric structures are best described in combinatorial terms, and certain
constructions related to them are best done with combinatorial tools.

We have discussed the reasons for the tremendous growth of combinatorics in recent
years, but we still have not explained what combinatorics is about. Combinatorics could
be described as the study of arrangements of objects according to specified rules. We
want to know, first, whether a particular arrangement is possible at all, and, if so, in
how many different ways it can be done. Algebraic and even probabilistic methods play
an increasingly important role in answering these questions. If we have two sets of ar-
rangements with the same cardinality, we might want to construct a natural bijection
between them. We might also want to have an algorithm for constructing a particular
arrangement or all arrangements, as well as for computing numerical characteristics of
them; in particular, we can consider optimization problems related to such arrangements.
Finally, we might be interested in an even deeper study, by investigating the structural
properties of the arrangements. Methods from areas such as group theory and topol-
ogy are useful here, by enabling us to study symmetries of the arrangements, as well
as topological properties of certain spaces associated with them, which translate into
combinatorial properties.

We are now going to have a closer look at the different faces of modern combinatorics,
by briefly discussing its interaction with several areas of mathematics and computer
science. We tried to emphasize the main developments in each area, including the recent
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ones, by presenting selected examples. However, their number is kept to a minimum and
all definitions of the structures involved are at least briefly presented.

1. The modern face of enumerative combinatorics. Enumeration is one of the
basic and important aspects of combinatorics. In many branches of mathematics and
its applications we need to know the number of ways of doing something, or at least to
approximate this number. Some of the basic problems in enumerative combinatorics are
to enumerate: 1) words of different types with letters from a given alphabet; 2) partitions,
that is ways of breaking an object (for instance, a positive integer or a set) into smaller
objects of the same kind; 3) orbits of a finite group acting on a finite set (such as colorings
of the vertices, edges, or faces of a Platonic solid up to symmetry). A great number
of problems of this type were solved a couple of decades or more ago. An important
tool for solving them were generating functions; these are formal power series whose
coefficients are the number of objects of a certain kind with a given order of magnitude,
or a given numerical characteristic, also known as statistic (for instance, words of a fixed
length, permutations with a given number of inversions and/or descents, colorings of an
object with a fixed number of colors). It turns out that algebraic manipulations of these
power series (such as multiplication, functional composition, compositional inverse etc.)
correspond to combinatorial manipulations of the objects (such as breaking an object into
objects of the same kind). Another remarkable fact about generating functions is that
many important functions (such as the secant function, the Jacobi elliptic functions,
and Bessel functions, to mention just a few) appear in this context. Closely related
to generating functions are the applications of the theory of orthogonal polynomials to
enumerative combinatorics. Indeed, many orthogonal polynomials occur as algebraic
invariants of combinatorial structures (such as matchings polynomials of certain graphs,
which are discussed in section 2). Moreover, a number of combinatorial sequences can be
expressed in terms of an inner product (·, ·) on polynomials, which corresponds to some
remarkable sequence of orthogonal polynomials; one such expression for combinatorial
sequences is as moment sequences (1, xn).

Generating functions usually do not allow us to see the whole picture related to an
enumeration problem. Indeed, we might be able to prove that two statistics on a finite
set of objects have the same distribution; however, in order to understand the deeper
reason for which this is true, we need to construct a bijection on the set of objects which
maps one statistic to the other. This situation arises frequently, for instance, in the area
of permutation enumeration, which is still an active area of research.

Beside permutation enumeration, other active areas of research in enumerative com-
binatorics are related to objects such as plane partitions and tilings. Plane partitions
are left-justified arrays of positive integers with certain properties. For instance, if the
entries are weakly increasing in rows (from left to right), and strictly increasing down
the columns, plus the lengths of the rows form a weakly decreasing sequence, the plane
partition is called a semistandard Young tableau. The sequence of lengths of the rows of
a tableau is known as its shape. See sections 4 and 7 for applications of Young tableaux.
There are various nice formulas for the number of plane partitions of different types.
There are also various algorithms which construct bijections between certain plane par-
titions and other types of combinatorial objects, such as words, nonintersecting lattice
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paths (such as paths with steps (1,0) and (0,1)), reduced decompositions of permutations
(see section 6), and tilings.

Tilings are partitions of a geometric region into smaller regions of some specified types.
For instance, think of tilings of a chessboard with dominos. We want to know first of all
if a certain region is tileable; if so, we are interested in constructing a specific tiling, as
well as in counting the number of tilings, or at least in approximating this number. It
turns out that some of these problems can be reformulated as problems in combinatorial
group theory. For instance, a necessary condition for a region to be tileable is that a
certain element (determined by the boundary of the region) is equal to the identity in
a certain group defined by generators and relations (both are determined by the tiles).
For some regions there are nice formulas for the number of tilings. One such region is
the Aztec diamond, which consists of two squares in the first row, four squares in the
second row starting one square to the left of the first row, and so on up to the n-th row;
then the diagram obtained so far is reflected about the bottom edge and added to the
original one. Another example is that of certain puzzle-piece tilings of a square, which
are in bijection with the generalizations of permutation matrices known as alternating-
sign matrices. The number of these is also given by a simple formula. This formula
was proved both combinatorially and by using methods from statistical mechanics, in
particular the Yang-Baxter equation for the 6-vertex lattice model. An alternating-sign
matrix is a matrix of 0’s, 1’s, and −1’s, in which the entries in each row and column sum
to 1, and the nonzero entries in each row and column alternate in sign.

2. Algebraic invariants and structures associated with combinatorial ob-
jects. In the same way as algebraic structures associated with geometric and topological
objects are important tools for investigating the latter, such structures play an important
role in combinatorics too. We are going to mention some of them.

Let us start with polynomial invariants of graphs (a graph consists of a set of vertices
and a set of edges connecting some of the vertices in pairs). There are a large number
of such invariants, each enumerating certain structures on the graph. For instance, the
chromatic polynomial enumerates proper colorings of the graph (that is, assignments of
colors to the vertices such that no two adjacent vertices have the same color); the match-
ings polynomial enumerates matchings in the graph (that is, collections of edges, no two
of which share a vertex). Results in this area are concerned with: 1) recurrence relations
in terms of graph operations such as deletion and contraction of an edge; 2) their zeros; 3)
various identities, including connections with other algebraic invariants (for instance, the
chromatic polynomial of a graph can be expressed as the characteristic polynomial − see
the next paragraph − of an associated partially ordered set); 4) interesting evaluations
(for instance, the chromatic polynomial evaluated at −1 gives the number of orientations
of the edges of the graph containing no directed cycle). Recently, there has been much
interest in a symmetric function generalization of the chromatic polynomial. Some of the
related results are concerned with combinatorial interpretations of the expansion of this
function in various bases of the algebra of symmetric functions.

Now we turn to invariants of partially ordered sets. A well-known one is the Möbius
function; this is an integer-valued function defined on intervals as an alternating sum of
the number of chains of a fixed length between the two endpoints of the corresponding
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interval. There are efficient methods for computing the Möbius function of certain par-
tially ordered sets, in particular lattices with certain properties. These methods lead to
nice formulas in the case of partially ordered sets of certain partitions of sets, the lattice
of partitions of numbers, the lattice of subspaces of a finite-dimenional vector space over
a finite field, the intersection lattice of subspace arrangements (see section 8), the Bruhat
order on Coxeter groups (see section 6) etc. For certain partially ordered sets one can
define a generating function for the Möbius function, which is a polynomial called the
characteristic polynomial. A nice property of this polynomial is that it factors nicely for
certain lattices. Recently there was interest in a different generating function, which is
a power series in infinitely many variables related to enumeration of chains in partially
ordered sets. Some of the related results are concerned with sufficient conditions for this
power series to be a symmetric function (in general, it satisfies a weaker condition, known
as quasisymmetry). In particular, the Schur functions, introduced in section 4, can be
obtained as special cases of this construction.

Linear algebra methods also play an important role in combinatorics. For instance, one
can associate with every graph on n vertices its n× n adjacency matrix; an entry of this
matrix is 1 or 0, depending on whether the two vertices associated with the corresponding
row and column are joined by an edge or not. The eigenvalues of the adjacency matrix
or of closely related matrices give information about numerical invariants such as the
chromatic number (i.e., the minimum number of colors needed in a proper coloring). They
also give information about certain properties of the graph, such as: strong regularity
(see section 5), distance-regularity (see below), and expansion properties (measured by
the ratio between the number of neighbors of vertices in a set S outside S, and the size
of S).

Certain combinatorial objects have algebra structures associated with them. For in-
stance, for a large class of objects (including graphs and partially ordered sets), there is
a construction of Hopf algebras (that is, algebras with a product and a dual operation
called coproduct, satisfying several conditions), called incidence algebras. The coprod-
uct describes the way in which a combinatorial object splits into smaller objects of the
same kind. The structure of incidence Hopf algebras was investigated in special cases.
Incidence Hopf algebras provide the natural framework for the definition of the Möbius
function, as well as for the formalization of the nineteenth century symbolic calculus
(also referred to as umbral calculus or operator calculus). The main idea is that many
remarkable polynomial sequences (including several sequences of orthogonal polynomi-
als) can be defined and manipulated as elements of a natural basis for a certain Hopf
algebra of polynomials in one variable, on which the dual Hopf algebra acts as an alge-
bra of shift-invariant operators (that is, linear operators commuting with the ordinary
derivative).

Finally, let us mention that certain sets of combinatorial objects Ω have inner spaces of
“polynomials” associated with them, called polynomial spaces. By “polynomial” is here
meant a zonal polynomial with respect to a point a in Ω; this is a function on Ω obtained
by composing a polynomial in one variable over some field F with the function ρ(a, ·),
where ρ is a symmetric function from Ω×Ω to F (called a separation function). The most
important example is that in which Ω is the set of vertices of a distance-regular graph
(or of a generalization of it, called association scheme), and ρ is essentially the distance
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function of the graph. The distance between two vertices of a graph is the minimum
number of edges in a path joining them; a connected graph is distance-regular if the
number of vertices at any given distances i from a vertex u and j from a vertex v only
depends on the distance between u and v. A special case is the Johnson graph, whose
vertices are the k-subsets of a finite set, and two k-subsets are joined by an edge if and only
if their intersection has cardinality k− 1. The most important application of polynomial
spaces is to deriving tight bounds for the sizes of combinatorial configurations with a
high degree of symmetry in terms of the dimensions of certain subspaces of a polynomial
space. The configurations corresponding to the Johnson graph are those called designs.
A t-(v, k, λ) design is a family of k-subsets (blocks) of a set X of size v with the property
that all t-subsets of X are contained in λ blocks. The general technique mentioned above
has applications to coding theory too.

3. Combinatorics and geometry. The main connection between combinatorics and
geometry is related to polytopes. A d-polytope is a full-dimensional bounded intersection
of closed subspaces in Rd. For instance, the Platonic solids are 3-polytopes. Higher
dimensional polytopes started to be investigated only in the 50’s, due to their importance
for linear programming (this refers to techniques for optimizing a linear functional subject
to a collection of linear constraints). One defines the faces of a polytope as the areas of
contact if the polytope is made to touch a plane surface in Rd. There are only finitely
many faces of each dimension 0, 1, . . . , d− 1, so one can form a vector by collecting these
numbers; this is called the f-vector of the polytope. According to the generalized Euler
formula, the alternating sum of the entries of an f -vector is either 0 or 2, depending on
the parity of d. The important question arises what other relations, if any, do the entries
of an f -vector satisfy. The best hope is to find a complete characterization of f -vectors.
The answer is known in dimension 3 as a list containing Euler’s formula plus two more
inequalities. In general, there is a recent theorem which relates f -vectors of simplicial
polytopes (i.e., all faces are simplices) to sequences whose entries count monomials of a
certain degree in a certain collection of monomials in several variables.

A related problem to the characterization of f -vectors of d-polytopes is the purely
combinatorial characterization of the boundary complex of a d-polytope (known as the
Steinitz problem). The boundary complex of a d-polytope is formed by its faces other
than the polytope itself. Let us describe briefly what the Steinitz problem is about. To
do this, we need to introduce polyhedral complexes, which are defined as collections C of
polytopes such that each face of a member of C is a member of C, and the intersection of
two members of C is a face of each; the dimension of C is the maximum of the dimensions
of its members. A complex is called polytopal if it is isomorphic to the boundary complex
of a polytope. The Steinitz problem asks for necessary and sufficient conditions for
a complex to be polytopal. The structure of the boundary complex of a polytope is
encoded in the corresponding face-lattice, that is, the collection of all faces ordered by
inclusion. Thus we also have the problem of finding geometric realizations of face-lattices.
The Steinitz problem was completely solved in dimension 3, but not in higher dimensions.
An important obstruction to a complex being polytopal is given by shellability, since it
is known that each polytope is shellable. A pure complex of dimension d (a complex is
pure if the union of its members coincides with the union of its d-dimensional members)
is defined to be shellable if there is an ordering of its members (faces), such that the
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intersection of each face with the union of the previous ones is a (d− 1)-ball or a (d− 1)-
sphere. The difficulty of the Steinitz problem in dimensions higher than 3 shifted the
focus of research to algorithmic approaches. For instance, it is known that there exists
an algorithm for deciding whether a given complex is polytopal, and there are practical
approaches in this direction. Some of the results mentioned above have been used in the
enumeration of combinatorial types.

Another important research area is concerned with point lattices. By a point lattice
is here meant a set of points in Rd which form a discrete additive subgroup. There
are interesting combinatorial results concerned, for instance, with: 1) the relationship
between the volume of a convex body on the one hand, and the number of lattice points
it contains, or some invariants of the lattice; 2) covering and packing problems, that
is, problems related to sets of translates of a convex body; 3) lattice polytopes, that is,
polytopes all of whose vertices are in the integer lattice Zd.

4. Combinatorial representation theory. A representation of a group G is a
group homomorphism from G to the group of invertible linear maps from a certain
vector space to itself (i.e., the general linear group of the vector space). A representation
is called irreducible if the corresponding vector space has no nontrivial invariant subspaces
under the obvious action of G. The character of the representation is the map which
associates with every element of G the trace of the corresponding linear map. The
main questions related to representations of groups are: 1) how do we index/count the
irreducible representations? 2) what are their dimensions? 3) what are their characters?
4) how do we construct irreducible representations? 5) what are the multiplicities of
irreducible representations in the direct sum decomposition of the tensor product of two
irreducible representations? 6) how do we find interesting representations?

It turns out that, for the symmetric group Sn, the answer to most of these questions is
given in terms of standard Young tableaux, which are semistandard Young tableaux with
distinct entries (see section 1 for the definition of the latter). On the other hand, one
can construct interesting representations for Sn by considering actions on combinatorial
structures, such as partially ordered sets (of partitions of a set, of labeled trees etc.),
maximal chains in partially ordered sets, and the free Lie algebra. In a similar way, the
answers for the general linear group GLn(C) are given in terms of semistandard tableaux
of a given shape with entries 1, . . . , n. For instance, the irreducible polynomial represen-
tations are indexed by partitions with at most n rows; the character of the representation
indexed by λ is a sum over semistandard Young tableaux T of shape λ of monomials ob-
tained by associating with each entry i of T the variable xi, and by taking the product
of these variables. This character is a symmetric polynomial in x1, . . . , xn, known as a
Schur polynomial. The decomposition of tensor products of irreducible representations
can thus be reduced to multiplying Schur polynomials and expressing the result as a
linear combination of such polynomials. The corresponding nonnegative integer coeffi-
cients (known as Littlewood-Richardson coefficients) have a combinatorial interpretation
in terms of tableaux, which is known as the Littlewood-Richardson rule.

The above results were generalized to finite groups of Lie type and to modular repre-
sentations. They were also generalized to other reflection groups and Lie groups, as well
as to their q-deformations known as Hecke algebras and quantum groups. The answers
are no longer in terms of tableaux, but in terms of more general combinatorial structures,
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such as: 1) the chambers of the complement in Rn of a certain collection of hyperplanes;
2) certain paths (piecewise-linear curves) in a given vector space, known as Littelmann
paths; 3) lattice points in certain polytopes. Several other difficult combinatorial prob-
lems arise in this context. Some of them are related to Kazhdan-Lusztig polynomials;
these are polynomials in q with nonnegative integer coefficients which arise as entries of
the transition matrix between two bases of the Hecke algebra of type A (a q-deformation
of the group algebra of the symmetric group).

The theory of symmetric functions, which is to a great extent combinatorial, was
very much influenced by representation theory. A recent development in this area of
interplay is the theory of Macdonald polynomials. An important breakthrough was the
proof of the fact that a slight modification of these polynomials expand in the basis of
Schur polynomials with coefficients which are polynomials in q, t (the Kostka-Macdonald
polynomials) with nonnegative integer coefficients. The proof uses sophisticated methods
from algebraic geometry. Combinatorial interpretations for the coefficients of the Kostka-
Macdonald polynomials exist only in special cases.

5. Combinatorics and group theory. Like in other cases we mentioned, the
relationship between group theory and combinatorics is a two-way relationship. Let us
start by pointing out the way in which group theoretical tools were used in combinatorics.
In fact, we have already mentioned one such instance, namely the enumeration of orbits of
a finite group acting on a finite set. Indeed, the number of such orbits can be expressed in
terms of the character of the corresponding permutation representation (see the definition
of characters in section 4). Another application of group representations is related to the
enumeration of solutions to equations in groups. To give a flavour of these results,
consider the function associating with every element of the symmetric group the number
of its factorizations with a fixed number of factors, in which each factor is a fixed power
(possibly negative) of some permutation. It turns out that this function is a character
of the symmetric group, which was determined in special cases. Last but not least, we
mention that group theoretical results, including the classification of finite simple groups,
were used to derive combinatorial results, mostly concerned with transitive actions of
finite groups (recall that a group acts transitively on a set if given any two elements of
the set, there is an element of the group carrying the first to the second). For instance,
such tools were used in the theory of distance-transitive graphs; these are graphs with the
property that their automorphism group acts transitively on ordered pairs of vertices at
any given distance. For instance, it was proved in this way that there are finitely many
such graphs with vertices of any fixed degree (that is, a fixed number of neighbors). A
project is underway to classify all distance-transitive graphs.

Combinatorial tools were also successfully used in group theory, including the classi-
fication of finite simple groups. The main point is that many interesting finite groups
appear as automorphism groups of certain combinatorial structures with a considerable
amount of symmetry. In fact, any finite group is the automorphism group of a finite
strongly regular graph, and of a Steiner triple system. A graph is strongly regular if it is
regular (all vertices have the same number of neighbors), not complete or empty, and the
number of vertices adjacent to two vertices s and t only depends on whether s and t are
adjacent or not; a Steiner triple system is a 2-(v, 3, 1) design (see section 2). Given the
result above, it comes as no surprise that the most complex finite simple groups, namely
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the sporadic ones, are best described as automorphism groups of some of the previously
mentioned structures. Furthermore, there are classification results related to the corre-
sponding actions, for instance to the action of the sporadic groups on distance-transitive
graphs.

Another area of interplay between combinatorics and group theory is related to com-
puting in permutation groups. Some computational problems, such as determining the
center, the composition factors, or the Sylow subgroups of a group, are known to be
polynomial (see the discussion about complexity in section 10). Others are NP-hard,
and, in fact, are at least as hard in general as the problem of deciding if two graphs are
isomorphic. Some of the problems in the latter category are: isomorphism of permutation
groups, finding generators for the automorphism group of a graph, finding generators for
the intersection of two permutation groups etc.

6. Combinatorics and commutative algebra. The main object of interest in this
area is the Stanley-Reisner ring of a finite simplicial complex (i.e., a family of subsets of a
set - called simplices - which is closed under taking subsets); this is defined as a quotient
of a polynomial ring (with variables corresponding to the vertices of the complex) by the
ideal generated by the squarefree monomials corresponding to subsets of vertices which
are not simplices. In particular, we have the Stanley-Reisner ring of a partially ordered
set, which is constructed in terms of the simplicial complex of chains in the partially
ordered set (known as the order complex). Clearly, the whole algebra structure of the
Stanley-Reisner ring is determined by the combinatorial data in the simplicial complex
or the partially ordered set. There are many ramifications from this observation. For
instance, certain invariants of the Stanley-Reisner ring, such as its Hilbert function and
certain vectors called h-vectors, are determined by the f -vectors of the simplicial complex
(introduced in section 3 for polytopes); we note in passing that there are several results
related to the characterization of both h- and f -vectors in certain cases. Furthermore,
there are strong conditions on the combinatorics of a partially ordered set to allow for
the Cohen-Macaulay property of the corresponding Stanley-Reisner ring. Recall that
the Cohen-Macaulay property of a quotient of a polynomial ring by a homogeneous
ideal can be reformulated as the existence of a certain direct sum decomposition of the
quotient ring, known as the Hironaka decomposition; essentially, this property expresses
a strong regularity property of the associated variety. A partially ordered set is defined
to be Cohen-Macaulay if the associated Stanley-Reisner ring is; there is also a purely
combinatorial characterization. We point out that testing a partially ordered set P for
the Cohen-Macaulay property is very useful since it is known that it implies the same
property for an important class of algebras, called algebras with straightening law over
P. Furthermore, every Hironaka decomposition of the Stanley-Reisner ring of P induces
a Hironaka decomposition of the algebra since it is known that the two are isomorphic
as vector spaces.

Let us now turn to conditions on a partially ordered set which imply the Cohen-
Macaulay property. First of all, a necessary condition is that the partially ordered set
is ranked, that is, all maximal chains have the same length (this enables one to define
the rank of each element). Another condition is given in terms of the Möbius function,
discussed in section 2. The Möbius function is called alternating if its sign (on an interval)
is determined by the parity of the difference between the ranks of the endpoints of the
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interval. It is known that the alternating property of the Möbius function implies the
Cohen-Macaulay property. On the other hand, it is known that lexicographic shellability
of the partially ordered set also implies the Cohen-Macaulay property, and one can derive
the Hironaka decomposition of the Stanley-Reisner ring from a shelling. A partially
ordered set is lexicographically shellable if it is ranked, and its set of maximal chains
admits a linear ordering (called shelling) such that every chain contains a unique minimal
subset that is not contained in any previous chain. Lexicographic shellability is a method
for proving shellability (see section 3) of order complexes of partially ordered sets. An
important class of partially ordered sets which is known to be (lexicographically) shellable
is formed by all finite quotients of a Coxeter group by a parabolic subgroup, ordered by
Bruhat order; the latter is defined on the Coxeter group by setting u ≤ v if every reduced
decomposition for v (or word, that is, a factorization of v of minimum length in terms of
the Coxeter generators of the group) contains a subword which is a reduced decomposition
for u. Similarly, the lattice of subgroups of a finite group is (lexicographically) shellable
if and only if the group has a property known as supersolvability.

7. Combinatorics and algebraic geometry. There are several applications of
results in algebraic geometry to combinatorics. For instance, known estimates for the
number of connected components of real varieties were used to estimate the number of
tests needed to solve the membership problem for certain subsets of Rd (i.e., to decide if
a certain point is in the subset or not); a typical example is to decide if the numbers in a
finite set are all distinct. Another example is using results about the number of solutions
of polynomials with several variables over a finite field to prove that certain graphs contain
regular subgraphs (see section 5). Algebraic relations among the subdeterminants of a
matrix (the Grassmann-Plücker relations) were used to recognize polytopal complexes
(see the discussion in section 3). Finally, results in the theory of elliptic curves have been
used to construct codes with excellent error-correcting capacity.

As far as combinatorial methods in algebraic geometry are concerned, they are related
to combinatorial descriptions of certain algebraic varieties, including their cohomology
and singular locus (recall that a point is called smooth if the dimension of the tangent
space at that point is equal to the dimension of the variety; otherwise, it is called singular).

A class of varieties where such methods were used successfully is that of Schubert va-
rieties. They arise in a certain decomposition of varieties of flags in Cn; the latter can be
viewed as quotients of the group SLn of n×n complex matrices of determinant 1 by cer-
tain subgroups. If we consider the quotient SLn/B by the subgroup B of upper triangular
matrices, the Schubert varieties are indexed by permutations of n elements. Essentially,
the Schubert decomposition of SLn/B is the geometric counterpart of the well-known
Gaussian elimination method in linear algebra. The Grassmannian of k-subspaces in Cn

is a special case of a flag variety. It turns out that the number of points in a suitable
triple intersection of Schubert varieties in Grassmannians is just a Littlewood-Richardson
coefficient, discussed in section 4. Hence it is described by a combinatorial rule in terms
of Young tableaux. However, there is as yet no good explanation for the fact that these
numbers appear both in Schubert calculus and the representation theory of GLn(C). On
the other hand, the Littlewood-Richardson coefficients have found a surprising applica-
tion recently to describing eigenvalues of sums of Hermitian matrices. The problem of
finding a combinatorial interpretation for the intersection numbers of Schubert varieties
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in arbitrary flag varieties (which is equivalent to describing the multiplicative structure
of the ordinary cohomology of flag varieties with respect to a certain natural basis) is
not yet solved; however, it seems that the answer should be in terms of certain dia-
grams of strands (known as rc-graphs), generalizing Young tableaux. Another problem
for Schubert varieties with combinatorial ramifications which has been investigated is the
membership problem.

We now turn to the problem of the singular locus of Schubert varieties in SLn/B. It
is known that the Schubert variety indexed by a permutation w is singular if and only if
w contains elements which relate to each other in the same way as the elements of the
permutations (patterns) 4231 and 3412 do. Recently, a purely combinatorial description
of the irreducible components of the singular locus of the previously mentioned Schubert
varieties was given. On the other hand, there is a nice connection between singular
points in Schubert varieties and the Kazhdan-Lusztig polynomials discussed in section 4;
essentially, a point is smooth if and only if the corresponding Kazhdan-Lusztig polynomial
is equal to 1. This connection relates the combinatorics in the two areas.

The previous results were generalized to some extent to Schubert varieties correspond-
ing to other Lie groups than SLn, as well as to other varieties, such as toric and quiver
varieties. On the other hand, more complex cohomology theories have been studied,
such as equivariant, quantum, and intersection cohomologies, K-theory etc. Let us just
mention that the analogues in quantum cohomology of the intersection numbers of Schu-
bert varieties discussed above are the so-called Gromov-Witten invariants, enumerating
certain curves in SLn/B. There are some recent combinatorial results related to them.

8. Combinatorics and topology. The following idea was successfully used in com-
binatorics: associate a topological space with a combinatorial object, and derive combi-
natorial results from topological ones applied to this space; furthermore, the topological
study of the space is interesting in its own right. One can associate topological spaces
with partially ordered sets, graphs, and matroids (the latter are abstract generalizations
of matrices). For instance, by applying topological results to the simplicial complex of
chains in a partially ordered set (its order complex), such as fixed point theorems or
homology calculations, one can obtain fixed point theorems and other results for the
partially order set (such as results about the Möbius function, introduced in section 2,
which is just the reduced Euler characteristic in this context). There are related results
referring to the homotopy type of a partially ordered set (that is, of its order complex).
For instance, it is known that every lexicographically shellable partially ordered set (such
as the Bruhat order on Coxeter groups, see section 6) has the homotopy type of a wedge
of spheres. Shellings are also useful for constructing bases for the cohomology of the
order complex. In some cases (such as partially ordered sets of partitions of a set of
various types), the symmetric group acts on the partially ordered set and hence on its
cohomology, and one can use the previously mentioned constructions to identify the
representation. Finally, we mention results related to concrete realizations of the order
complex as a finite CW complex (also known as a cell complex). Such a construction,
where in addition the boundaries of cells have the homology of spheres, was recently
given for intervals in the Bruhat order on the symmetric group.

Another area of combinatorics related to topology is topological graph theory, which
studies embeddings of graphs in surfaces. It turns out that the graphs which cannot be
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embedded in a given 2-dimensional surface can be described in terms of a finite list of
nonembeddable graphs, called forbidden minors. For instance, there are only 2 forbidden
minors for the plane, but 35 of them for the projective plane.

Conversely, combinatorial methods are useful in topology. One such instance is related
to knot theory. Indeed, one can construct knot invariants, such as the Jones polynomial,
purely combinatorially, by associating a graph with a knot, and then by considering
polynomial invariants of the graph, such as the Tutte polynomial. Another instance of
combinatorial methods in topology is related to the representation of certain manifolds by
edge-colored graphs (known as crystallizations or, more generally, combinatorial maps);
this representation led to several classification results.

Another important interaction between combinatorics and topology is related to com-
plex subspace arrangements. These are finite sets of subspaces in a complex vector space.
Special cases are hyperplane arrangements, for which all subspaces have codimension
1. An important combinatorial structure associated with the arrangement is the inter-
section lattice, that is, the set of intersections of subspaces partially ordered by reverse
inclusion. Much research has been devoted to understanding the relationship between
the intersection lattice and other combinatorial data on the one hand, and the topology
of the complement of the arrangement, on the other hand (for instance, its cohomology,
or the homotopy type of its intersection with the unit sphere, which is known to be that
of a wedge of spheres in the case of hyperplane arrangements).

An even bolder step than the ones described above was taken by developing combina-
torial versions of certain topological theories, such as Morse theory (this theory describes
the relationship between a function’s critical points and the homotopy type of the func-
tion’s domain). One application of discrete Morse theory was to shellability of simplicial
complexes (see section 3). Another interesting recent theory is that of combinatorial
differential manifolds; the key ingredient here is a discrete version of the tangent bundle,
defined in terms of a combinatorial structure known as oriented matroid.

9. Combinatorics and probability theory. One instance of the interplay between
combinatorics and probability theory is the use of probabilistic methods to prove the
existence of certain combinatorial configurations. The idea is very simple: one creates a
probability space and shows the existence of a good point (configuration) by showing that
the bad points have measure less than one. Essentially, this method is based on the use of
a relatively simple probabilistic principle, combined with the analysis of the asymptotic
behavior of some combinatorial function. This method was applied to problems such
as: 1) finding lower bounds for Ramsey numbers (a Ramsey number is essentially the
minimum number n such that all configurations of a given type with size at least n have
a given property); 2) problems in extremal set theory (this is concerned with finding
the maximum size of a family of subsets of a set having a certain property); 3) the
probabilistic analysis of algorithms (see section 10).

An important area of interaction between probability theory and combinatorics is that
of random graphs. A random graph is a family of graphs endowed with a probability
distribution. A very popular example is the binomial random graph G(n, p), in which
there are n vertices and each edge is chosen with probability p. An important problem
is to study the evolution of G(n, p) as p increases from 0 to 1. It turns out that, up to
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a certain known threshold, G(n, p) consists almost surely of components with at most
one cycle, after which it almost surely consists of a unique giant component and small
components with at most one cycle. This phenomenon is called phase transition. There
are several estimations of the size of the giant component in the neighborhood of phase
transition. There is a similar phenomenon to phase transition for certain graph properties,
in the sense that the probability of G(n, p) having the property jumps from 0 to 1
in the limit. Another branch of the theory of random graphs is concerned with limit
distributions of numerical characteristics of a graph, such as the number of copies of a
fixed graph it contains and its chromatic number (see the definition in section 2).

Another area of interaction between combinatorics and probability theory we are men-
tioning is related to random walks on graphs. These are processes which start at a
certain vertex of the graph, and at each step move to a neighboring vertex with a given
probability. Examples include shuffling a deck of cards and random walks on groups, in
which each move means multiplication by certain elements in the group. Assuming that
the graph is connected and d-regular (all vertices have d neighbors), that all transitions
occur with probability 1/d, and that we follow the random walk long enough, the cur-
rent point will be almost surely uniformly distributed over the vertices. The analysis
of random walks includes computation of the mixing rate, which measures how fast this
convergence happens. This depends on global connectivity properties of the graph, such
as expansion (see the discussion in section 2). In the case of random walks on groups,
the main tools for estimating the mixing rate come from representation theory. An im-
portant application of random walks is to randomization of algorithms. Indeed, a useful
heuristics for computationally hard problems involving local search is to randomly select
a neighbor of the current state at each step. This allows the process to reach “obscure”
parts of large sets and avoid “tricky” corners. Concrete applications include estimation
of the volume of a bounded convex body, enumeration of matchings in graphs, statistical
sampling etc.

Finally, we would like to mention a relatively recent development, namely free proba-
bility theory. This is an analog of classical probability in which the random variables are
replaced by elements of some (possibly noncommutative) algebra. The central notion is
an analog of the notion of independence for random variables. There are some subtle
connections between this theory and combinatorics, particularly combinatorics related to
the representation theory of the symmetric group (see section 4).

10. Combinatorics and theoretical computer science. Many algorithms in
computer science are concerned with combinatorial structures, such as graphs. Assuming
that the edges are weighted, here is a list of computational problems involving graphs: 1)
find the tree of minimum total weight containing all vertices (the minimum spanning tree);
2) viewing the graph as a network of pipes and the edge weights as capacities, find the
maximum flow in the network; 3) find the path containing all vertices and minimizing the
sum of weights on its edges (the traveling salesman problem TSP); 4) find a maximum
cut in the graph, that is a subset of the vertices maximizing the sum of weights of
edges with exactly one endpoint in the subset (the max-cut problem). A major theme
in computer science is estimating the complexity of various algorithms for solving such
problems. By complexity is here meant the amount of time (or steps) and computational
resources needed. By constructing algorithms, one shows that a task can be done in
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a certain number of steps. It is often the most difficult part to show that there is no
faster way, i.e. requiring fewer steps. Surprisingly, there is a nice topological approach
to this problem in some cases; essentially, one associates a topological space with the
given problem, and observes that the the more complicated this space is topologically,
the higher the complexity of the algorithm. For a large class of problems, there are
polynomial algorithms for solving them (that is, their complexity is a polynomial in the
number of vertices of the graph, say). For other problems, called NP-hard, no such
algorithm is known. For instance, problems 1) and 2) are polynomial, while 3) and 4)
are NP-hard. Membership in the latter class is shown by reducing the given problem to
a standard one, such as TSP. If this is the case, one looks for heuristics for finding an
approximate solution. For example, the best known heuristics for TSP has a performance
ratio of 3/2; this means that the weight of the path found by the heuristics is at most
3/2 as large in general as the minimum weight.

Here are some examples of heuristics for approximating solutions to NP-hard problems:
1) the greedy heuristics, based on making the best choice at each step of the algorithm;
2) local improvement techniques, such as randomization (see the discussion in section
9); 3) heuristics based on linear programming (see the discussion in section 3 about this
method). The mathematical formalization of some of these heuristics, such as the greedy
one, led to combinatorial structures with many interesting properties, such as those called
greedoids.

The difficulty of NP-hard problems led to the development of new models of computa-
tion. We enumerate some of them: 1) parallel computation, that is, algorithms in which
several tasks are performed simultaneously; 2) on-line algorithms, that is, algorithms in
which not all data is available at once, but becomes available as the algorithm progresses;
3) probabilistic analysis of algorithms, i.e. an average-case analysis based on random in-
put (as opposed to the classical worst-case analysis). For instance, there is a heuristics
for TSP which, under probabilistic analysis, has a performance ration of 1/

√
n, where

n is the number of vertices of the graph. The mathematical formalization of the above
models of computation is only in its initial stages.

Our list of areas of mathematics and computer science interacting with combinatorics
is by no means exhaustive. For instance, we have not mentioned combinatorial number
theory, concerned with the study of properties of “dense” subsets of positive integers,
representations of positive integers as sums of elements in a given set, congruences for
combinatorial numbers (such as the binomial coefficients) etc. On the other hand, we
have not devoted a special section to areas such as analysis and differential equations (the
connections between the latter and combinatorics are just starting to emerge); however,
we have mentioned structures and tools from analysis used in combinatorics (for instance,
generating functions and polynomial spaces in sections 1 and 2, as well as the asymp-
totic behavior of combinatorial functions, in section 9). Finally, we have not mentioned
applications of combinatorics to other areas of science. Such areas include: operations
research, electrical engineering, statistical physics, chemistry, and molecular biology.
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