Susan Sharfstein
PhD Chemical Engineering, University of California, Berkeley, 1993
BS with honors Chemical Engineering, California Institute of Technology, Pasadena, CA, 1987

Honors and Awards
- UAlbany RNA Institute Excellence in Service, 2024
- SUNY Chancellor’s Award for Excellence in Scholarship and Creative Activities, 2023
- Fulbright Alumni Ambassador, 2021-23
- Fulbright Global Scholar Award, 2017-18
- Biotechnology Subject Editor, Elsevier Life Science Reference Module, 2015-19
- SUNY Research Foundation Faculty Fellow, 2015-16
- Marquis Who's Who in America, 2010
- RPI Class of '51 Outstanding Teaching Award, 2007
- RPI School of Engineering Excellence in Education Award, 2007
- CAREER: National Science Foundation Early Career Development Award, 2000
- Inducted into Sigma Xi at University of Toledo, 1997
- National Institutes of Health Postdoctoral Fellowship, 1993
Research
The focus of the research in the Sharfstein laboratory is on understanding the role of culture conditions and cell physiology on use of living systems for industrially relevant processes. Our primary area of interest is the use of mammalian cell systems for the production of therapeutic proteins and carbohydrates.
We use the tools of modern cell and molecular biology along with “omics” to probe physiological states, with an objective of optimizing production systems both from an engineering perspective (e.g. culture conditions) as well as from a biological perspective (cellular and metabolic engineering).
Our research addresses key bioengineering challenges, including cellular productivity, DNA methylation, and protein glycosylation, to improve therapeutic outcomes. We innovate in tissue engineering and regenerative medicine, developing novel treatments for conditions like salivary gland dysfunction and glaucoma.
Our lab also investigates ways to interface living systems with electronic and photonic devices to create biohybrid systems and advance cell therapies. Collaborating with academic and industry partners, our lab is committed to driving impactful advancements in biotechnology and medicine.
To learn more, visit Dr. Sharfstein's research website.
See Dr. Sharfstein's Google Scholar page.
Recent Publications
J. Allisha, J. Das, T. Dunnigan, S.T. Sharfstein, P. Datta, Stipulations of Cell and Gene Therapy and the ties to Biomanufacturing, Biotechnology Progress, in press.
S.C.R. Kollampally, X. Zhang, N. Moskwa, D.A. Nelson, S.T. Sharfstein, M. Larsen, and Y. Xie, Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance, Bioengineering, 11(4): 375 (2024) https://doi.org/10.3390/bioengineering11040375
E. Oduah, S.T. Sharfstein, N. Seetharamu, S. Grossman, and L. Litovchick, Proteasome inhibition paradoxically degrades gain-of-function mutant p53 R273H in NSCLC and could have therapeutic implications, Frontiers in Oncology, 14: 1363543 (2024) doi.org/10.3389/fonc.2024.1363543
S.C. Rose, M. Larsen, Y. Xie, and S.T. Sharfstein, Salivary Gland Bioengineering, Bioengineering 11: 28 (2024) https://doi.org/10.3390/bioengineering11010028
H.O. Masson, M. Samoudi, C.M. Robinson, C-C. Kuo, L. Weiss, K.S.U. Doha, A. Campos, V. Tejwani, H. Dahodwala, P. Menard, B.G. Voldborg, B. Robasky, S.T. Sharfstein, and N.E. Lewis, Inferring secretory and metabolic pathway activity from omic data with secCellFie, Metabolic Engineering, 81: 273-285 (2024) https://doi.org/10.1016/j.ymben.2023.12.006
F. Pesantez Torres, N. Tokranova, #E. Amodeo, T. Bertucci, T.R. Kiehl, Y. Xie, N.C. Cady, and S.T. Sharfstein, Interfacing Neural Cells with Typical Microelectronics Materials for Future Manufacturing, Biosensors and Bioelectronics, 242: 115749 (2023) doi: 10.1016/j.bios.2023.115749
K.Y. Torrejon, L. Beardslee, J.R. Halman, A.M. Unser, Y. Xie, J. Danias, M. Bergkvist, and S.T. Sharfstein, Recreating the Trabecular Outflow Tissue on Implantable, Micropatterned, Ultrathin, Porous Polycaprolactone Scaffolds, Bioengineering, 10: 679 (2023) doi: 10.3390/bioengineering10060679
S.T. Sharfstein, Bio-hybrid electronic and photonic devices, Experimental Biology and Medicine, 247: 2128-2141 (2022) doi: 10.1177/15353702221144087
H. Dahodwala, S.D. Amenyah, S. Nicoletti, M. Henry, D.J. Lees-Murdock, and S.T. Sharfstein, Evaluation of site-specific methylation of the CMV promoter and its role in CHO cell productivity of a recombinant monoclonal antibody, Antibody Therapeutics, 5: 121-129 (2022) doi: 10.1093/abt/tbac010
P. Ramesh, N. Moskwa, Z. Hanchon, A. Koplas, D.A. Nelson, K.L. Mills, J. Castracane, M. Larsen, S.T. Sharfstein, and Y. Xie, Engineering cryoelectrospun elastin-alginate scaffolds to serve as stromal extracellular matrices, Biofabrication, 14: 035010 (2022) doi: 10.1088/1758-5090/ac6b34
B.E. Thacker, K. J. Thorne, C. Cartwright, J.Park, K. Glass, A. Chea, B. P. Kellman, N. E. Lewis, Z. Wang, A. Di Nardo, S.T. Sharfstein, W. Jeske, J. Walenga, J. Hogwood, E. Gray, B. Mulloy, J. D. Esko, C.A. Glass, Multiplex genome editing of mammalian cells for producing recombinant heparin, Metabolic Engineering, 70: 155-165 (2022) doi: 10.1016/j.ymben.2022.01.002
M. Jorgensen, P. Ramesh, M. Toro, E. Evans, N. Moskwa, X. Zhang, S.T. Sharfstein, M. Larsen and Y. Xie, Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation, Bioengineering 9:38-58 (2022) doi: 10.3390/bioengineering9010038
V. Tejwani, M. Chaudari, T. Rai, and S.T. Sharfstein, High-throughput and automation advances for accelerating single-cell cloning, monoclonality and early phase clone screening steps in mammalian cell line development for biologics production, Biotechnology Progress, Sep 3;e3208 (2021) doi: 10.1002/btpr.3208
V. Muralidharan-Chari, Z. Wurz, F. Doyle, *M. Henry, A. Diendorfer, S.A. Tenenbaum, N. Borth, ^E. Eveleth, S.T. Sharfstein, PTSelect™: A post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation, Journal of Biotechnology, 325:360-371 (2021) doi: 10.1016/j.jbiotec.2020.09.025
N. Amini, J.L. Paluh, Y. Xie, V. Saxena, and S.T. Sharfstein, Insulin production from hiPSC-derived pancreatic cells in a novel wicking matrix bioreactor, Biotechnology and Bioengineering, 117: 2247-2261 (2020) doi: 10.1002/bit.27359
H. Dahodwala, P. Kaushik, V. Tejwani, C.-C. Kuo, P. Menard, M. Henry, B.G. Voldborg, N. E. Lewis, P. Meleady, and S.T. Sharfstein, Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter, Current Research in Biotechnology, 1: 49-57 (2019) doi: 10.1016/j.crbiot.2019.09.001
S. Li, S.W. Cha, K. Heffner, D. Baycin-Hizal, M. Bowen, R. Chaerkady, R. Cole, V. Tejwani, P. Kaushik, M. Henry, P. Meleady, S.T. Sharfstein, M.J. Betenbaugh, V. Bafna, N.E. Lewis, Proteogenomic annotation of the Chinese hamster reveals extensive novel translation events and endogenous retroviral elements. Journal of Proteome Research, 2019 Apr 25. doi: 10.1021/acs.jproteome.8b00935.
B.E. Thacker and S.T. Sharfstein, Metabolic Engineering of Mammalian Cells to Produce Heparan Sulfates, Emerging Topics in Life Sciences, 2 (3) 443-452 (2018) DOI: 10.1042/ETLS20180007
+V. Tejwani, M.R. Andersen, J-H. Nam, and S.T Sharfstein, Glycoengineering in CHO cells: Advances in systems biology, Biotechnology Journal 13(3):e1700234 (2018) DOI: 10.1002/biot.201700234 Featured on inside back cover and one of the most read papers in the journal issue
S.T. Sharfstein, Non-protein biologic therapeutics, Current Opinion in Biotechnology 53: 65-75 (2018) doi: 10.1016/j.copbio.2017.12.014
*J.J. Terracina, S.T. Sharfstein, M. Bergkvist, In Silico characterization of Enantioselective Molecularly Imprinted Binding Sites, Journal of Molecular Recognition, 31: e2612 (2018) doi: 10.1002/jmr.2612
S. Zhang, ^D.E. Speed, ^S.R. Trammell, and S.T. Sharfstein, Reactivity of Deposited Byproducts Generated from ZrO2 Atomic Layer Deposition, Journal of Loss Prevention in the Process Industries, 45: 78-87 (2017) doi: 10.1016/j.jlp.2016.11.008
*K.Y. Torrejon, #E.L. Papke, #J.R. Halman, M. Bergkvist, J. Danias, S.T. Sharfstein, and Y. Xie, TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a Rho-associated kinase inhibitor, Scientific Reports, 6: 38319 (2016) doi:10.1038/srep38319
*E. Oduah, R.J. Linhardt, and S.T. Sharfstein, Heparin: Past, Present, and Future, Pharmaceuticals, 9: 38 (2016) doi:10.3390/ph9030038
*J.J. Terracina, S.T. Sharfstein, and M. Bergkvist, Computational Investigation of Stoichiometric Effects, Binding Site Heterogeneities, and Selectivities of Molecularly Imprinted Polymers, Journal of Molecular Modeling, 22: 139 (2016) doi: 10.1007/s00894-016-3005-1
*K.Y. Torrejon, E.L. Papke, #J.R. Halman, J. Stolwijk, *C.N. Dautriche, M. Bergkvist, J. Danias, S.T. Sharfstein, and Y. Xie, Bioengineered Glaucomatous 3D Human Trabecular Meshwork as an in vitro Disease Model, Biotechnology and Bioengineering, 113: 1357-68 (2016) doi:10.1002/bit.25899
*C.N. Dautriche, Y. Tian, Y. Xie, and S.T. Sharfstein, A Closer Look at Schlemm’s Canal Cell Physiology: Implications for Biomimetics, Journal of Functional Biomaterials, 6: 963-985 (2015) doi:10.3390/jfb6030963
*C.N. Dautriche, #D. Szymanski, #M. Kerr, *K.Y. Torrejon, M. Bergkvist, Y. Xie, J. Danias, W.D. Stamer, and S.T. Sharfstein, A biomimetic Schlemm's canal inner wall: A model to study outflow physiology, glaucoma pathology and high-throughput drug screening, Biomaterials 65: 86-92 (2015) doi:10.1016/j.biomaterials.2015.06.034
+J-Y Baik, +H. Dahodwala, *E. Oduah, #L. Talman, T.R. Gemmill, *P. Datta, *L. Gasimli, B. Yang, G. Li, F. Zhang, L. Li, R.J. Linhardt, ^A.M. Campbell, ^S.F. Gorfien, and S.T. Sharfstein, Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin, Biotechnology Journal, 10: 1067–1081 (2015) DOI 10.1002/biot.201400665
Invited Book Chapters
Hussain Dahodwala and Susan T. Sharfstein, “The ‘Omics revolution in CHO biology: Roadmap to improved CHO productivity” - revised, in Heterologous Protein Production in CHO Cells, Methods and Protocols, 2nd edition, P. Meleady, ed. Methods in Molecular Biology, Humana Press (2025). v2853, Ch. 9, p119-138.
Ranya Pranomphon, Vijay Tejwani, Hussain Dahodwala, Montarop Yamabhai, and Susan T. Sharfstein, “Metabolic and process engineering to control glycan structures for biopharmaceuticals produced in cultured mammalian cells” in Bioprocessing, Bioengineering and Process Chemistry in the Biopharmaceutical Industry: Using Chemistry and Bioengineering to Improve the Performance of Biologics. K. Gadamasetti and S. A. Kolodziej, eds., Springer Nature, (2024), Ch. 6, p 135-168 https://doi.org/10.1007/978-3-031-62007-2_6
Stephanie Curley, Sarah Nicoletti, and Susan T. Sharfstein, “Applications of Nanotechnology to Bioprocessing” Comprehensive Biotechnology, 3rd Edition, Elsevier (2019), submitted
Payel Datta, Robert J. Linhardt, and Susan T. Sharfstein, “Industrial Production of Glycosaminoglycans” in Reference Module in Life Sciences, Elsevier (2017) ISBN 9780128096338, https://doi.org/10.1016/B978-0-12-809633-8.12224-1.
Hussain Dahodwala and Susan T. Sharfstein, “The ‘Omics revolution in CHO biology: Roadmap to improved CHO productivity”, in Heterologous Protein Production in CHO Cells, P. Meleady, ed. Methods in Molecular Biology, Humana Press v1603, p153-168 (2017).
N. Cady, T.J. Begley, M. Bergkvist, S.T. Sharfstein, A.E. Kaloyeros. Nanobiological Sensor Technologies - revised. in Dekker Encyclopedia of Nanoscience & Nanotechnology. CRC Press (2013).
Susan T. Sharfstein and Sarah Nicoletti, “Applications of Nanotechnology to Bioprocessing” in The Nanobiotechnology Handbook, Yubing Xie, ed. Taylor and Francis Group, p323-368 (2013)
Mikael R. Andersen, *Jong Hyun Nam, and Susan T. Sharfstein, “Protein Glycosylation: Analysis, Characterization, and Engineering” in The Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, Michael Flickinger, ed. John Wiley & Sons, Inc., p1-49. (2011) Published Online: 16 MAY 2011 DOI: 10.1002/9780470054581.eib649.
Susan T. Sharfstein and Christian Kaisermayer, "Microcarrier culture" in The Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, Michael Flickinger, ed. John Wiley & Sons, Inc., p 3450-3468 (2010).
Susan T. Sharfstein, Duan Shen, Thomas R. Kiehl and Rui Zhou, "Molecular Response to Osmotic Shock" in Cellular Engineering v.5: Systems Biology, M. Al-Rubeai and M. Fussenegger, ed. Springer NL p213-236 (2007).
Susan T. Sharfstein and Jong Hyun Nam, "Protein Glycosylation: Analysis and Characterization" in Bioseparation and Bioprocessing, 2nd ed., G. Subramanian, ed. Wiley-VCH p631-662 (2007).
Peer-reviewed Conference Proceedings
S. Sharfstein, B. Barquera, M. Hanna, Biotechnology and Bioprocessing and Microbiology Laboratory Courses: A Model for Shared Used of Instructional Laboratories between Engineering and Science, Proceedings of 2008 American Society for Engineering Education Annual Conference and Exposition (2008).
A.B. Samuels, S. Sharfstein, and L.L. Martin, Optimization of mAb Synthesis via the Application of an IDEAS Formulation, Proceedings of the 2004 AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2004).
S. Sharfstein and P. Relue, Biotechnology and Bioprocessing Laboratory for Chemical Engineering and Bioengineering, Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition (2001).