Inquiry. Exploration. Discovery. Research at the University at Albany is expanding knowledge and building expertise to better the human condition in the 21st century.
The first college in the world devoted exclusively to the study of nanoscale scientific and engineering concepts, the College of Nanoscale Science and Engineering (CNSE) is located in the most advanced research complex of its kind at any university. The $3 billion, 450,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience, and it is growing. The complex is also home to CNSE's New York State Center of Excellence in Nanoelectronics.

The research under way includes efforts to develop: magnetically doped semiconductors with the potential for faster computer processing speeds with lower power consumption; the creation of sensor chips that can instantaneously and non-invasively check the bloodstream for glucose levels, as well as disease; working models of products that employ alternative power technologies, such as fuel cells, microturbines, and solar cells; and NEMS (nanoelectricmechanical structures) that enable chips to exercise 'decision-making' capabilities. These projects are just a few of many.

The CNSE complex, financed through more than $500 million in governmental support and over $2.5 billion in corporate investments, houses the only pilot prototyping facilities in the academic world for the two standard sizes in computer chip design, the 200-millimeter (or 8-inch) wafer, and the 300-millimeter (or 12-inch) wafer.

In 2005, CNSE had 115 U.S. and worldwide partners, including some of the world's largest semiconductor and semiconductor-related tool manufacturing companies.
UAlbany's Institute for Informatics, Logics and Security Studies (ILS) builds applications to provide better intelligence about threats to the U.S. and explores new ways to outwit cybercriminals and computer viruses. At the Center for Technology in Government (CTG), researchers focus on ways information technology can be used to improve government services. Other faculty researchers in computing and information are assessing how teachers use information technology to help their students learn, and addressing other information age challenges.

ILS, led by Tomek Strzalkowski, is developing advanced information retrieval systems to help intelligence analysts quickly sift through mountains of news and field reports and extract relevant clues and accurate intelligence. A research group that is part of ILS, the Center for Information Forensics and Assurance (CIFA), focuses on securing cyberspace through research and specialized courses.

CIFA researchers work on real-life information security problems. Key to assuring that both the problems and the solutions reflect reality are the two state CIFA partners: the Computer Crime Unit of the New York State Police Forensic Investigation Center and the state Office of Cyber Security and Critical Infrastructure Coordination. Its research partner, the Center for Education and Research in Information Assurance and Security at Purdue University, adds extra depth to its efforts.

Whether the goal is to track down terrorists, secure cyberspace, or streamline government, the tools of the information age are vital for success. University at Albany researchers are leaders in harnessing them.
Researchers aim to stop metastatic growth of cancer cells. Through explorations of coral reefs in Fiji (such as the one shown on the cover), University at Albany scientists are gaining new insights into climate over time periods as long as thousands of years ago. Closer to home, in state-of-the-art cleanrooms and laboratories, UAlbany researchers are exploring ways to increase computer processing speeds and stop the spread of cancer cells. These explorations are just a few of the research projects that are attracting growing levels of external support and are, at the same time, creating new knowledge and expertise to better the human condition. Inquiry, exploration, and discovery are truly the seeds of success in today’s fast-changing knowledge economy. By sowing those seeds, UAlbany researchers are “growing” knowledge; revitalizing the economy; and serving the people of the Capital Region, New York State, the country and the world.

Advancing Understanding of Cancer

More than half of cancer patients die from metastatic disease that develops months, years or even decades after primary tumor removal. Finding ways to stop the metastatic growth of cancer cells is the focus of just one of several UAlbany research efforts aimed at advancing our understanding of cancer.

Investigations by scientists at UAlbany’s Gen*NY*Sis Center for Excellence in Cancer Genomics also include studies of how chemotherapeutic medicines called “alkylating agents” work in different types of cancer cells and how bioinformatics analysis and identification can help determine which genes to focus on.

A $1.5 million grant from the National Institutes of Health, National Cancer Institute is supporting the research by Julio Aguirre-Ghiso into the mechanisms that govern metastatic growth, most importantly the induction of dormancy of metastasis. He is particularly interested in a newly identified “stress” signaling mechanism and gene programs that are selectively activated in dormant carcinoma cells and that are essential for the maintenance of dormancy.

In the past, cancer researchers often focused on one gene, one type of cancer. By contrast, the Gen*NY*Sis center, directed by Paulette McCormick, uses high-throughput, multi-modal approaches that apply to many different cancers with many different causes. The research goal is rapid translation of basic research findings into clinical treatments for multiple cancer types.

Bringing Humanities and the Sciences Together

UAlbany’s College of Arts and Sciences has launched the interdisciplinary Center for Humanities and TechnoSciences (CHATS) to foster exchange between the sciences and the humanities, and to provide a forum where the University and the Capital Region community can pursue intellectual and aesthetic innovation and outreach.

CHATS was a co-sponsor of “Frankenstein: Penetrating the Secrets of Nature,” a traveling exhibit funded by the National Endowment for Humanities, the National Library of Medicine, and the American Library Association. The exhibit, on campus in 2005, encouraged audiences to examine the intent of Mary Shelley’s Frankenstein, and to explore the novel from literary, social, historical, and political points of view.

CHATS’s initial project, in 2003, was “The Technology Plays,” which featured works by Pulitzer Prize-winning author and UAlbany Professor of English William Kennedy and playwright/television writer Richard Dresser, and attracted coverage by media throughout the United States, including The New York Times.

New Strategies to Aid Young Readers

Getting youngsters off to a good start as readers is the goal of a major research project led by UAlbany professors Donna Scanlon of the Department of Reading and Frank Vellutino of the Department of Education and Counseling Psychology.

“Preventing Reading Difficulties Through Implementation of the Interactive Strategies Approach” aims to implement an approach to preventing long-term reading difficulties that the researchers have been developing and testing for more than a decade. It is based on several previous studies indicating that children who struggle with reading at the end of first grade are likely to experience reading difficulties throughout their school careers, and that youngsters at risk for difficulty in early literacy development can be identified at kindergarten entry. The earlier research also noted that certain instructional practices can reduce the number of young children who experience difficulty in early literacy development, and that teachers’ knowledge and ability are critical to students’ academic success.
Unlocking the Mysteries of Weather and Climate

From the Hudson Valley to the South Pacific to the deserts of Africa, UAlbany researchers are unlocking the mysteries of climate and its impact upon human populations.

Through the work of Braddock Linsley of Earth and Atmospheric Sciences and his colleagues at other institutions, Pacific Ocean coral skeletons are yielding clues about climate over time periods as long as thousands of years. The researchers are analyzing massive coral skeletons of several specific species to reconstruct surface oceanographic conditions, such as temperature and salinity, near Fiji, Tonga, and Samoa.

Reducing Depression in Homebound Older Adults

Older homebound people with medical problems are often susceptible to depression. Now, UAlbany researcher Zvi Gellis is working with colleagues from Cornell University’s Weill Medical College, Albany Medical College and St. Peter’s Hospital to study and evaluate a depression treatment program for this vulnerable population.

UAlbany’s Center for Mental Health and Aging, led by Gellis, had conducted a previous study at St. Peter’s Health Care Center which revealed that high rates of depressive symptoms were found in 27.5 percent of community-dwelling homecare patients. The new study, which is being supported by a five-year, $1 million grant from the National Institute of Mental Health (NIMH), is building upon those findings.

Depression and anxiety are among the most common mental disorders in later life, and depressed mood, isolation, loneliness, lack of social supports and declining physical abilities are some of the probable factors, according to Gellis, a School of Social Welfare assistant professor. As the population ages, the number of older adults with significant psychiatric disorders is expected to increase considerably within the next ten years.

Focusing on Neurodegenerative Diseases

Patients with Parkinson’s, ALS and other neurological disorders may benefit from research conducted by Li Niu and his colleagues in UAlbany’s Department of Chemistry.

The researchers are studying a special family of proteins — glutamate receptors — whose function link to such brain activity as memory and learning. Abnormal functions of receptors have been implicated in such neurodegenerative diseases as Parkinson’s disease and Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis (ALS). In the disease state, the receptors are excessively active, causing the neurons that harbor these receptors to die. Niu and his colleagues are using a laser to study, in a split second, the receptors embedded in the membrane of a single live cell, and gain information about the receptors’ structure and function and the mechanism of drug-receptor interaction. Their findings could lead to the development of better therapeutics to treat these diseases. The researchers have identified RNA inhibitors that exhibit fascinating properties as promising templates for drug design. Their work has attracted about $2 million in funding.

Addressing Public Health Threats

Through its centers and continuing education programs, UAlbany’s School of Public Health advances research-based solutions for current and emerging health threats.

The School’s Center for Public Health Preparedness (CPHP) offers a monthly satellite broadcast series and online and other educational programs that help prepare the region’s public health and healthcare workforce to respond to such threats as bioterrorism and infectious disease outbreaks. The center, funded by a $5 million grant from the federal Centers for Disease Control and Prevention, is one of 23 such programs in the nation.

A team led by Atmospheric Sciences Research Center scientists David R. Fitzjarrald and Jeffrey M. Freedman is investigating great climatic variations over small distances in the Hudson Valley. The scientists gathered and are analyzing extensive weather and climate data for the region to explain the variability. The project is supported by a $625,000 National Science Foundation grant.

Another UAlbany atmospheric scientist, Christopher Thornicroft, is one of two U.S. researchers coordinating an international effort to better understand the variability and impact of the West African Monsoon in a region where widespread hunger and the loss of farmland to deserts are recurrent problems.
Bilingualism Persists, but English Dominates

How quickly and how well do immigrants assimilate to U.S. culture? A report from UAlbany’s Lewis Mumford Center for Comparative Urban and Regional Research found that English remains the overwhelming language of choice for the children and grandchildren of Latino immigrants.

Using U.S. Census data from 2000, the study, led by Mumford Center Director and Distinguished Professor of Sociology Richard Alba, analyzed the languages spoken at home by school-age children in Asian and Latino households. While 85 percent of second-generation Hispanic youngsters being raised in immigrant households speak some Spanish at home, 92 percent speak English well or very well, the study found.

Among Asians, 96 percent are proficient in English, and 61 percent also speak an Asian mother tongue. For the third and subsequent generations, children generally speak only English at home.

The bilingualism study is one example of the population research underway at the Mumford Center and the University’s Center for Social and Demographic Analysis (CSDA). More than 40 UAlbany faculty from 14 campus units are associated with the centers and conduct population-related research in areas as varied as fertility, criminology, and epidemiology. A three-year, $1.08 million grant from the National Institute of Child Health and Human Development (NICHD) is strengthening the research infrastructure that supports the population studies.

Bypass is More Effective than Stent

Cardiac bypass surgery is safer than stent procedures and associated with higher rates of long-term survival for patients with two of more diseased arteries, according to a study led by Distinguished Professor Edward Hannan of the School of Public Health. The stent, a device made of wire, is commonly used to reduce blockages in coronary arteries.

Hannan’s research team evaluated the records of nearly 60,000 New Yorkers who underwent bypass and stent procedures from 1997 to 2000. The researchers found that the death rate was 24 percent lower during the three-year period for the 37,000 patients who had had bypass surgery for multiple blockages than it was for the 22,000 who had had stents implanted. The results were reported in the New England Journal of Medicine.

Hannan is nationally recognized for bringing evidence-based medicine to the attention of practicing clinicians. He has developed the use of clinical and administrative databases for cardiac surgery, angioplasty, trauma care, carotid endarterectomy, cancer and hip fractures. His databases have been used to identify risk factors related to mortality and complications, to predict the occurrence of these adverse events, and to assess provider performance.

Center Aims to Eliminate Minority Health Disparities

Statistics make clear that there are significant disparities in the health status of minorities, from life expectancy to infant mortality rates. A new center, bringing together researchers from the College of Arts and Sciences and the schools of Education, Public Health and Social Welfare, aims to eliminate those disparities.

The Center for the Elimination of Minority Health Disparities (CEMHD) is focusing on the problem of minority health disparities in smaller cities in upstate New York. The center’s working theory is that communities of disadvantaged persons in smaller cities and towns differ in important ways from large minority populations in very large cities – and thus may require different remedies.

Center researchers are working with community partners to better understand the multiple determinants of health disparities in smaller cities. Together, they are aiming to identify community needs and focus on barriers to utilization of prevention programs and health care. The center also plans to begin specific projects with community groups to test programs that may reduce barriers and improve utilization. The center’s efforts are being funded by a $1.24 million grant from the National Institutes of Health.

Studying the Impact of Environmental Contaminants

UAlbany researchers are shedding new light on the connections between our health and what we eat, drink, and breathe, through a number of studies – including one that spawned international interest.

Institute for Health and the Environment Director David Carpenter and several other U.S. and Canadian researchers analyzed files from about 700 farmed and wild salmon purchased in 16 North American and European cities. “The Downsides of Aquaculture: Contaminants in Farmed Salmon,” published in Science and reported by media outlets worldwide, noted that concentrations of cancer-causing substances and other health-related contaminants were significantly higher in farm-raised salmon than in wild salmon, and that consumers should therefore consider restricting consumption of the fish.

Lawrence M. Schell of Anthropology and Epidemiology is investigating the possible effects of such endocrine-disrupting environmental contaminants as polychlorinated biphenyls (PCBs) on human physical and psychological development. The project, conducted in partnership with the Mohawk Nation at Akwesasne in upstate New York, is funded by a $2.7 million grant from the National Institute of Environmental Health Science (NIEHS).
Awards Received by University at Albany Faculty
Fiscal Year ’05

<table>
<thead>
<tr>
<th>Fiscal Agent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Foundation of SUNY for University at Albany</td>
<td>$180,910,564</td>
</tr>
<tr>
<td>Health Research Incorporated*</td>
<td>98,354,138</td>
</tr>
<tr>
<td>New York State: Office of the Aging Project at the University at Albany</td>
<td>233,112</td>
</tr>
<tr>
<td>New York State: Center for Technology in Government</td>
<td>1,527,995</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$281,025,809</td>
</tr>
</tbody>
</table>

*Total awards received by Health Research, Inc. for School of Public Health faculty who are employees of the New York State Department of Health. Health Research, Inc. (HRI) a not-for-profit corporation affiliated with the New York State Department of Health. HRI’s mission is to assist the Health Department to effectively solicit and administer financial support for projects and to disseminate the benefits of Health Department expertise through programs such as technology transfer.

Federal Sponsorship
Research Foundation/Health Research Inc. Fiscal Year ’05

- National Science Foundation: 4%
- National Aeronautics and Space Administration: 2%
- Department of Justice: 2%
- Other*: 3%
- Department of Defense: 3%
- Agency for International Development: 6%
- Health and Human Services: 80%

Total Awards Received by University at Albany Faculty and Staff

- Research Foundation: 25%
- HRI: 8%
- Other: 2%

Awards By Sponsor Type Fiscal Year ’05

- Federal: 46%
- Industry: 25%
- Other**: 2%
- New York State: 17%
- Foundations: 2%
- Federal Flow-through*: 8%

*Federal funds awarded through a non-federal agency.
**includes colleges & universities, foreign sponsors, health organizations, local government, states other than NYS, and deposits made to multiple sponsor accounts.

Expenditures By Discipline
Research Foundation Fiscal Year ’05

- Physical Sciences: 61%
- Math/Computer Sciences: 1%
- Life Sciences: 6%
- Environmental Sciences: 3%
- Education: 4%
- Social Sciences: 19%

*includes School of Business, Humanities Disciplines and administrative units.

Doctoral Degrees Awarded Fiscal Year ’05

- Arts & Sciences: 50%
- Education: 22%
- Public Health: 8%
- Business: 1%
- Rockefeller College of Public Affairs: 8%
- Nanoscale Science & Engineering: 1%
- Social Welfare: 4%
- Criminal Justice: 4%
Faculty Recognized for Research Accomplishments

State University of New York Chancellor’s Awards honored University at Albany researchers in three categories:

Excellence in the Pursuit of Knowledge. Kajal Lahiri, Distinguished Professor, Department of Economics;

First Disclosure Awards. Michael Carpenter, Bai Xu, Gregory Denbeaux, and James Raynolds, College of Nanoscale Science & Engineering; Ben Szaro, Dmitry Belostotsky and Sho-Ya Wang, Department of Biological Sciences; Li Niu, Department of Chemistry; and Carolyn MacDonald, Department of Physics; and

First Patent Award. James Castracane, College of Nanoscale Science and Engineering.

The highest honor bestowed by the Research Foundation of SUNY, the Research and Scholarship Award, was given to two UAlbany scholars, Henryk Baran, Department of Languages, Literatures and Cultures, and Sho-Ya Wang, Department of Biological Sciences.

Other faculty recognized for outstanding research achievements include:

Thomas Begley, who received NYSTAR’s prestigious James D. Watson Investigator Award for promising early-career scientists, and Julio Aguirre-Ghiso, who won the Samuel Waxman Cancer Research Foundation award, both of whom are with the Department of Biomedical Sciences in the School of Public Health and Gen*NY*Sis Center for Excellence in Cancer Genomics; and

Distinguished Professor Judith Langer, School of Education, who received an honorary doctorate from the University of Uppsala in Sweden.

Inventions

UAlbany faculty and their research partners were awarded patents for inventions that have applications in such fields as nanoscience, telecommunications, and energy conservation.

Patent No. 6,534,133

“Methodology for In-Situ Doping of Aluminum Coatings,” issued March 18, 2003, to inventors Alain Kaloyeros, Andreas Knorr, and Jonathan Faltemeyer.

Patent No. 6,542,791

Patent No. 6,586,056

“Silicon Based Films Formed from Iodosilane Precursors and Method of Making the Same,” issued July 1, 2003, to inventors Alain Kaloyeros and Barry Arkes.

Patent No. 6,613,924

Patent No. 6,701,036

Goldwater Scholar

For Edgardo Sosa, UAlbany’s opportunities for undergraduate research led to a prestigious Barry M. Goldwater Scholarship. Working in the lab of Associate Professor of Biology Caro-Beth Stewart, he explored the molecular basis for adaptive evolution in complex organisms by using primates as the comparative system. A goal of the research is to understand why some primate species are resistant to SIV/HIV and AIDS, while others are susceptible across a wide range of primate species. The Goldwater awards program, which provides $7,500 per year to recipients, was established by Congress to encourage exceptional students to pursue careers in mathematics, the natural sciences, and engineering. Sosa says his award was a “dream come true,” and his goal is to continue his studies in a combined M.D./Ph.D. program.

Cover: University at Albany paleoclimatologist Braddock Linsley and colleagues work on a massive Porites lutea coral colony in Fiji. Corals build their hard skeletons from calcium carbonate, a mineral extracted from seawater, at a rate of about one centimeter per year, accreting annual growth bands (analogous to tree rings). The cores extracted from this colony off the island of Vanua Levu, Fiji, reflect growth from 1619 to 2001, and can be used to determine the temperature and salinity of the water during that time and to provide insights into past climate. Here Linsley and his team are cleaning the coral and plugging the drill hole with live coral tissue to facilitate post-drilling healing. (Photo: courtesy of Braddock Linsley)