News Release icon Contact: Media Relations Office (518) 956-8150



UAlbany-Berkeley Climate Study Predicts a Significant Increase of Lightning during 21st Century

ALBANY, N.Y. (December 15, 2014) -- A new study published in Science predicts a 50 percent increase in lightning strikes across the United States during this century as a result of warming temperatures associated with climate change.

University at Albany Professor of Atmospheric and Environmental Sciences John Molinari and Senior Scientific Programmer David Vollaro in conjunction with UC Berkeley climate scientist David Romps and graduate student Jacob Seeley looked at predictions of precipitation and cloud buoyancy in 11 different climate models and concluded that their combined effect will generate more frequent electrical discharges to the ground.

Lightning expected to increase according to UAlbany-Berkeley study
Scientists at the University at Albany and the University of California-Berkeley are expecting a significant increase in lightning strikes during the 21st century.

"With warming, thunderstorms become more explosive," said Romps, an assistant professor of earth and planetary science and a faculty scientist at Lawrence Berkeley National Laboratory, and lead author of the study. "This has to do with water vapor, which is the fuel for explosive deep convection in the atmosphere. Warming causes there to be more water vapor in the atmosphere, and if you have more fuel lying around, when you get ignition, it can go big time."

A significant impact of increased lightning strikes would be more wildfires, since half of all fires -- and often the hardest to fight -- are ignited by lightning, Romps said. More lightning also would likely generate more nitrogen oxides in the atmosphere, which exert a strong control on atmospheric chemistry, and could result more human injuries: estimates of people struck each year range from the hundreds to nearly a thousand, with scores of deaths.

The study made use of U.S. Weather Service data on precipitation, radiosonde measurements of temperature and moisture, and lightning-strike counts from the National Lightning Detection Network. The lightning network was developed at the University at Albany during the 1980s. It measures the location of cloud-to-ground lightning flashes in the United States and out to a few hundred miles offshore with great accuracy. Data from the network has previously been used to study the behavior of hurricanes.

"This paper represents the first time we have used these data for climate-related problems," said Molinari. "Our approach was to use the relationship of lightning to 'convective available potential energy' (CAPE; a measure of the potential for thunderstorms) and precipitation in the current climate. Then we used that knowledge to estimate the potential for increased lightning in future climates, evaluated from climate model predictions."

The team looked at 11 different climate models that predict precipitation and CAPE through this century and are archived in the most recent Coupled Model Intercomparison Project (CMIP5). CMIP was established as a resource for climate scientists, providing a repository of output from global climate models that can be used for comparison and validation.

"With CMIP5, we now have for the first time the CAPE and precipitation data to calculate these time series," Romps said.

On average, the models predicted an 11 percent increase in CAPE in the U.S. per degree Celsius rise in global average temperature by the end of the 21st century. Since the models predict little average precipitation increase nationwide over this period, the product of CAPE and precipitation gives about a 12 percent rise in cloud-to-ground lightning strikes per degree in the contiguous U.S., or a roughly 50 percent increase by 2100 if Earth sees the expected 4-degree Celsius increase (7° F) in temperature. This assumes carbon dioxide emissions keep rising consistent with current trends.

Exactly why CAPE increases as the climate warms is still an area of active research, Romps said, though it is clear that it has to do with the fundamental physics of water.

The work was supported by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research, and the National Science Foundation

comments powered by Disqus

RSS Link For more news, subscribe to UAlbany's RSS headline feeds

About the University at Albany
A comprehensive public research university, the University at Albany offers more than 120 undergraduate majors and minors and 125 master's, doctoral, and graduate certificate programs. UAlbany is a leader among all New York State colleges and universities in such diverse fields as atmospheric and environmental sciences, business, criminal justice, emergency preparedness, engineering and applied sciences, informatics, public administration, social welfare, and sociology taught by an extensive roster of faculty experts. It also offers expanded academic and research opportunities for students through an affiliation with Albany Law School. With a curriculum enhanced by 600 study-abroad opportunities, UAlbany launches great careers.