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Lecture  contents  

• Free and crystal electrons 

• Holes 

• Few experimental techniques for bandstructure 

determination 

– UPS 

– ECR 
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Free electrons and crystal electrons 

Free electrons  
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Velocity at band extremum: 

Dynamics (F – force): 
Dynamics at band extremum: 
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(if m* isotropic and parabolic) 
Force equation: 
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Group velocity 

Dispersion and group velocity: 

Wave packet in real space: 
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Group velocity applet  
[http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/sines/GroupVelocity.html]  

http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/sines/GroupVelocity.html
http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/sines/GroupVelocity.html
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Holes 

• It is convenient to treat top of the 

uppermost valence band as hole states  

• Wavevector of a hole = total wavevector of 

the valence band (=zero) minus 

wavevector of removed electron:  

• Energy of a hole. Energy of the system 

increases as missing electron wavevector 

increases:  

 

• Mass of a hole. Positive! (Electron 

effective mass is negative!) 

 

 

• Group velocity of a hole is the same as of 

the missing electron 

 

• Charge of a hole. Positive!  
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Hole energy: 

Missing electron energy: 
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Example: electron-hole pairs 

Electron (e-) 

Si atom 

Hole (h+) 

Eg 

E

c 

Ev 

EHP generation : Minimum energy required to break 

                               covalent bonding is Eg. 



NNSE 618    Lecture #5      

6 

Charge carriers in a crystal 

V 

E 
Si atom 

qEmaF 

hole 

qEmaF 

electron 

Charge carriers in a crystal 

are not completely free.  

Need to use effective mass 

NOT REST MASS !!!  

+ - 
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7 Angle-resolved photoelectron spectroscopy (UPS): 

Band structure determination 

Photo-threshold energy (from EV to vacuum) 

From Yu and Cordona, 2003 
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Cyclotron resonance: effective mass determination  

Lorentz force on a moving particle  BveFm 

Centripetal force for circular motion 
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1cLarge mean free path of carriers 

(long scattering times)  
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Cyclotron resonance: effective mass determination  

Si 

In real semiconductors effective mass me* may 

depend on the direction. These different 

effective masses can be measured by varying 

the angle of B with respect to the 

crystallographic axes. 

 

• In real space: Electrons move on closed orbits. 

 

• In k-space: Electrons and holes move along 

constant energy surfaces in planes 

perpendicular to B.  

 

• In crystals both orbits (k-space, real space) are 

no longer circular: When the effective mass is 

anisotropic, the orbits become ellipsoidal.  

 

• For electrons in Si:  
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Cyclotron resonance in Ge 

From Balkanski and Wallis, 2000 


