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Lecture  contents  

• Stress and strain 

• Deformation potential 
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Stress = force/area     ( 3x3 symmetric tensor ! ) 

 

 

   Stresses applied to a infinitely small volume: 

 

 

 Strain = Ddisplacement/ Dcoordinate  

 ( 3x3 symmetric tensor ! ) 

 

 

Diagonal (axial) strain components:   

   

 

 

   Explanation of shear strain components: 

 

 

 

Few concepts from linear elasticity theory : Stress and Strain 
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6 independent components 

6 independent components   
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Few concepts from linear elasticity theory : Hooke’s law 

Stress-Strain relation: extension of Hooke’s law 

(linear regime): 

 

 

 

Due to symmetry of stress-strain tensors the matrix 

of elastic moduli (elastic stiffness constants) 

can be reduced to 6x6: 

 

Note:   for non-diagonal strain 

components  

 

 

 

 

For cubic crystals,  

only 3 constants are independent:    

 

 

ijij  2
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Effects of crystal symmetry on elastic constants 
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For cubic crystal (3 constants are independent) : 

 

Anisotropy ratio 

 

 

For isotropic material, A=1,  only two elastic 

constants are independent 

 

               Lamé coefficient l and shear modulus m : 

 

   

 

 

Definitions for other elastic constants 
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Fractional change of crystal volume 

under uniform deformation 

From Singh, 2003 
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Definitions of other elastic constants 

Young's modulus  

 

Poisson ratio 

 

Shear modulus  

 

Lamé coefficient   

 

Bulk modulus 

 

 

Another useful set of equations for isotropic material 

(only 2 constants are independent)  :  
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Strain in heterostructures 

Strain: 

Ref: Singh 

Strain relaxed: 

Lattice mismatch: 
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Stress in pseudomorphic epitaxial films 

Biaxial strain.  

No stress along the growth 

direction! 

For strained growth on (001) 

substrate & fcc lattice 

For strained growth on  

(111) substrate & fcc lattice 

(xyz’s are along the cube 
axes) 

Ref: Singh 

On arbitrary growth planes 
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Strained tensor for self-organized quantum dots 

Ref: Singh 
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Energy levels of Si as a function of interatomic spacing 

Interatomic spacing 

Energy band shift vs. strain: 

Deformation potential 



NNSE 618    Lecture #23 

11 
Deformation potential 

Effect of strain on direct band-edges  Once the strain ij is known,  the effects of strain 

on various band states (a) can be calculated 

using Deformation potential theory:  

 

• Number of independent non-zero           

depends on  symmetry of the state a 

• Tensile strain in sp3 – bonded semiconductors 

reduces  bandgap; compressive  increases 

bandgap. 

• Axial strain splits the valence band: strain 

effect on heavy holes is less 

• Axial strain lifts degeneracy of indirect 

conduction band valleys and reduce the 

electron effective masses 

• Strain induces piezoelectric field in polar 

semiconductor structures 


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From Singh, 2003 

a
ijD

Values of D’s are usually of the order of few eV   

Light holes 

Heavy holes 

0 0
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Deformation potential 

From Yu and Cordona, 2003 

Volume DP for the bandgap 
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Strained Si1-xGex / Si 

Effect of strain on indirect band-edges  
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From Singh, 2003 

Biaxial compressive strain causes: 

• Strong lowering of 4-fold in-plane valleys  

• Weak lowering of 2-fold out-of plane valleys  

• Reduction of masses and density of states 
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Strained quantum wells 

Effect of biaxial tensile strain and quantum 

confinement on band edges 

• Strained heterostructures are usually grown in a 

form of quantum-confined structures to prevent 

plastic relaxation 

• Both quantum confinement and stress should be 

considered  

• The strain bandgap energy shift for QWs can be 

over 100 meV – larger than quantum confinement 

energies 

• Strain reduces hole effective masses due to the 

splitting of LH and HH 

• Tensile strain can compensate quantum 

confinement energy and restore degeneracy of the 

valence band  

 

 

100 Å QW valence band dispersion in 

AlGaAs/GaAs AlGaAs/In0.1Ga0.9As 

Effect of biaxial strain on hole masses  

From Singh, 2003 
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Self-assembled quantum dots 

• The highest elastic stain can be obtained in 

all-epitaxial self-assembled QDs 

 

• Example: InAs bandgap = 0.35 eV  

 

• The bandgap of strained InAs with a GaAs 

lattice parameter =1.09 eV  

 

• The strain bandgap energy shift for InAs QD 

can be over 740 meV !  much  larger than 

quantum confinement energies 

 

Band diagram for InAs QD in GaAs  

From Singh, 2003 


