Compression of Spherical Whittaker Functions in Type A

James B. Sidoli
Discrete Math Day

Spring 2020

Spherical Whittaker Functions

Whittaker functions are a basic tool in the theory of automorphic forms, e.g., in the construction of L-functions. They can be viewed as functions from weights λ to the field of fractions \mathcal{K} of Laurent polynomials on the weight lattice, which also depend on a parameter t. They have numerous applications to:

Spherical Whittaker Functions

Whittaker functions are a basic tool in the theory of automorphic forms, e.g., in the construction of L-functions. They can be viewed as functions from weights λ to the field of fractions \mathcal{K} of Laurent polynomials on the weight lattice, which also depend on a parameter t. They have numerous applications to:

■ Weyl Group multiple Dirichlet series,

Spherical Whittaker Functions

Whittaker functions are a basic tool in the theory of automorphic forms, e.g., in the construction of L-functions. They can be viewed as functions from weights λ to the field of fractions \mathcal{K} of Laurent polynomials on the weight lattice, which also depend on a parameter t. They have numerous applications to:

■ Weyl Group multiple Dirichlet series,

- combinatorial representation theory,

Spherical Whittaker Functions

Whittaker functions are a basic tool in the theory of automorphic forms, e.g., in the construction of L-functions. They can be viewed as functions from weights λ to the field of fractions \mathcal{K} of Laurent polynomials on the weight lattice, which also depend on a parameter t. They have numerous applications to:

- Weyl Group multiple Dirichlet series,
- combinatorial representation theory,
- Schubert calculus on flag varieties.

Compression

Let F be a function. Let A and B be sets such that,

$$
\begin{align*}
F(x) & =\sum_{a \in A} x(a) \tag{1}\\
& =\sum_{b \in B} x(b) \tag{2}
\end{align*}
$$

we say that (2) is a compressed form of (1) if \exists a surjection $f: A \longrightarrow B$ such that

$$
x(b)=\sum_{a \in f^{-1}(b)} x(a)
$$

Compression and Spherical Whittaker Functions

The following descriptions of spherical Whittaker functions can be connected via compression as shown below.

Compression and Spherical Whittaker Functions

The following descriptions of spherical Whittaker functions can be connected via compression as shown below.

Ram-Yip Formula

Let λ be a dominant weight/partition. We denote the transposition of values i and j by (i, j). Consider a chain of roots denoted $\Gamma(k)$ given by:

$$
\Gamma(k)=\begin{array}{llll}
((1, k+1), & (1, k+2), & \ldots, & (1, n), \\
(2, k+1), & (2, k+2), & \ldots, & (2, n) \\
& \ldots & \\
(k, k+1), & (k, k+2), & \ldots, & (k, n))
\end{array}
$$

Ram-Yip Formula

Let λ be a dominant weight/partition. We denote the transposition of values i and j by (i, j). Consider a chain of roots denoted $\Gamma(k)$ given by:

$$
\Gamma(k)=\begin{array}{llll}
((1, k+1), & (1, k+2), & \ldots, & (1, n), \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
& \cdots & \\
(k, k+1), & (k, k+2), & \cdots, & (k, n))
\end{array}
$$

Now define a chain Γ as a concatenation $\Gamma:=\Gamma_{1} \ldots \Gamma_{\lambda_{1}}$ where $\Gamma_{j}=\Gamma\left(\lambda_{j}^{\prime}\right)$ with a small exception when j is the first column of length λ_{j}^{\prime} read from left to right.

Ram-Yip Formula

Let λ be a dominant weight/partition. We denote the transposition of values i and j by (i, j). Consider a chain of roots denoted $\Gamma(k)$ given by:

$$
\Gamma(k)=\begin{array}{llll}
((1, k+1), & (1, k+2), & \ldots, & (1, n), \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
& \cdots & \\
(k, k+1), & (k, k+2), & \cdots, & (k, n))
\end{array}
$$

Now define a chain Γ as a concatenation $\Gamma:=\Gamma_{1} \ldots \Gamma_{\lambda_{1}}$ where $\Gamma_{j}=\Gamma\left(\lambda_{j}^{\prime}\right)$ with a small exception when j is the first column of length λ_{j}^{\prime} read from left to right.

$$
\mathcal{A}(\Gamma)=\left\{(w, K) \in W \times 2^{[m]}: K=\left\{k_{1}, \ldots, k_{s}\right\}\right.
$$

condition on chain $(w, K)\}$

Ram-Yip Formula

We have,

Theorem (Lenart,Orr, Shimozono)

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{(w, K) \in \mathcal{A}(\Gamma)}(-1)^{\ell(w K)} t^{\frac{1}{2}(\ell(w)+\ell(w K)-|K|)}(t-1)^{|J|} X^{-u w t(J)-\rho}
$$

Ram-Yip Formula

We have,

Theorem (Lenart,Orr, Shimozono)

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{(w, K) \in \mathcal{A}(\Gamma)}(-1)^{\ell(w K)} t^{\frac{1}{2}(\ell(w)+\ell(w K)-|K|)}(t-1)^{|J|} X^{-u w t(J)-\rho}
$$

Where ℓ is the length function, $\rho=(n-1, n-2, \ldots, 1)$ and wt is the weight function.

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

$$
\begin{array}{|l|}
\hline 1 \\
\hline 3 \\
\hline 2 \\
\hline 4 \\
\hline
\end{array}
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

$$
\begin{aligned}
& \begin{array}{|l|}
\hline 1 \\
\hline 3 \\
\hline
\end{array}<\begin{array}{|l|}
\hline 1 \\
\hline 4 \\
\hline 4 \\
\hline
\end{array} \begin{array}{|l|}
\hline 2 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

$$
\left.\begin{array}{l}
\hline \frac{1}{3} \\
\hline
\end{array}<\begin{array}{|l|l|}
\hline 1 \\
4 & 1 \\
\hline 2 \\
\hline 4 & \\
\hline
\end{array} \begin{array}{|l|}
\hline 2 \\
3 \\
\hline
\end{array}\right) \begin{array}{|l|}
\hline 2 \\
\hline
\end{array}
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

$$
\begin{aligned}
& \begin{array}{|c|l|}
\frac{1}{3} & <\frac{1}{4} \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 \\
\hline 4 & \begin{array}{|l|}
\hline 2 \\
3 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \begin{array}{|l|}
\hline 4 \\
\hline 2 \\
\hline 3 \\
\hline
\end{array} \quad \begin{array}{|l|}
\hline 4 \\
\hline 1 \\
\hline 3 \\
\hline
\end{array}
\end{aligned}
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|}
\hline \frac{1}{3} & 1 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & \begin{array}{|l|}
\hline 2 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \begin{array}{|l|}
\hline 4 \\
\hline 2 \\
\hline 3 \\
\hline
\end{array} \begin{array}{|l|}
\hline 4 \\
\hline 1 \\
\hline 3 \\
\hline
\end{array} \\
& \begin{array}{|l|}
\hline 4 \\
\hline 1 \\
\hline 2 \\
\hline
\end{array} .
\end{aligned}
$$

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ. Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

$$
\text { Let } T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4)) \text { and } w=1324
$$

$$
f(w, T)=
$$

HHL fillings

A Haglund-Haiman-Loehr (HHL) filling is a filling which is weakly increasing across each row and satisfies the condition:

HHL fillings

A Haglund-Haiman-Loehr (HHL) filling is a filling which is weakly increasing across each row and satisfies the condition:
Pairs of entries in the following positions,

are not equal.

Compression of Spherical Whittaker Functions in Type A

HHL-type Formula for Spherical Whittaker Functions

So by summing over alcove walks in the preimage of a filling with respect to fill. We get the following:

HHL-type Formula for Spherical Whittaker Functions

So by summing over alcove walks in the preimage of a filling with respect to fill. We get the following:

Theorem (Lenart, S.)

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{\sigma \in F(\lambda+\rho, n)}(-1)^{n-a_{0}+\ell(C)} t^{n-a_{0}+i n v(\sigma)}(1-t)^{\operatorname{des}(\sigma)} X^{c t(\sigma)}
$$

HHL-type Formula for Spherical Whittaker Functions

So by summing over alcove walks in the preimage of a filling with respect to fill. We get the following:

Theorem (Lenart, S.)

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{\sigma \in F(\lambda+\rho, n)}(-1)^{n-a_{0}+\ell(C)} t^{n-a_{0}+i n v(\sigma)}(1-t)^{\operatorname{des}(\sigma)} x^{c t(\sigma)}
$$

where $F(\lambda+\rho, n)$ are all HHL fillings of shape $\lambda+\rho$ with entries in [n].

HHL-type Formula for Spherical Whittaker Functions

The inversion statistic on a filling σ, denoted $\operatorname{inv}(\sigma)$ is the number of configurations:

HHL-type Formula for Spherical Whittaker Functions

The inversion statistic on a filling σ, denoted $\operatorname{inv}(\sigma)$ is the number of configurations:

where the three entries satisfy $a<b<c$.

Tokuyama's Formula

For any weakly decreasing partition λ of length n, we have
Theorem (Tokuyama)

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{T \in S G T(\lambda+\rho)}(1-t)^{z(T)}(-t)^{\prime(T)} x^{m(T)}
$$

Tokuyama's Formula

For any weakly decreasing partition λ of length n, we have
Theorem (Tokuyama)

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{T \in S G T(\lambda+\rho)}(1-t)^{z(T)}(-t)^{\prime(T)} x^{m(T)}
$$

$S G T(\lambda+\rho)$ are particular types of SSYT. While $z(T)$ and $I(T)$ are statistics on these SSYT.

Compressing HHL to Tokuyama

We first need a generation algorithm for the preimage of a SSYT under the map sort.

Compressing HHL to Tokuyama

We first need a generation algorithm for the preimage of a SSYT under the map sort.

We accomplish this by constructing a binary search tree. The leaves of this tree will be HHL fillings, and the root of this tree is a canonical choice of HHL filling.

Compressing HHL to Tokuyama

We first need a generation algorithm for the preimage of a SSYT under the map sort.

We accomplish this by constructing a binary search tree. The leaves of this tree will be HHL fillings, and the root of this tree is a canonical choice of HHL filling.

We assign the corresponding t-coefficients and pair entries which have the same parent node.

Compressing HHL to Tokuyama

To construct this tree we first consider two column HHL configurations. We define our generation algorithm in this case, and iterate it from right to left, recursively.

Compressing HHL to Tokuyama

To construct this tree we first consider two column HHL configurations. We define our generation algorithm in this case, and iterate it from right to left, recursively.

Our generation algorithm comes from applying transpositions defined on the entries in left column of a two column configuration. The tree is binary because we either apply a transposition or not.

Compressing HHL to Tokuyama

To construct this tree we first consider two column HHL configurations. We define our generation algorithm in this case, and iterate it from right to left, recursively.

Our generation algorithm comes from applying transpositions defined on the entries in left column of a two column configuration. The tree is binary because we either apply a transposition or not.

We then sum up the tree, assigning the sums of t-coefficients to each parent node.

Example:

In this example we show how compression works for a two column configuration.

Example:

In this example we show how compression works for a two column configuration.

$$
\begin{array}{r|r|}
\hline 1 & 4 \\
\hline 2 & 2 \\
-t(1-t)
\end{array}
$$

$$
\begin{aligned}
& \overline{(1<2)} \\
& \begin{array}{|l|l}
1 & 4 \\
22 & 2 \\
(1-t)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& (1<2) \\
& \begin{array}{|l|l|}
\hline 24 \\
\hline 12 & 2 \\
-(1-t)^{2}
\end{array}
\end{aligned}
$$

Example:

In this example we show how compression works for a two column configuration.

1	4
2	2
$-t(1-t)$	

$\overline{(1<2)}$

14
2
2
$(1-t)$

$(1<2)$

2	4
1	2

$-(1-t)^{2}$

So we have compression of the form:

$$
(1-t)-(1-t)^{2}=(1-t)(1-(1-t))=-t(1-t)
$$

Main Result

Theorem (Lenart, S.)

Fix a SSYT σ. We have,

$$
\begin{aligned}
& \sum_{T: T \in \text { sort }}{ }^{-1}(\sigma) \\
& (-1)^{\ell(T[1])} t^{i n v(T)}(1-t)^{\operatorname{des}(T)}= \\
& (-t)^{\sum_{i=2}^{(\lambda+\rho)}(\check{N}(i)+\hat{N}(i))}(1-t)^{\sum_{i=2}^{(\lambda+\rho)_{1}} p(i)}
\end{aligned}
$$

if the Non-overlapping Condition is satisfied for all columns in the root \widehat{T}. Otherwise the sum is 0 .

Thank You!

Compression of Spherical Whittaker Functions in Type A

