Compression of Spherical Whittaker Functions in Type A

Cristian Lenart (University at Albany, SUNY), James Sidoli (University at Albany, SUNY)

Abstract

We exhibit a Haglund, Haiman, Loehr (HHL) type formula for the spherical Whittaker function, i.e. as a sum over fillings of a Young diagram. This new formula is purely combinatorial and is derived via compression from an alcove walk formula. We is derived via compression from an alcove walk formula. We
then compress our HHL-type formula to a semistandard Young tableaux (SSYT) formula known as Tokuyama's formula using a binary generation tree.

Spherical Whittaker Functions

Whittaker functions are a basic tool in the theory of automorphic forms, e.g., in the construction of L-functions. They can be viewed as functions from weights λ to the field of fractions \mathcal{K} of Laurent polynomials on the weight lattice, which also depend on a parameter t. They have numerous applications to:

- Weyl Group multiple Dirichlet series
- combinatorial representation theory,
- Schubert calculus on flag varieties.

Compression

Let F be a function. Let A and B be sets such that,

$$
\begin{align*}
F(x) & =\sum_{a \in A} x(a) \tag{1}\\
& =\sum_{b \in B} x(b) \tag{2}
\end{align*}
$$

we say that (2) is a compressed form of (1) if \exists a surjection $f: A \longrightarrow B$ such that

$$
x(b)=\sum_{a \in f^{-1}(b)} x(a
$$

The following descriptions of spherical Whittaker functions can be connected via compression as shown below.

Whittaker

Alcove Walk Formula in Type A
Let λ be a dominant weight/partition. We denote the transposition of values i and j by (i, j). Consider a chain of roots denoted $\Gamma(k)$ given by

$$
\begin{aligned}
& ((1, k+1),(1, k+2), \ldots,(1, n) \\
& \Gamma(k)=(2, k+1),(2, k+2), \ldots,(2, n) \\
& (k, k+1),(k, k+2), \ldots,(k, n))
\end{aligned}
$$

Now define a chain Γ as a concatenation $\Gamma:=\Gamma_{1} \ldots \Gamma_{\lambda_{1}}$ where $\Gamma_{j}=\Gamma\left(\lambda_{j}^{\prime}\right)$ with a small exception when j is the first column of length λ_{j}^{\prime} read from left to right.

$$
\mathcal{A}(\Gamma)=\left\{(w, K) \in W \times 2^{[m]}: K=\left\{k_{1}, \ldots, k_{s}\right\},\right.
$$

[^0]
Alcove Walk Formula in Type A

cont.
We have
$\widetilde{\mathcal{W}}_{\lambda}=\sum_{(w, K) \in \mathcal{A}(\Gamma)}(-1)^{\ell(w K)} t^{\frac{1}{2} \ell((w)+\ell(w K)-|K|)}(t-1)^{|J|} x^{-u w t(J)-\rho}$ Where ℓ is the length function, $\rho=(n-1, n-2, \ldots, 1)$ and wt is the weight function.

Fill Map

The filling map is the map f which maps a pair (w, T) to a filling σ of shape λ
Ex: Let $n=4$ and $\lambda=(2,1,0,0)$. We have

$$
\Gamma=\Gamma_{1} \Gamma_{2}=((1,4),(2,4) \mid(1,3),(1,4))
$$

Let $T=T_{1} T_{2}=((2,4) \mid(1,3),(1,4))$ and $w=1324$

HHL-type Formula for Spherical Whittaker Functions

A Haglund-Haiman-Loehr (HHL) filling is a filling which is weakly increasing across each row and satisfies the condition: Pairs of entries in the following positions,

are not equal
Let $F(\lambda+\rho, n)$ be the set of HHL fillings. By summing over all HHL-type fillings we have a new formula for the spherical Whittaker function of dominant weight λ,
$\widetilde{\mathcal{W}}_{\lambda}=\sum_{\sigma \in F(\lambda}(-1)^{n-a_{0}+\ell(C)} t^{n-a_{0}+\operatorname{inv}(\sigma)}(1-t)^{\operatorname{des}(\sigma)} x^{c t(\sigma)}$,
where content of σ is denoted $c t(\sigma)$
The inversion statistic on a filling σ, denoted $\operatorname{inv}(\sigma)$ is the number of configurations

where the three entries satisfy $a<b<c$.

The descent statistic on a filling σ, denoted $\operatorname{des}(\sigma)$ is the number of cells such that we have a strict increase in a row when read from left to right.

Finally, a_{0} is the unique entry absent from the first column, C, of σ.

Tokuyama's Formula

A Gelfand-Tsetlin (GT) pattern is a triangular array of nonnegative integers of the form

$$
\begin{array}{ccccccc}
a_{1,1} & a_{1,2} & & a_{1,3} & & \cdots & a_{1, n} \\
a_{2,2} & a_{2,3} & & \cdots & a_{2, n} \\
& \cdots & & \cdots & & \cdots
\end{array}
$$

Furthermore, a strict GT pattern is one in which each row is strictly decreasing. Denote the set of all strict GT patterns with top row α as $S G T(\alpha)$,

For any weakly decreasing partition λ of length n, we have

$$
\widetilde{\mathcal{W}}_{\lambda}=\sum_{T \in S G T(\lambda+\rho)}(1-t)^{z(T)}(-t)^{l(T)} x^{m(T)}
$$

We can translate GT patterns into SSYT via a classical bijection. The corresponding statistics on GT patterns in Tokuyama's formula are then defined on separating walls on SSYT.

Let T be a SSYT. A separating wall of index k, denoted $\left.\right|_{k}$ is a decoration on T, placed after the last box of T with entry less than or equal to k and before the first box with entry greater than k with respect to the reading order; walls may be placed at the beginning or end of a row.

The boxed, not circled statistic on a SSYT, T, denoted $l(T)$ counts configurations of the form,

$$
\begin{aligned}
& \left.\left.\square\right|_{a} \ldots\right|_{b-1} \frac{b}{\square} \\
& \left.\left.\square\right|_{b} \ldots\right|_{c-1}
\end{aligned}
$$

The not boxed, not circled statistic on a SSYT, T, denoted $z(T)$ counts configurations of the form

$$
\left.\right|_{a} \cdots .\left.\left.\square\right|_{a-1} ^{a}\right|_{a}
$$

Generation Algorithm

In order to compress our HHL-type formula to Tokuyama's formula we need to uniquely generate all HHL fillings which sort to the same SSYI. We construct a binary generation tree.

The root of our tree is known as \widehat{C} and is constructed by first matching common entries, then placing distinct entries in the relative order determined by C^{\prime}

Ex: $C^{\prime}=$\begin{tabular}{|}
\hline$\frac{4}{7}$

$\frac{7}{3}$

$\frac{3}{6}$

 and $S=\{1,2,3,4\}$ gives $\widehat{C}=$

$\frac{4}{2}$

$\frac{3}{3}$

$\frac{1}{1}$

\hline
\end{tabular}

We construct the generation tree by defining a sequence of transpositions which act on the root configuration. We then iterate this procedure from right to left, to produce the entire preimage of a SSYT under the map sort.

Generation Algorithm cont.

Call row i a pivot if $\widehat{C}(i)<C^{\prime}(i)$. If i is a pivot row, call $\widehat{C}(i)$ and $C^{\prime}(i)$ pivot entries.

Let $a_{1}>a_{2}>\ldots a_{m}$ be the set of entries in the left column. Let $b_{1}>b_{2}>\ldots>b_{p}$ be the pivot entries in the left column. The pivot entries strictly less that a_{i} are denoted $b_{j_{i}}>\ldots>b_{p}$. We have the following sequence of transpositions:

$$
\beta=\begin{gathered}
\left(b_{j_{1}}<a_{1}\right)\left(b_{j_{1}+1}<a_{1}\right)\left(b_{j_{1}+2}<a_{1}\right) \ldots\left(b_{p}<a_{1}\right) \\
\left(b_{j_{2}}<a_{2}\right)\left(b_{j_{2}+1}<a_{2}\right)\left(b_{j_{2}+2}<a_{2}\right) \ldots\left(b_{p}<a_{2}\right) \\
\ldots \\
\quad\left(b_{j_{c}}<a_{c}\right)\left(b_{j_{c}+1}<a_{c}\right)\left(b_{j_{c}+2}<a_{c}\right) \ldots\left(b_{p}<a_{c}\right)
\end{gathered}
$$

Ex: Let $\widehat{C} C^{\prime}=\frac{14}{2} \frac{4}{5}$

Future Work

1. Apply compression to Non-symmetric Macdonald polynomials specialized at $q=0$ to derive HHL formulas in this case
2. The Alcove Walk formula generalizes to any root system, so we can use these techniques to derive Tokuyama-type formulas in type B and C

References

References

[1] C. Lenart. Working Alcove Formulas for Iwahori-Whittaker Functions.
[2] A. Puskas. Gelfand-Tsetlin coefficients on Young tableaux.

[^0]: $\left.u<u r_{k_{1}}<u r_{k_{1}} r_{k_{2}}<\ldots<u r_{k_{1}} \ldots r_{k_{s}}=w\right\}$

