Tight Surface Graphs Qays Shakir

Middle Technical University, Technical College of Management, Baghdad

Introduction

In this project, we study inductive constructions for graphs that are embedded in surfaces without edge crossings. In particular, for (2, 2)-tight graphs on a torus we exhibit a complete inductive construction for such graphs. We also give a geometric application of this result to representations of graphs as contact graphs of configurations of circular arcs. This work forms part of a joint project with James Cruikshank, Derek Kitson and Stephen Power.

Surface Graphs

Irreducible (2, 2)-Tight Torus Graphs

A (2, 2)-tight torus graph G is irreducible if G has no bigon, triangle or a contractible quadrilateral.
G has at most two quadrilateral faces.
Our main result in this project is the following theorem.
Theorem: G has at most 8 vertices. In particular there are finitely many isomorphism classes of such graphs.
Theorem: There are 116 irreducible (2, 2)-tight torus graphs.
Every (2, 2)-tight torus graph can be constructed from one of the 116 irreducible graphs in Figure 11 by a sequence of the inverse of bigon, triangle or quadrilateral contractions.

• Given a surface Σ , a Σ -graph is an embedding of an abstract graph $\Gamma = (V, E)$ in Σ without edge crossings.

• A face of a Σ -graph G is a connected component of the image of $\Sigma - \Gamma$. We let f_i to be the number of faces with i edges in the boundary.

Sparsity and Tightness

• Given Γ as above and a positive integer k, let $\gamma_k(\Gamma) = k|V| - |E|$.

• Let l, k be nonnegative integers with $l \leq k$. We say that Γ is (k, l)-sparse if, for every nonempty subgraph Ω of Γ , $\gamma_k(\Omega) \geq l$. If Γ is (k, l)-sparse and $\gamma_k(\Gamma) = l$ then we say that Γ is (k, l)-tight.

Examples of Irreducible (2, 2)**-Tight Torus Graphs**

Fig.12: G_3^4 and G_4^4 are two irreducible (2,2)-tight torus graphs with the same underlying abstract graph.

Fig. 18: A sequence of bivalent vertex deletions.

The strategy for proving the previous theorem is to show first that each of irreducible graph has a CCA rep.. This can be done by using the following theorem.

Every (2, 2)-tight torus graph can be reduced to one of the eight graphs colored with red in figure 11 by a sequence of bigon , triangle , quadrilateral contractions or bivalent vertex deletions. Then we show that the three inductive moves preserve the CCA rep.

Fig. 19: CCA rep. is preserved under the inverse of quadrilateral operation

A torus graph G has a CCA rep. in the flat torus if and only if the universal cover of G has a doubly periodic CCA rep. in the plane.

Topological Inductive Operations

Fig. 9: Bigon, Triangle and quadrilateral contraction operations and their inverses.

G_B is a (2, l)-sparse if and only if G is (2, l)-sparse.
If G is a (2, 2)-sparse and T is a triangular face then there is some contraction of T that yields a (2, 2)-tight graph.
Not every quadrilateral contraction preserves (2, 2)-sparsity in a torus graph.

Fig.13: G_1^2 and G_2^3 are the two irreducible (2,2)-tight torus graphs with three vertices and one ocatgonal face.

Fig.14: G_1^6 in toroidal representation

Fig. 15: G_1^6 as flat torus

Contacts of Circular Arcs Representation

• A CCA (Contacts of Circular Arcs) representation of a

surface graph G is a configuration of circular arcs embedded in the surface so that the graph induced by the contacts between the arcs is isomorphic to G.

• Every (2, 2)-tight plane graph admits a CCA rep. in the

Fig. 20 : Doubly periodic CCA rep. of the torus graph G_1^4 .

Key Symbols of the Poster

Known def. Known result. New theorem. New lemma.
New def. Example.

Acknowledgement

The author would like to thank the Middle Technical University, Iraq, for its funding and support.

Every (2,2)-tight plane graph can be reduced into a single vertex by a sequence of bigon contraction or edge contraction. Every (2, 2)-tight plane graph admits a CCA lep. In the Euclidean plane.

We present and prove the following main theorem. Theorem: Every (2, 2)-tight torus graph admits a CCA rep. in the flat torus.

References

[1] Md. Alam and et. al, Contact graphs of circular arcs, Algorithms and data structures, Lecture Notes in Comput.Sci., vol. 9214, Springer, Cham, 2015, pp. 1-13.

[2] J. Cruickshank, D. Kitson and S. Power and Q. Shakir, Topological Inductive Construction for (2,2)-tight torus graphs, in preparation.

[3] G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math. 4, 1970, 331340.

[4] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001.