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Introduction
In this project, we study inductive constructions for graphs that
are embedded in surfaces without edge crossings. In particular,
for (2, 2)-tight graphs on a torus we exhibit a complete inductive
construction for such graphs. We also give a geometric applica-
tion of this result to representations of graphs as contact graphs
of configurations of circular arcs. This work forms part of a
joint project with James Cruikshank, Derek Kitson and Stephen
Power.

Surface Graphs
• Given a surface Σ, a Σ-graph is an embedding of an abstract
graph Γ = (V,E) in Σ without edge crossings.
• A face of a Σ-graph G is a connected com-
ponent of the image of Σ − Γ. We let fi to be
the number of faces with i edges in the boundary.

Sparsity and Tightness
• Given Γ as above and a positive integer k, let γk(Γ) =
k|V | − |E|.
• Let l, k be nonnegative integers with l ≤ k. We say that Γ is
(k, l)-sparse if, for every nonempty subgraph Ω of Γ, γk(Ω) ≥ l.
If Γ is (k, l)-sparse and γk(Γ) = l then we say that Γ is (k, l)-
tight.

Topological Inductive Operations

• GB is a (2, l)-sparse if and only if G is (2, l)-sparse.
• If G is a (2, 2)-sparse and T is a triangular face then there is
some contraction of T that yields a (2, 2)-tight graph.
• Not every quadrilateral contraction preserves (2, 2)-sparsity
in a torus graph.

� Every (2,2)-tight plane graph can be reduced into a single ver-
tex by a sequence of bigon contraction or edge contraction.

Irreducible (2, 2)-Tight Torus Graphs
• A (2, 2)-tight torus graph G is irreducible if G has no
bigon,triangle or a contractible quadrilateral.
� G has at most two quadrilateral faces.
Our main result in this project is the following theorem.
Theorem: G has at most 8 vertices. In particular there are
finitely many isomorphism classes of such graphs.
Theorem: There are 116 irreducible (2, 2)-tight torus graphs.
� Every (2, 2)-tight torus graph can be constructed from one of
the 116 irreducible graphs in Figure 11 by a sequence of the
inverse of bigon, triangle or quadrilateral contractions.

Examples of Irreducible (2, 2)-Tight Torus Graphs

Contacts of Circular Arcs Representation
• A CCA (Contacts of Circular Arcs) representation of a
surface graph G is a configuration of circular arcs embedded in
the surface so that the graph induced by the contacts between
the arcs is isomorphic to G.
• Every (2, 2)-tight plane graph admits a CCA rep. in the
Euclidean plane.
We present and prove the following main theorem.
Theorem: Every (2, 2)-tight torus graph admits a CCA rep. in
the flat torus.

The strategy for proving the previous theorem is to show first
that each of irreducible graph has a CCA rep.. This can be done
by using the following theorem.
� Every (2, 2)-tight torus graph can be reduced to one of the
eight graphs colored with red in figure 11 by a sequence of bigon
, triangle , quadrilateral contractions or bivalent vertex deletions.

Then we show that the three inductive moves preserve the CCA
rep.

� A torus graph G has a CCA rep. in the flat torus if and only if
the universal cover of G has a doubly periodic CCA rep. in the
plane.
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