A Deletion-Contraction Relation for the Chromatic Symmetric Function

Logan Crew (Penn), Sophie Spirkl (Princeton)

University of Albany Discrete Math 2-Day

April 25-26, 2020

A Graph

The Graph $\Delta = (V, E)$: Airports and Flights

Edge Deletion and Contraction in Graphs

A Deletion-Contraction Relation for χ_G

Definition (Birkhoff)

The chromatic polynomial $\chi_G(x)$ is defined by letting $\chi_G(n)$ be the number of *n*-colorings of *G* for all $n \in \mathbb{N}$.

Theorem (Folklore)

For every graph G = (V, E) and any edge $e \in E$,

$$\chi_G(x) = \chi_{G \setminus e}(x) - \chi_{G/e}(x).$$

The Chromatic Symmetric Function

Let G = (V, E) be a graph.

Definition (Stanley (1995))

$$X_G(x_1, x_2, \dots) = \sum_{\text{col. } \kappa} \prod_{v \in V} x_{\kappa(v)}$$

This function is a power series in $\mathbb{R}[[x_1, x_2, \ldots]]$. It is called a symmetric function because for every permutation π of \mathbb{N} ,

$$f(x_1, x_2, \dots) = f(x_{\pi(1)}, x_{\pi(2)}, \dots).$$

This function is a generalization of the chromatic polynomial since

$$X_G(\underbrace{1,1,\ldots,1}_{n,1s},0,0,\ldots) = \chi_G(n)$$

The Chromatic Symmetric Function

Let G = (V, E) be a graph.

Definition (Stanley (1995))

$$X_G(x_1, x_2, \dots) = \sum_{\mathsf{col.}\ \kappa} \prod_{v \in V} x_{\kappa(v)}$$

This function is a power series in $\mathbb{R}[[x_1, x_2, \ldots]]$. It is called a symmetric function because for every permutation π of \mathbb{N} ,

$$f(x_1, x_2, \dots) = f(x_{\pi(1)}, x_{\pi(2)}, \dots).$$

This function is a generalization of the chromatic polynomial since

$$X_G(\underbrace{1,1,\ldots,1}_{n,15},0,0,\ldots) = \chi_G(n)$$

Computing X_{Δ}

Let blue = 1, green = 2, red = 3.

$$X_{\Delta} = x_1^3 x_2 x_3 + \dots + x_1^2 x_2^2 x_3 + \dots$$

Vertex-Weighted X_G

Let G = (V, E) be a graph.

Definition (Stanley (1995))

$$X_G(x_1, x_2, \dots) = \sum_{\text{col. } \kappa} \prod_{v \in V} x_{\kappa(v)}$$

Let $w: V \to \mathbb{N}$.

Definition (C.-Spirkl (2019))

$$X_{(G,w)}(x_1, x_2, \dots) = \sum_{\text{col. } \kappa} \prod_{v \in V} x_{\kappa(v)}^{w(v)}$$

Vertex-Weighted X_G

Let G = (V, E) be a graph.

Definition (Stanley (1995))

$$X_G(x_1, x_2, \dots) = \sum_{\text{col. } \kappa} \prod_{v \in V} x_{\kappa(v)}$$

Let $w: V \to \mathbb{N}$.

Definition (C.-Spirkl (2019))

$$X_{(G,w)}(x_1, x_2, \dots) = \sum_{\text{col. } \kappa} \prod_{v \in V} x_{\kappa(v)}^{w(v)}$$

A Deletion-Contraction Relation

•
$$X_{(G,w)}(\underbrace{1,1,\ldots,1}_{n \text{ 1s}},0,0,\ldots) = \chi_G(n)$$

• $X_{(G,w)}$ is homogeneous of degree $\sum_{v \in V} w(v)$

Theorem (C.-Spirkl (2019))

Let (G, w) be a vertex-weighted graph, and let e be any edge of G. Then

$$X_{(G,w)} = X_{(G \setminus e,w)} - X_{(G/e,w/e)}.$$

Here w/e means that when the edge e is contracted, the weights of the contracted vertices are added.

A Deletion-Contraction Relation

$$X_{(G\setminus e,w)} = X_{(G,w)} + X_{(G/e,w/e)}$$

A Deletion-Contraction Relation

 $X_{(G \backslash e, w)} = X_{(G, w)} + X_{(G/e, w/e)}$

Acyclic Orientations

In a directed graph G, a sink is a vertex with no out-edges.

Theorem (Stanley (1995))

Let G = (V, E), and let $X_G = \sum c_\lambda e_\lambda$, where $\{e_\lambda\}$ is the basis of elementary symmetric functions. Then the number of acyclic orientations of G is

 $\sum c_{\lambda}$.

The number of acyclic orientations of G with exactly k sinks is

 $\sum_{\substack{\lambda \text{ has}\\k \text{ parts}}} c_{\lambda}.$

• Analogue of the formula $(-1)^m \chi_G(-1)$ for acyclic orientations

Acyclic Orientations

For an acyclic orientation γ of (G, w), let $Sink(\gamma)$ be the set of sink vertices, and $sink(\gamma) = |Sink(\gamma)|$.

Define a sink map of γ to be a map $S: V \to 2^{\mathbb{N}}$ such that $S(v) \subseteq [w(v)]$ and $S(v) \neq \emptyset$ iff $v \in Sink(\gamma)$.

Theorem (C.-Spirkl (2019))
Let
$$n = |V|$$
, $d = \sum_{v \in V} w(v)$, and $X_{(G,w)} = \sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then
$$\sum_{\substack{\lambda \text{ has} \\ k \text{ parts}}} c_{\lambda} = (-1)^{d-n} \sum_{(\gamma,S)} (-1)^{k-sink(\gamma)}$$

where the sum is over (γ, S) such that γ is an acyclic orientation of G, S is a sink map of γ , and $sw(G, \gamma, S) = \sum_{v \in Sink(\gamma)} |S(v)| = k$.

Induction on |E|; want to show

$$\sum_{sw(G\setminus e,\gamma,S)=k} (-1)^{sink(\gamma)} = \sum_{sw(G,\gamma,S)=k} (-1)^{sink(\gamma)} - \sum_{sw(G/e,\gamma,S)=k} (-1)^{sink(\gamma)}.$$

Fix γ_0 , an acyclic orientation of $G \setminus e$.

- Fix $S_0: V \to 2^{\mathbb{N}}$ with $S_0(v) \subseteq [w(v)]$ for all v.
- Get two (γ, S) for G (both orientations of e), and one (γ, S) in G/e (with $S(v^*) = S(v_1) \cup \{w(v_1) + i : i \in S(v_2)\}$).
- Only count (γ, S) if γ is acyclic, and S is a sink map for γ .
- Want to show: LHS = RHS for terms arising from γ_0 and S_0 .

• Here:
$$k = 3$$
.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_0 , contraction fails, and one orientation of adding e fails. The other is valid with S_0 if and only if the original on $G \setminus e$ is.

Valid term for $\Delta \backslash e$ with $1 \operatorname{sink}$

• Here: k = 3.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_0 , contraction fails, and one orientation of adding e fails. The other is valid with S_0 if and only if the original on $G \setminus e$ is.

Invalid first term for Δ

• Here: k = 3.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_0 , contraction fails, and one orientation of adding e fails. The other is valid with S_0 if and only if the original on $G \setminus e$ is.

Valid second term for Δ with $1 \ {\rm sink}$

• Here:
$$k = 3$$
.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_0 , contraction fails, and one orientation of adding e fails. The other is valid with S_0 if and only if the original on $G \setminus e$ is.

Invalid term for Δ/e

Logan Crew

 $\boldsymbol{X}_{\boldsymbol{G}}$ on Vertex-Weighted Graphs

▶ Here: k = 3.

We now divide into cases based on whether one, both, or neither of the endpoints of e is a sink with respect to γ . All of these cases have fairly similar approaches, so we will go through just one of them, the case in which exactly one endpoint is a sink.

▶ Here: k = 3.

Subcase: S_0 (San Antonio) is empty (must have S_0 (Minneapolis) empty).

Invalid term for $\Delta \backslash e$

• Here: k = 3.

Subcase: S_0 (San Antonio) is empty (must have S_0 (Minneapolis) empty).

Invalid first term for Δ

• Here: k = 3.

Subcase: S_0 (San Antonio) is empty (must have S_0 (Minneapolis) empty).

Valid second term for Δ with 2 sinks

• Here: k = 3.

Subcase: S_0 (San Antonio) is empty (must have S_0 (Minneapolis) empty).

Valid term for Δ/e with 2 sinks

• Here: k = 3.

Subcase: $S_0(San Antonio)$ is nonempty (must have $S_0(Minn.)$ empty).

Valid term for Δe with 3 sinks

• Here: k = 3.

Subcase: $S_0(San Antonio)$ is nonempty (must have $S_0(Minn.)$ empty).

Valid first term for Δ with 3 sinks

• Here: k = 3.

Subcase: S_0 (San Antonio) is nonempty (must have S_0 (Minn.) empty).

Invalid second term for Δ

• Here: k = 3.

Subcase: S_0 (San Antonio) is nonempty (must have S_0 (Minn.) empty).

Invalid term for Δ/e

Other Results

Let (G, w) be a vertex-weighted graph with n vertices and total weight d.

Theorem (Stanley (1995), C.-Spirkl(2019))

$$X_{(G,w)} = \sum_{S \subseteq E(G)} (-1)^{|S|} p_{\lambda(G,w,S)}$$

where $\lambda(G, w, S)$ is the partition of the total weights of the connected components of (V, S).

Theorem (Stanley (1995), C.-Spirkl(2019))

$$\sum_{\substack{(\gamma,\kappa)\\u\to\gamma v\Longrightarrow\kappa(u)\leq\kappa(v)}}\prod_{v\in V(G)}x_{\kappa(v)}^{w(v)}=(-1)^{d-n}\omega(X_{(G,w)})$$

where the sum ranges over all acyclic orientations γ of G and κ is a (not necessarily proper) coloring of G.

The End

This talk is based on the paper "A Deletion-Contraction Relation for the Chromatic Symmetric Function" joint with Sophie Spirkl, https://arxiv.org/abs/1910.11859.

Thank you!