A Deletion-Contraction Relation for the Chromatic Symmetric Function

Logan Crew (Penn), Sophie Spirkl (Princeton)
University of Albany Discrete Math 2-Day

April 25-26, 2020

A Graph

The Graph $\Delta=(V, E)$: Airports and Flights

Edge Deletion and Contraction in Graphs

Deletion: $\Delta \backslash($ Min-San $)$

Contraction: $\Delta /($ Min-San $)$

A Deletion-Contraction Relation for χ_{G}

Definition (Birkhoff)

The chromatic polynomial $\chi_{G}(x)$ is defined by letting $\chi_{G}(n)$ be the number of n-colorings of G for all $n \in \mathbb{N}$.

Theorem (Folklore)

For every graph $G=(V, E)$ and any edge $e \in E$,

$$
\chi_{G}(x)=\chi_{G \backslash e}(x)-\chi_{G / e}(x) .
$$

The Chromatic Symmetric Function

Let $G=(V, E)$ be a graph.

Definition (Stanley (1995))

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\text {col. } \kappa} \prod_{v \in V} x_{\kappa(v)}
$$

This function is a power series in $\mathbb{R}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$. It is called a symmetric function because for every permutation π of \mathbb{N},

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

This function is a generalization of the chromatic polynomial since

The Chromatic Symmetric Function

Let $G=(V, E)$ be a graph.

Definition (Stanley (1995))

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\text {col. } \kappa} \prod_{v \in V} x_{\kappa(v)}
$$

This function is a power series in $\mathbb{R}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$. It is called a symmetric function because for every permutation π of \mathbb{N},

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

This function is a generalization of the chromatic polynomial since

$$
X_{G}(\underbrace{1,1, \ldots, 1}_{n 1 \mathrm{~s}}, 0,0, \ldots)=\chi_{G}(n)
$$

Computing X_{Δ}

Let blue $=1$, green $=2$, red $=3$.

$$
X_{\Delta}=x_{1}^{3} x_{2} x_{3}+\cdots+x_{1}^{2} x_{2}^{2} x_{3}+\ldots
$$

San Antonio

Minneapolis St. Louis

San Antonio

$$
x_{1}^{2} x_{2}^{2} x_{3}
$$

Vertex-Weighted X_{G}

Let $G=(V, E)$ be a graph.
Definition (Stanley (1995))

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\text {col. } \kappa} \prod_{v \in V} x_{\kappa(v)}
$$

Vertex-Weighted X_{G}

Let $G=(V, E)$ be a graph.
Definition (Stanley (1995))

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\text {col. } \kappa} \prod_{v \in V} x_{\kappa(v)}
$$

Let $w: V \rightarrow \mathbb{N}$.
Definition (C.-Spirkl (2019))

$$
X_{(G, w)}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\text {col. } \kappa} \prod_{v \in V} x_{\kappa(v)}^{w(v)}
$$

A Deletion-Contraction Relation

- $X_{(G, w)}(\underbrace{1,1, \ldots, 1}_{n \text { 1s }}, 0,0, \ldots)=\chi_{G}(n)$
- $X_{(G, w)}$ is homogeneous of degree $\sum_{v \in V} w(v)$

Theorem (C.-Spirkl (2019))

Let (G, w) be a vertex-weighted graph, and let e be any edge of G. Then

$$
X_{(G, w)}=X_{(G \backslash e, w)}-X_{(G / e, w / e)} .
$$

Here w / e means that when the edge e is contracted, the weights of the contracted vertices are added.

A Deletion-Contraction Relation

$$
X_{(G \backslash e, w)}=X_{(G, w)}+X_{(G / e, w / e)}
$$

A Deletion-Contraction Relation

$$
X_{(G \backslash e, w)}=X_{(G, w)}+X_{(G / e, w / e)}
$$

Acyclic Orientations

In a directed graph G, a sink is a vertex with no out-edges.
Theorem (Stanley (1995))
Let $G=(V, E)$, and let $X_{G}=\sum c_{\lambda} e_{\lambda}$, where $\left\{e_{\lambda}\right\}$ is the basis of elementary symmetric functions. Then the number of acyclic orientations of G is

$$
\sum c_{\lambda}
$$

The number of acyclic orientations of G with exactly k sinks is

$$
\sum_{\substack{\lambda \text { has } \\ k \text { parts }}} c_{\lambda}
$$

- Analogue of the formula $(-1)^{m} \chi_{G}(-1)$ for acyclic orientations

Acyclic Orientations

For an acyclic orientation γ of (G, w), let $\operatorname{Sink}(\gamma)$ be the set of sink vertices, and $\operatorname{sink}(\gamma)=|\operatorname{Sink}(\gamma)|$.
Define a sink map of γ to be a map $S: V \rightarrow 2^{\mathbb{N}}$ such that $S(v) \subseteq[w(v)]$ and $S(v) \neq \emptyset$ iff $v \in \operatorname{Sink}(\gamma)$.

Theorem (C.-Spirkl (2019))
Let $n=|V|, d=\sum_{v \in V} w(v)$, and $X_{(G, w)}=\sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then

$$
\sum_{\substack{\lambda \text { has } \\ k \text { parts }}} c_{\lambda}=(-1)^{d-n} \sum_{(\gamma, S)}(-1)^{k-\sin k(\gamma)}
$$

where the sum is over (γ, S) such that γ is an acyclic orientation of G, S is a sink map of γ, and $\operatorname{sw}(G, \gamma, S)=\sum_{v \in \operatorname{Sink}(\gamma)}|S(v)|=k$.

Acyclic Orientations: Proof Sketch

- Induction on $|E|$; want to show

$$
\sum_{s w(G \backslash e, \gamma, S)=k}(-1)^{\operatorname{sink} k(\gamma)}=\sum_{s w(G, \gamma, S)=k}(-1)^{s i n k(\gamma)}-\sum_{s w(G / e, \gamma, S)=k}(-1)^{s i n k(\gamma)}
$$

- Fix γ_{0}, an acyclic orientation of $G \backslash e$.
- Fix $S_{0}: V \rightarrow 2^{\mathbb{N}}$ with $S_{0}(v) \subseteq[w(v)]$ for all v.
- Get two (γ, S) for G (both orientations of e), and one (γ, S) in G / e (with $S\left(v^{*}\right)=S\left(v_{1}\right) \cup\left\{w\left(v_{1}\right)+i: i \in S\left(v_{2}\right)\right\}$).
- Only count (γ, S) if γ is acyclic, and S is a sink map for γ.
- Want to show: LHS $=$ RHS for terms arising from γ_{0} and S_{0}.

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_{0}, contraction fails, and one orientation of adding e fails. The other is valid with S_{0} if and only if the original on $G \backslash e$ is.

Valid term for $\Delta \backslash e$ with 1 sink

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_{0}, contraction fails, and one orientation of adding e fails. The other is valid with S_{0} if and only if the original on $G \backslash e$ is.

Invalid first term for Δ

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_{0}, contraction fails, and one orientation of adding e fails. The other is valid with S_{0} if and only if the original on $G \backslash e$ is.

Valid second term for Δ with 1 sink

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Case 1: There is a directed path between the endpoints of e. Then regardless of the map S_{0}, contraction fails, and one orientation of adding e fails. The other is valid with S_{0} if and only if the original on $G \backslash e$ is.

Invalid term for Δ / e

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

We now divide into cases based on whether one, both, or neither of the endpoints of e is a sink with respect to γ. All of these cases have fairly similar approaches, so we will go through just one of them, the case in which exactly one endpoint is a sink.

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is empty (must have S_{0} (Minneapolis) empty).

Invalid term for $\Delta \backslash e$

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is empty (must have S_{0} (Minneapolis) empty).

Invalid first term for Δ

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is empty (must have S_{0} (Minneapolis) empty).

Valid second term for Δ with 2 sinks

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is empty (must have S_{0} (Minneapolis) empty).

Valid term for Δ / e with 2 sinks

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is nonempty (must have S_{0} (Minn.) empty).

Valid term for $\Delta \backslash e$ with 3 sinks

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is nonempty (must have S_{0} (Minn.) empty).

Valid first term for Δ with 3 sinks

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is nonempty (must have S_{0} (Minn.) empty).

Invalid second term for Δ

Acyclic Orientations: Proof Sketch

- Here: $k=3$.

Subcase: S_{0} (San Antonio) is nonempty (must have S_{0} (Minn.) empty).

Invalid term for Δ / e

Other Results

Let (G, w) be a vertex-weighted graph with n vertices and total weight d.
Theorem (Stanley (1995), C.-Spirkl(2019))

$$
X_{(G, w)}=\sum_{S \subseteq E(G)}(-1)^{|S|} p_{\lambda(G, w, S)}
$$

where $\lambda(G, w, S)$ is the partition of the total weights of the connected components of (V, S).

Theorem (Stanley (1995), C.-Spirkl(2019))

$$
\sum_{u \rightarrow \gamma v \xlongequal[(\gamma, \kappa)]{\Longrightarrow} \kappa(u) \leq \kappa(v)} \prod_{v \in V(G)} x_{\kappa(v)}^{w(v)}=(-1)^{d-n} \omega\left(X_{(G, w)}\right)
$$

where the sum ranges over all acyclic orientations γ of G and κ is a (not necessarily proper) coloring of G.

The End

This talk is based on the paper "A Deletion-Contraction Relation for the Chromatic Symmetric Function" joint with Sophie Spirkl, https://arxiv.org/abs/1910.11859.

Thank you!

