# Combinatorial models in The Representation theory of quantum affine Lie algebras 

## Carly Briggs (Bennington College), Cristian Lenart (State Univ. of New York at Albany) Adam Schultze (State Univ. of New York at Albany)

## Abstract

We give an explicit description of the unique crystal isomorphism between two combinatorial models for tensor products of Kirillov-Reshetikhin crystals: the tableau model and the quantum alcove model.

## Crystal Bases

Main idea: use colored directed graphs to encode certain representations $V$ of the quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$ ( $\mathfrak{g}$ complex semisimple or affine Lie algebra).
Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots $\alpha_{i}$ ): $\tilde{e}_{i}, \tilde{f}_{i}$. V has a crystal basis $\boldsymbol{B}$

$$
\tilde{e}_{i}, \tilde{f}_{i}: \mathbf{B} \rightarrow \mathbf{B} \sqcup 0,
$$

$$
\tilde{f}_{i}(b)=b^{\prime} \Leftrightarrow \tilde{e}_{i}\left(b^{\prime}\right)=b \Leftrightarrow b \xrightarrow{i} b^{\prime} .
$$

Crystal graph: directed graph on B with edges colored $i \leftrightarrow a_{i}$. Kirillov-Reshetikhin (KR) crystals
Correspond to certain finite-dimensional representations (not highest weight) or affine Lie algebras $\hat{\mathfrak{g}}$. Consider the untwisted affine types $\mathbf{A}_{n-1}^{(1)}-\mathbf{G}_{2}^{(1)}$. The corresponding crystals have edges (associated to crystal operators) $\tilde{f}_{0}, \tilde{f}_{1}, \ldots$
Labeled by $p \times q$ rectangles, and denoted $\mathbf{B}^{p, q}$.
Definition. Given a composition $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$, let

$$
\mathbf{B}^{\mathrm{p}}=\mathbf{B}^{p_{1,1}} \otimes \mathbf{B}^{p_{2}, 1} \otimes
$$

The crystal operators are defined on $\mathbf{B}^{\mathbf{p}}$ by a tensor product rule.

## The Tableau Model

With the removal of the $\tilde{f}_{0}$ arrows, in types $A_{n-1}$ and $C_{n}$, we have $\mathbf{B}^{k, 1} \cong \mathbf{B}\left(\omega_{k}\right)$ and in types $C_{n}$ and $D_{n}$, we have

$$
\mathbf{B}^{k, 1} \cong \mathbf{B}\left(\omega_{k}\right) \sqcup \mathbf{B}\left(\omega_{k-2}\right) \sqcup \mathbf{B}\left(\omega_{k-4}\right) \sqcup .
$$

where each $B\left(\omega_{k}\right)$ is given by $K N$ columns of height $k$. These are strictly increasing fillings of the columns with entries $1<$ $2<\ldots<n$ in type $A_{n-1}$. With some additional conditions, they are fillings with entries $1<\ldots<n<\bar{n}<\ldots<\overline{1}$ in type $C_{n}$. Types $B_{n}$ and $D_{n}$ are similar.

Type $A_{4}$ Crystal Graph of $\mathbf{B}^{3,1} \otimes \mathbf{B}^{2,1}$
 -

## The Quantum Alcove Model for $\mathrm{B}^{\mathrm{p}}$

The main ingredient is the Weyl group $\mathbf{W}=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$.
The quantum Bruhat graph on $\mathbf{W}$ is the directed graph with labeled edges $w \rightarrow w s_{\alpha}$, where
$l\left(w s_{\alpha}\right)=l(w)+1$ (Bruhat graph), or
$l\left(w s_{\alpha}\right)=l(w)+1-2\left\langle\rho, \alpha^{\vee}\right\rangle$.
Definition. Given a dominant weight $\lambda=\omega_{p_{1}}+\ldots+\omega_{p_{r}}$, we associate with it a sequence of roots, called a $\lambda$-chain (many choices possible):

$$
\Gamma=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right) .
$$

Let $r_{i}:=s_{\beta_{i}}$. We consider subsets of positions in $\Gamma$

$$
J=\left(j_{1}<j_{2}<\ldots<j_{s} \subseteq \subseteq 1, \ldots, m\right\} .
$$

Definition. A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} r_{j_{1}} \xrightarrow{\beta_{j_{2}}} r_{j_{1}} r_{j_{2}} \ldots \xrightarrow{\beta_{j_{s}}} r_{j_{1}} \ldots r_{j_{s}} .
$$

Theorem [LNSSS, 2016]: The collection of all admissible subsets, $A(\Gamma)$,is a combinatorial model for $\mathbf{B}^{\mathbf{p}}$.

## The Two Realizations

- The Tableaux model is simpler and has less structure
- The Quantum Alcove model has extra structure which makes it easier to do several computations (energy function, combinatorial R-Matrix, charge statistic. . .)


## Relating the Two Models

We build a forgetful map fill : $\mathcal{A}(\Gamma) \rightarrow$ Tableau $(\lambda)$ where $\lambda=\omega_{p_{1}}+\ldots \omega_{p_{r}}$.
Definition: For any $k=1, \ldots, n-1$ we define $\Gamma(k)$ to be the following chain of roots:

$$
\begin{gathered}
((k, k+1),(k, k+2), \ldots,(k, n) . . \\
(2, k+1),(2, k+2), \ldots,(2, n) \\
(1, k+1),(1, k+2), \ldots,(1, n))
\end{gathered}
$$

Definition: We construct a $\lambda$-chain as a concatenation $\Gamma:=\Gamma^{\mu_{1}} \ldots \Gamma^{1}$ where $\Gamma^{j}=\Gamma\left(p_{j}\right)$.
Example Consider $n=4$ and $\lambda=(3,2,1,0)$. Then the associated $\lambda$-chain is $\Gamma=\Gamma^{3} \Gamma^{2} \Gamma^{1}=$
$((3,4),(2,4),(1,4)|(2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4))$ Example $J=\{1,2,4,5,8\} \in \mathcal{A}(\Gamma)$.
$((3,4), \underline{(2,4)},(1,4)|(2,3), \underline{(2,4)},(1,3),(1,4)|(1,2),(1,3),(1,4)$ We get the corresponding path in the Bruhat order/quantum Bruhat graph

This gives us $\operatorname{fill}(J)=$

| 1 | 1 | 2 |
| :--- | :--- | :--- |
| 3 | 2 |  |
| 4 |  |  |

## The Reverse Map in Type $A_{n-1}$

Consider the tableau in $\bigotimes_{i=1}^{r} B^{p, 1}$ from the previous example

$$
f(T)=\begin{array}{lll}
1 & 1 & 2 \\
3 & 2
\end{array}{ }^{4} .
$$

Use entries of columns $i$ and $i-1$ viewed as sets to build the desired sub-list of $\Gamma^{i}$ where the zero column is the size $n$ column of strictly increasing entries.
This is done with two algorithms: Reorder and Greedy
The resulting bijection is a crystal isomorphism [LL,2015].

## The Reorder Rule

First, let us consider the circular order

$$
a \preceq_{a} a+1 \preceq_{a} \ldots \preceq_{a} n \preceq_{a} 1 \preceq_{a} \ldots \preceq_{a} a-1
$$

We write all chains in $\preceq_{a}$ starting with $a$, so the subscript $a$ can be dropped
Let $C$ and $C^{\prime}$ be two columns. We fix the entries in $C$ and wish to reorder those in $C^{\prime}$
For each $1 \leq i \leq \# C^{\prime}$, we have

$$
a_{i}=C^{\prime}(i)=\min \left\{C^{\prime}(l): i \leq l \leq \# C^{\prime}\right\}
$$

where the minimum is taken with respect to the circle order on $[n]$ starting with $C(i)$.
Example: If $C=\begin{aligned} & 2 \\
& 1 \\
& \frac{1}{3} \\
& 4\end{aligned}$ and \(C^{\prime}=\begin{aligned} \& 1 <br>
\& 3 <br>

\& 3\end{aligned}\). Then $\operatorname{reorder}_{C}\left(C^{\prime}\right)=$| 3 |
| :--- |
| $\frac{1}{4}$ | .

## The Greedy Algorithm

We now rebuild the desired sublist of $\Gamma_{i}$ by going through $\Gamma_{i}$ root by root.
For root $\left(j_{1}, j_{2}\right)$ if $C\left[j_{1}\right] \prec C\left[j_{2}\right] \prec \hat{C}^{\prime}\left[j_{1}\right]$ and $C \xrightarrow{\left(j_{1}, j_{2}\right)} \hat{C}^{\prime}$ is in the corresponding QBG, then apply it. Otherwise skip. Continue.
So for our example, we have $\Gamma_{1}=((3,4),(2,4),(1,4))$ and get

$$
C=\left[\begin{array}{l}
1 \\
\frac{1}{2} \\
3 \\
4
\end{array} \xrightarrow{(3,4)}\left[\begin{array}{l}
1 \\
2 \\
4 \\
3
\end{array}\right] \xrightarrow{(2,4)} \begin{array}{l}
1 \\
3 \\
4 \\
2
\end{array}\right]
$$

## The Type $C_{n}$ Map

- The filling map is similar
- The inverse map has one major change. Many $K N$ columns have both $i$ and $\bar{\imath}$ in them, so we use the splitting algorithm [Lecouvey] to bijectively make two columns with no $i, \bar{\imath}$ pairs in either.
- Then similar reorder and greedy algorithms work.
- So now the reverse map is made up of a process of Split, Reorder, and Greedy
- Example:

The $\Gamma(k)$ in type $C_{n}$ comes in two parts. We use the first to get a chain from the left split to the reordered right split and the second to get a chain from the right split to the next column's left split

## The Type $B_{n}$ Map

- There is a similar filling map
- For the reverse, similar to $C_{n}$, we need a splitting map.
- Recall that we now have columns of length $k-2 l$, so we need to Extend back to length $k$ [Briggs].
- Further, the greedy algorithm and reorder algorithm no longer work.
- There is a configuration of two columns $C C^{\prime}$ that we call being blocked-off.
- Modify greedy and reorder to avoid block-off pattern

Definition: We say that columns $L=\left(l_{1}, l_{2}, \ldots, l_{k}\right), R^{\prime}=$
$\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ are blocked off at $i$ by $b=r_{i}$ iff $0<b \geq\left|l_{i}\right|$ and
$\{1,2, \ldots, b\} \subset\left\{\left|l_{1}\right|,\left|l_{2}\right|, \ldots,\left|l_{i}\right|\right\}$
and
$\{1,2, \ldots, b\} \subset\left\{\left|r_{1}\right|,\left|r_{2}\right|, \ldots,\left|r_{i}\right|\right\}$
and $\left|\left\{j: 1 \leq j \leq i, l_{j}<0, r_{j}>0\right\}\right|$ is odd.

## Further Work

- The map in type $D_{n}$ similar to type $B_{n}$, but there is a second pattern to be avoided in Reorder and Greedy
- The bijections for types $B_{n}$ and $D_{n}$ given here are actually crystal isomorphisms.


## Bibliography

- C. Lenart, A. Lubovsky, J. Algebraic Combin., 2015
C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, Int. Math. Res. Not., 2016

