The isomorphism problem for cominuscule Schubert varieties

Edward Richmond, Mihail Țarigradschi, and Weihong X_u^*

Oklahoma State University, Rutgers University, and Virgina Tech*

April 28, 2023

- X = G/P flag variety
- Fix Borel $B \subset G$
- Schubert varieties $\coloneqq B$ -orbit closures in X

(B'-Schubert varieties are translates of B-Schubert varieties)

Question

Given Schubert varieties $\Omega \subseteq X$ and $\Omega' \subseteq X'$, when is $\Omega \cong \Omega'$

as varieties? Is there a combinatorial classification of their

isomorphism classes?

Devlin–Martin–Reiner '07 Classified a class of smooth Schubert varieties in SL_n/P .

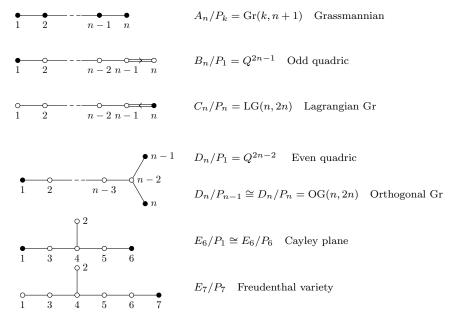
Richmond–Slofstra '21 Classified Schubert varieties in G/Busing Cartan equivalence.

Tarigradschi–X '22 For Grassmannian Schubert varieties,

$$X_{\lambda} \cong Y_{\mu} \iff \lambda = \mu \text{ or } \mu^T.$$

Richmond–Țarigradschi–X '23 Classified Schubert varieties in cominuscule G/P.

Classification of cominuscule flag varieties



Classification of cominuscule flag varieties

Generalizations of Young diagrams

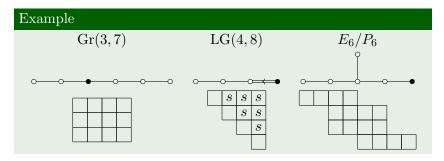
• Let X be the cominuscule flag variety determined by (\mathcal{D}, γ) ,

$$\mathcal{P}_X \coloneqq \{ \alpha \in R : \alpha \ge \gamma \}.$$

Proctor Schubert varieties in X are indexed by lower order ideals in \mathcal{P}_X .

• Label roots in \mathcal{P}_X by long/short.

,



Main result

Theorem (Richmond–Țarigradschi–X '23)

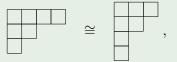
Given lower order ideals $\lambda \subseteq \mathcal{P}_X$ and $\mu \subseteq \mathcal{P}_Y$,

 $X_{\lambda} \cong Y_{\mu}$ as varieties $\iff \lambda \cong \mu$ as labeled posets.

Example

In type A (i.e., Grassmannians),

 $\lambda \cong \mu$ as labeled posets $\iff \lambda = \mu$ or $\lambda = \mu^T$



recovering the classification of Grassmannian Schubert varieties in Țarigradschi–X '22.

Main result

-Examples

Example

The projective plane $\mathbb{P}^2 \quad \not\cong \quad \text{the Schubert divisor in } Q^3$:

 $\qquad \qquad \not\cong \qquad s$.

Geometrically, the latter is singular.

Example

The quadric Q^3 embeds in $\mathrm{LG}(n,2n)$ $(n\geq 3)$ as a Schubert variety:

s	s	s
	s	s
		s

Main result

 \Box Constructing λ from the isomorphism class of X_{λ}

Fulton-MacPherson-Sottile-Sturmfels $\{[X_{\mu}] : \mu \subseteq \lambda\} = \{\text{minimal elements in the} \\ \text{extremal rays of the effective cone in } A_*(X_{\lambda})\}.$ Mathieu $\operatorname{Pic}(X_{\lambda})$ is freely generated by a unique effective class D_{λ} .

As D_{λ} is pulled back from X, its intersection product with $[X_{\mu}]$ is computed by the Chevalley formula (Fulton–Woodward):

$$D_{\lambda} \cdot [X_{\mu}] = \sum_{\alpha \text{ maximal}} \frac{(\gamma, \gamma)}{(\alpha, \alpha)} [X_{\mu \setminus \{\alpha\}}].$$

- Coefficient of $[X_{\nu}] \neq 0 \iff \mu$ covers ν in Bruhat order \subseteq , recovering the Bruhat interval $\{\mu : \mu \subseteq \lambda\}$ and the poset λ as its sub-poset of join-irreducible elements.
- If μ is join-irreducible with (unique) maximal box α , then

$$D_{\lambda} \cdot [X_{\mu}] = \frac{(\gamma, \gamma)}{(\alpha, \alpha)} [X_{\mu \setminus \{\alpha\}}].$$

Main result

 $\Box \mathbf{Proof of } \lambda \cong \mu \Rightarrow X_{\lambda} \cong Y_{\mu}$

• \mathcal{D} "sits in" \mathcal{P}_X as a lower order ideal $\lambda_{\mathcal{D}}$.

Example LG(4, 8) E_{6}/P_{6} 3 3 26 54 1 2 9 3s 2s5 4 2S6 3 s1 s

By intersecting with $\lambda_{\mathcal{D}}$, each non-empty lower order ideal $\lambda \subseteq \mathcal{P}_X$ determines a connected Dynkin sub-diagram \mathcal{D}_λ and γ is a vertex.

Main result

 $-\mathbf{Proof of } \lambda \cong \mu \Rightarrow X_{\lambda} \cong Y_{\mu} \ \mathbf{cont.}$

Richmond–Slofstra

 $X_{\lambda} \hookrightarrow$ "minimal" comin. X' given by $(\mathcal{D}_{\lambda}, \gamma)$.

• The graph \mathcal{D}_{λ} depends only on the labeled poset structure

of λ . Moreover, every isomorphism $\lambda \to \mu$ induces

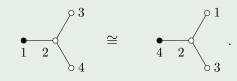
└_Main result

 $\square_{More examples}$

Example

$$\mathcal{P}_{Q^6} = \underbrace{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 1 \end{array}}_{Q^6} \cong \underbrace{\begin{array}{ccc} 4 & 2 & 1 \\ 3 & 1 \end{array}}_{Q^6} = \mathcal{P}_{\mathrm{OG}(4,8)}$$
$$\implies \qquad Q^6 \cong \mathrm{OG}(4,8).$$

It comes from

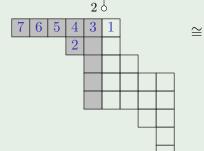


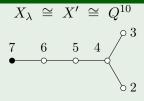
_Main result

 $L_{More examples}$

Example

$$X = E_7/P_7$$





└Open problem

What about Richardson varieties?

