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Three Problems in Classical Combinatorial
Representation Theory

Restriction Problem: Given a polynomial representation of the GLn, give a combinatorial
description of the coefficients when restricted to S,?

Res L”V’I ~ D, 7.,

Kronecker Problem: Given two representation of the Sn, give a combinatorial description
of the coefficients when we tensor these representations?

S'QS =P, g, u,v)S”

Plethysm Problem: Given two polynomial representation of the GL, give a combinatorial
description of the coefficients when we compose these representations?



Schur-Weyl Duality
1. GL,(C) actson C"®C" ® - -- ® C"* = (C™)®* diagonally.
G- MRUNR QU =91 QU2 ® -+ @ Gug.

2. Sk also acts on ((C")‘g"‘c by place permutation.

U3 @ V1 Q@ U5 ® V2 ® V4

7oK

V1 Q@ V2 ® V3 @ V4 ® Vs

3. These actions commute!

Centralizer relationship produces

Ok o @S’\ 2V*  asa S x GL,, bimodule
Ak



Consequences of Schur-Weyl Duality

|. Tensoring and restriction /induction correspond:
VAQVI: V] =c5, =[S lg s, S* x S
where ¢y  is the Littlewood-Richardson coefficient.

ll. Frobenius Formula: The character of

Vo = @ st @ VA
A=k
at (o, g9) € S x GL,, where

» ¢ has eigenvalues x1,22,...,2Zy
» o has cycle type 1

pu(z1,... @ ZX )sa(T1, ..., Tn)
D\t



The Classical Schur-Weyl Duality

S
@A ) n—+m
Induction: S X S TSn % S

Specht modules: SA
Representations of
Symmetric group

Combinatorics:

Schur Functor |
Schur-Weyl Duality RSK algorithm

_ _ Frobenius Characteristic Map
Littlewood-Richardson Rule

Tableaux filled with numbers

Poly. Reps. of

General Linear Symmetric
Group universal functions
N (formal) character .
Irreps: V' Schur functions: s

Tensor products: V* @ VH SASpu = 2., Cx 1 Sv



Symmetric Functions and characters of GL,

Let A be a matrix in GL» with eigenvalues Xi, Xy, ***,X, and V = (C"

Representation Character

irrep indexed by \: V* Schur function: sy(z1,...,2Z,)

SymMV ® -+ ® Sym MV homogeneous: h)(x1,...,Zy)

V®k Power: p,(z1,...,zn)
as a S, x GL,, rep.

—_ 1%
Vi® VH S0 = Z G




The Kronecker Coefficients

Let S* and S* be irreducible representations of the symmetric group. Then,

A ~
S'® SH = @, g(4, 1, 1)S
The multiplicities g(4, 11, ) are called Kronecker coefficients.

Example:

83,2,1,1 ® 84,2,1 — S6,1 @ 385,2 @ 385,1,1 @ 384,3 @ 884’2’1
o581l 583 3 1 @ 58322 @ 983211

p4S3 L1 @y 4§2,2,2,1 oy 4§2,2,1,1,1
o2s2:1:1,1,1,1 ¢ g1,1,1,1,1,1,1

Open Problem: Find a set of objects depending on three partitions 4, i and v that
contains g(4, u, V) elements.



An approach to Kronecker

| RSK algorithm
Schur-Weyl Duality Standard tableaux
Semistandard tableaux
Sk X GLn Littlewood-Richardson rule

permutation matrices

l Think of S, as
Contained in GL,

Restricted Shur-Weyl Duality Bowman, De Visscher
Zabrocki

Pk(n) X Sn Colmenarejo, Saliola, Schilling, and Zabrocki




Restricting Schur-Weyl Duality

Think of Sn C GLn as the subgroup of permutation matrices acting diagonally on &k

c-(V RV - QVv)=0viQ®0c»Q - oV,

What commutes with this action?
Permutation of the factors, but a lot more!

5& b=c (Ua X Ua) ®( Z?:l V; & Ui)

¢ ¢ ®
\ g
@ ® o

Ug @ Up @ Uec ® Ud

The partition algebra!



The Partition Algebra

Fix k € Z~p, and let
k| ={1,...,k} and K ={1,...,K'}.
We're interested in set partitions of [k| U [k]. Either as sets of sets

d={{1,2,1'}, {3}, {2,344}

or as diagrams (considering connected components)

1 2 3 4 1 2 3 4
‘/ ® . o /
® @ 9

“e
i

1 2’



The Partition Algebra

Multiplying diagrams:

The partition algebra P(n) is the C-span of the partition
diagrams with this product.

Nice facts:
() Associative algebra with identity 1 = {{1,1'},...,{k,k"}}.
(%) dim(Pg(n)) = the Bell number B(2k).



The Partition Algebra and Kronecker

Theorem: (Jones 1994)

&k o @LS‘ ®S* asa Py(n) x S, representation
A

Theorem: (Bowman, De Visscher and Orellana, 2015) For any partitions 4, ¢, and v of
n, then

S'®S": S = g ) = |L@®) 1,13« L) X L(E)

1 2

where /1_= (/12, /13, .o ,/1{)

In comparison to: [V @ V#: VY] = X =[S i?:;tst: S* x SH]




The character

Ok o EBLZ\ 2 S* asa Py(n) x S, representation
A

The character at an element (d,,, o) in Pr(n) xS, where o has
eligenvalues x1,x9,...,T, IS

Pu(@1s ) = Y XD (d)X ()
A

Note: This is in comparison with the Frobenius formula which arises from classical
Schur-Weyl duality between the general linear group and the symmetric group:

pu(ilh, s e 7x’fl) — ZX)\<M)S)\($1, SR 'I‘n)
AFE



A new basis of symmetric function{s, }

g

=, are eigenvalues corresponding to a permutation matrix of cycle type u .
S (= — A (n—[A],4
5,E) = ")

Example: 5(1)()61,)62, X3) = Xq + X9 + X3 — 1

Representing Matrices:

1 0 O 0 1 0 0 0 1
0 1 0 |, 1 0 0 |, 1 0 O
0 0 1 0 0 1 0 1 0
eigenvalues: 1,1, 1, -1, 1 1,&, &2

5(1)(1,1,1) =2 5(1)(1, - 1,1)=0 5(1)(195, 52) =—1

These values correspond to the character )((2’1).



The {S,} basis

{s,} is a “new” basis for symmetric functions:

» When evaluated at roots of unity (eigenvalues of permutation
matrices) we get the irreducible characters of the symmetric

group.
» [ he stable Kronecker coefficients are the structure
coefficients.

Compared to:

The Schur functions {s)} form a basis of symmetric functions:

» When evaluated at the eigenvalues of a matrix A, we get the
value of the irreducible characters of GL,,.

» [ he Littlewood-Richardson coefficients are the structure
coefficients.



Structure coefficients of {5, }
55, = ), B4 u.1)3,
1%
where g(/l, U, V) are the “stable” Kronecker coefficients.

Example:

S(2)8(1) = 8(1) T 8(1,1) T S(2) + 8(2,1) + 5(3)

which corresponds to

for n > 6.



Symmetric functions and characters of S,

Let o € S;, of cycle type p with eigenvalues =,

Representation Character

irrep indexed by \: SA irreducible character basis: 5)(Z,,)

1 ng induced trivial character basis: ﬁA(E“)
V ®k power p,(E,,)

as an Pgx(n) X Sp-module

S=1410) & §n=lulw) S35, = 2 84, 1, V)3,




Schur-Weyl duality between partition algebra and the
symmetric group

L)\
Induce: L* x LA TP” -
' Py, X Py,

Representations of
partition algebra

Representations of symmetric
symmetrlc group “universal” character fUﬂCtiOﬂS
Irrep. S* 3\
. QA v S~ Q- — gY §
Tensor: S* ® S 5385 = )_, 95 57

Note: The combinatorial objects governing this picture are multiset tableaux.



Products of symmetric functions

The objective for the rest of the talk!

>

>

>

A rule for multiplying h,,s)

A rule for multiplying hmhuz X

A rule for multiplying s,,,8,, - - -

A rule for multiplying iLu§>\



Multisets

A multiset is a collection of objects where the objects can be
repeated. Example: {1,1,2,3,3,4}

Our multiset will contain barred and unbarred numbers:
Ordered 1 <2< -+ <1<2<---

Given two multisets M7 and M9 we want to order them using
the reverse lexicographic order

For example, {5,1,1,1,2,2,3,4} < {2,1,1,2,3,3,4}.

The content of a tableau 1" is defined as the multiset which
contains a;"* where a; € {1,2,...,1,2,...} occurs m; times
in 1’

The shape of a tableau 7' is the sequence obtained by reading
the lengths of each row in T. We denote by sh(1") the shape

of T'. All of our tableaux will be of shape (7,7)/(v1) for a
partition v and some integer r > ;.



4+ Let a and ff be compositions and y a partition

+ MCT/(a, p) contains tableaux T such that

@ are column strict
@ have shape (7, 7)/(y;)

® have content {{1%,2,%2 ... % 1/ 2P .. kP))

@ have at most one barred entry in each cell

@ cells in the first row cannot be filled with multisets containing only barred entries.

Example: MCT;3332.11((6,4,2), (12,4))

sh(T) = (4,3,3,3,2,1)/(3)

sh(T) = (3,3,3,2,1)

112

Multiset Tableaux

12

11

]
)
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111

1

DO
ek




Reading the entries of a multiset tableau

4+ For any tableaux T, let read(T’) be the word of entries in the tableau from bottom row to top row
and from right to left in the rows.

4+ It S is a multiset of non-barred entries, then let read(T\S) represent the reading word of the

barred entries in the cells with {{7, S}} as a label and let read(T| _) represent the reading
word of the cells which have only a barred entry, i.e., when S = @&.

4+ The multiset with no barred entries do not contribute to the reading word.
4+ The reading word is the concatenation of all the reading words for all the multisets.

Example: 112
AT|) = T2 12 312
rea ) =12, —
read(T|1) = 3212, 1_1 1_11 _22
read(T|,2) = 11 A I L
read(T|2) = 21, 11121
read(T|12) = 31. T

T’ has reading word

read(T'|-)read(T|1)read(T|,2)read(T|2)read(T’|12) = 12.3212.11.21.31



~y/

The rule for §, in hy hy --h,, 5,

Theorem: Let A and y be partitions and a any composition,

— /g
halhaz hO‘f(oz)S/1 da,/ISV ’

Y
The coefficient d;’ . Is equal to the number of I' € MCT,(4, ) such that T is a lattice tableaux.

Example: The coefficient of s4 Iin hoh1S22 Is equal to 8.

1(11(21|22 1(11(21]2 1(1(1]21 1]1 2




~y/ ~yy

The rule for §,in h,, h,, -

~yy/

.

S
Otf(a) /1

Theorem: Let A and y be partitions and a any composition,

}/ ~
2 ma,/ISV’

Y

~J ~J

h, h

aq

~J

a hO@f(oc)S/I o

The coefficient moy[ .

is equal to the number of " € MCT,(4, ) such that T'is a lattice

tableaux, and such that the entries of the tableaux are sets (no repeated entries).

Example: The same coefficient in 5251522 Is equal to 7

111

21

22 11

21 11




~yy/

The rule for h §

U= A
Theorem: Let A, 4 and y be partitions
- ,
h,s, = Z a, Sy
Y
The coefficient a/i’/l is equal to the number of '€ MTC,(4, ;) such that T'is a lattice

tableaux and whose entries are sets with at most one non-barred entry (and at most one
barred entry).

Example The coefficient of sS4 in ho1890 iS equal to 6 since the tableaux
described by the theorem are

1 [11]21|22 112121 11212 1(1[1]21 111122 1]11]21(22




~y/ ~yy

The rule for s, In SaSay " SaySa

Theorem: Let A and y be partitions and a any composition,

T 0 eeed — /g
S“lsaz SO‘zf(a)S/1 Z ra,/ls}”
Y

The coefficient r;’/l is equal to the number of " € MCT,(4, ) such that T'is a lattice

tableaux, the entries of the tableaux are sets (no repeated entries) and only labels of sets
of size greater than 1 are allowed in the first row.

Example: The same coefficient in 5951599 Is equal to 5

1]11[21]22 11212 1]1|1(21 1[1(1|22 1] 1]21]212




Final Remarks

» We want 5,5, how close are we 7

Spu1Spa ** SpeSx S hpyhpy o by, < hyS)

'V AY) 'V

» [ he products presented here have applications to construction
of Bratteli diagrams of towers of algebras.

» Repeated products occur in Quantum entanglement.
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