The Kronecker Coefficients

Rosa Orellana

Dartmouth College

joint work with Mike Zabrocki

April 28-30, 2023
Women in Algebra and Combinatorics

Three Problems in Classical Combinatorial Representation Theory

Restriction Problem: Given a polynomial representation of the GL_{n}, give a combinatorial description of the coefficients when restricted to S_{n} ?

$$
\operatorname{ReS}_{S_{n}}^{G L_{n}} V^{\lambda} \cong \bigoplus_{\mu} r_{\lambda, \mu} \mathbb{S}^{\mu}
$$

Kronecker Problem: Given two representation of the S_{n}, give a combinatorial description of the coefficients when we tensor these representations?

$$
\mathbb{S}^{\lambda} \otimes \mathbb{S}^{\mu} \cong \bigoplus_{\nu} g(\lambda, \mu, \nu) \mathbb{S}^{\nu}
$$

Plethysm Problem: Given two polynomial representation of the GLn, give a combinatorial description of the coefficients when we compose these representations?

Schur-Weyl Duality

1. $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

2. S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

3. These actions commute!

Centralizer relationship produces

$$
V^{\otimes k} \cong \bigoplus_{\lambda \vdash k} \mathbb{S}^{\lambda} \otimes V^{\lambda} \quad \text { as a } S_{k} \times \mathrm{GL}_{n} \text { bimodule }
$$

Consequences of Schur-Weyl Duality

I. Tensoring and restriction/induction correspond:

$$
\left[V^{\lambda} \otimes V^{\mu}: V^{\nu}\right]=c_{\lambda, \mu}^{\nu}=\left[\mathbb{S}^{\nu} \downarrow_{S_{r} \times S_{t}}^{S_{r+t}}: \mathbb{S}^{\lambda} \times \mathbb{S}^{\mu}\right]
$$

where $c_{\lambda, \mu}^{\nu}$ is the Littlewood-Richardson coefficient.
II. Frobenius Formula: The character of

$$
V^{\otimes k} \cong \bigoplus_{\lambda \vdash k} \mathbb{S}^{\lambda} \otimes V^{\lambda}
$$

at $(\sigma, g) \in S_{k} \times G L_{n}$ where

- g has eigenvalues $x_{1}, x_{2}, \ldots, x_{n}$
- σ has cycle type μ

$$
p_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
$$

The Classical Schur-Weyl Duality

Symmetric Functions and characters of GLn

Let A be a matrix in $G \mathrm{~L}_{n}$ with eigenvalues $x_{1}, x_{2}, \cdots, x_{n}$ and $\quad V=\mathbb{C}^{n}$

Representation	Character
irrep indexed by $\lambda: V^{\lambda}$	Schur function: $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$
$S y m^{\lambda_{1}} V \otimes \cdots \otimes S y m^{\lambda_{\ell}} V$	homogeneous: $h_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$
$V^{\otimes k}$ as a $S_{k} \times G L_{n}$ rep.	Power: $p_{\mu}\left(x_{1}, \ldots, x_{n}\right)$
$V^{\lambda} \otimes V^{\mu}$	$s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}$

The Kronecker Coefficients

Let \mathbb{S}^{λ} and \mathbb{S}^{μ} be irreducible representations of the symmetric group. Then,

$$
\mathbb{S}^{\lambda} \otimes \mathbb{S}^{\mu} \cong \bigoplus_{\nu} g(\lambda, \mu, \nu) \mathbb{S}^{\nu}
$$

The multiplicities $g(\lambda, \mu, \nu)$ are called Kronecker coefficients.

Example:

$$
\begin{aligned}
\mathbb{S}^{3,2,1,1} \otimes \mathbb{S}^{4,2,1}= & \mathbb{S}^{6,1} \oplus 3 \mathbb{S}^{5,2} \oplus 3 \mathbb{S}^{5,1,1} \oplus 3 \mathbb{S}^{4,3} \oplus 8 \mathbb{S}^{4,2,1} \\
& \oplus 5 \mathbb{S}^{4,1,1,1} \oplus 5 \mathbb{S} 3,3,1 \oplus 5 \mathbb{S}^{3,2,2} \oplus 9 \mathbb{S}^{3,2,1,1} \\
& \oplus 4 \mathbb{S}^{3,1,1,1,1} \oplus 4 \mathbb{S}^{2,2,2,1} \oplus 4 \mathbb{S}^{2,2,1,1,1} \\
& \oplus 2 \mathbb{S}^{2,1,1,1,1,1} \oplus \mathbb{S}^{1,1,1,1,1,1,1}
\end{aligned}
$$

Open Problem: Find a set of objects depending on three partitions λ, μ and ν that contains $g(\lambda, \mu, \nu)$ elements.

An approach to Kronecker

Think of S_{n} as
permutation matrices
Contained in $G L_{n}$

Restricted Shur-Weyl Duality

$$
P_{k}(n) \times S_{n}
$$

RSK algorithm
Standard tableaux
Semistandard tableaux Littlewood-Richardson rule

Bowman, De Visscher Zabrocki
Colmenarejo, Saliola, Schilling, and Zabrocki

Restricting Schur-Weyl Duality

Think of $S_{n} \subseteq G L_{n}$ as the subgroup of permutation matrices acting diagonally on $V^{\otimes k}$

$$
\sigma \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=\sigma v_{1} \otimes \sigma v_{2} \otimes \cdots \otimes \sigma v_{k}
$$

What commutes with this action?
Permutation of the factors, but a lot more!

The partition algebra!

The Partition Algebra

Fix $k \in \mathbb{Z}_{>0}$, and let

$$
[k]=\{1, \ldots, k\} \quad \text { and } \quad\left[k^{\prime}\right]=\left\{1^{\prime}, \ldots, k^{\prime}\right\} .
$$

We're interested in set partitions of $[k] \cup\left[k^{\prime}\right]$. Either as sets of sets

$$
d=\left\{\left\{1,2,1^{\prime}\right\},\{3\},\left\{2^{\prime}, 3^{\prime}, 4^{\prime}, 4\right\}\right\}
$$

or as diagrams (considering connected components)

The Partition Algebra

Multiplying diagrams:

The partition algebra $P_{k}(n)$ is the \mathbb{C}-span of the partition diagrams with this product.

Nice facts:
(*) Associative algebra with identity $1=\left\{\left\{1,1^{\prime}\right\}, \ldots,\left\{k, k^{\prime}\right\}\right\}$.
$(*) \operatorname{dim}\left(P_{k}(n)\right)=$ the Bell number $B(2 k)$.

The Partition Algebra and Kronecker

Theorem: (Jones 1994)

$$
V^{\otimes k} \cong \bigoplus_{\lambda} L^{\bar{\lambda}} \otimes \mathbb{S}^{\lambda} \quad \text { as a } P_{k}(n) \times S_{n} \text { representation }
$$

Theorem: (Bowman, De Visscher and Orellana, 2015) For any partitions λ, μ, and ν of n, then

$$
\left[\mathbb{S}^{\lambda} \otimes \mathbb{S}^{\mu}: \mathbb{S}^{\nu}\right]=g(\lambda, \mu, \nu)=\left[L(\bar{\nu}) \downarrow_{P_{n_{1}} \times P_{n_{2}}}^{P_{n_{1}+n_{2}}}: L(\bar{\lambda}) \times L(\bar{\mu})\right]
$$

where $\bar{\lambda}=\left(\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\ell}\right)$.

In comparison to:

$$
\left[V^{\lambda} \otimes V^{\mu}: V^{\nu}\right]=c_{\lambda, \mu}^{\nu}=\left[\mathbb{S}^{\nu} \downarrow_{S_{r} \times S_{t}}^{S_{r+t}}: \mathbb{S}^{\lambda} \times \mathbb{S}^{\mu}\right]
$$

The character

$$
V^{\otimes k} \cong \bigoplus_{\lambda} L^{\bar{\lambda}} \otimes \mathbb{S}^{\lambda} \quad \text { as a } P_{k}(n) \times S_{n} \text { representation }
$$

The character at an element $\left(d_{\mu}, \sigma\right)$ in $P_{k}(n) \times S_{n}$ where σ has eigenvalues $x_{1}, x_{2}, \ldots, x_{n}$ is

$$
\begin{aligned}
p_{\mu}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\lambda} \chi_{P_{k}(n)}^{\bar{\lambda}}\left(d_{\mu}\right) \chi^{\lambda}(\sigma) \\
p_{\mu}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\lambda} \chi_{P_{k}(n)}^{\bar{\lambda}}\left(d_{\mu}\right) \tilde{s}_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Note: This is in comparison with the Frobenius formula which arises from classical Schur-Weyl duality between the general linear group and the symmetric group:

$$
p_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
$$

A new basis of symmetric function $\left\{\tilde{S}_{\lambda}\right\}$

Ξ_{μ} are eigenvalues corresponding to a permutation matrix of cycle type μ.

$$
\tilde{s}_{\lambda}\left(\Xi_{\mu}\right)=\chi^{(n-|\lambda|, \lambda)}(\mu)
$$

Example: $\tilde{s}_{(1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}-1$
Representing Matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{llcc}
\text { eigenvalues: } & 1,1,1 & 1,-1,1 & 1, \xi, \xi^{2} \\
\qquad \tilde{s}_{(1)}(1,1,1)=2 & \tilde{s}_{(1)}(1,-1,1)=0 & \tilde{s}_{(1)}\left(1, \xi, \xi^{2}\right)=-1
\end{array}
$$

These values correspond to the character $\chi^{(2,1)}$.

The $\left\{\tilde{S}_{\lambda}\right\}$ basis

$\left\{\tilde{s}_{\lambda}\right\}$ is a "new" basis for symmetric functions:

- When evaluated at roots of unity (eigenvalues of permutation matrices) we get the irreducible characters of the symmetric group.
- The stable Kronecker coefficients are the structure coefficients.

Compared to:
The Schur functions $\left\{s_{\lambda}\right\}$ form a basis of symmetric functions:

- When evaluated at the eigenvalues of a matrix A, we get the value of the irreducible characters of $G L_{n}$.
- The Littlewood-Richardson coefficients are the structure coefficients.

Structure coefficients of $\left\{\tilde{S}_{\lambda}\right\}$

$$
\tilde{s}_{\lambda} \tilde{s}_{\mu}=\sum_{\nu} \bar{g}(\lambda, \mu, \nu) \tilde{s}_{\nu}
$$

where $\bar{g}(\lambda, \mu, \nu)$ are the "stable" Kronecker coefficients.

Example:

$$
\tilde{s}_{(2)} \tilde{s}_{(1)}=\tilde{s}_{(1)}+\tilde{s}_{(1,1)}+\tilde{s}_{(2)}+\tilde{s}_{(2,1)}+\tilde{s}_{(3)}
$$

which corresponds to

$$
\mathbb{S}^{(n-2,2)} \otimes \mathbb{S}^{(n-1,1)}=\mathbb{S}^{(n-1,1)}+\mathbb{S}^{(n-2,1,1)}+\mathbb{S}^{(n-2,2)}+\mathbb{S}^{(n-3,2,1)}+\mathbb{S}^{(n-3,3)}
$$

for $n \geq 6$.

Symmetric functions and characters of S_{n}

Let $\sigma \in S_{n}$ of cycle type μ with eigenvalues Ξ_{μ}.

Representation	Character
irrep indexed by $\lambda: \mathbb{S}^{\lambda}$	irreducible character basis: $\tilde{s}_{\lambda}\left(\Xi_{\mu}\right)$
$\mathbf{1} \uparrow_{S_{\lambda}}^{S_{n}}$	induced trivial character basis: $\tilde{h}_{\lambda}\left(\Xi_{\mu}\right)$
$V^{\otimes k}$	power $p_{\mu}\left(\Xi_{\mu}\right)$
as an $P_{k}(n) \times S_{n}$-module	
$\mathbb{S}^{(n-\|\lambda\|, \lambda)} \otimes \mathbb{S}^{n-\|\mu\|, \mu)}$	$\tilde{s}_{\lambda} \tilde{S}_{\mu}=\sum_{\nu} g(\lambda, \mu, \nu) \tilde{S}_{\nu}$

Schur-Weyl duality between partition algebra and the symmetric group

Note: The combinatorial objects governing this picture are multiset tableaux.

Products of symmetric functions

The objective for the rest of the talk!

- A rule for multiplying $h_{\mu} \tilde{s}_{\lambda}$
- A rule for multiplying $\tilde{h}_{\mu_{1}} \tilde{h}_{\mu_{2}} \cdots \tilde{h}_{\mu_{k}} \tilde{s}_{\lambda}$
- A rule for multiplying $\tilde{s}_{\mu_{1}} \tilde{s}_{\mu_{2}} \cdots \tilde{s}_{\mu_{k}} \tilde{s}_{\lambda}$
- A rule for multiplying $\tilde{h}_{\mu} \tilde{s}_{\lambda}$

Multisets

- A multiset is a collection of objects where the objects can be repeated. Example: $\{\{1,1,2,3,3,4\}$
- Our multiset will contain barred and unbarred numbers: Ordered $\overline{1}<\overline{2}<\cdots<1<2<\cdots$
- Given two multisets M_{1} and M_{2} we want to order them using the reverse lexicographic order For example, $\{\overline{5}, 1,1,1,2,2,3,4\}<\{\overline{2}, 1,1,2,3,3,4\}$.
- The content of a tableau T is defined as the multiset which contains $a_{i}^{m_{i}}$ where $a_{i} \in\{\overline{1}, \overline{2}, \ldots, 1,2, \ldots\}$ occurs m_{i} times in T.
- The shape of a tableau T is the sequence obtained by reading the lengths of each row in T. We denote by $s h(T)$ the shape of T. All of our tableaux will be of shape $(r, \gamma) /\left(\gamma_{1}\right)$ for a partition γ and some integer $r \geq \gamma_{1}$.

Multiset Tableaux

\uparrow Let α and β be compositions and γ a partition
$\downarrow \mathrm{MCT}_{\gamma}(\alpha, \beta)$ contains tableaux T such that

- are column strict
- have shape $(r, \gamma) /\left(\gamma_{1}\right)$
- have content $\left\{\left\{\overline{1}^{\alpha_{1}}, \overline{2},{ }^{\alpha_{2}}, \ldots, \bar{\ell}^{\alpha_{\ell}}, 1^{\beta_{1}}, 2^{\beta_{2}}, \ldots, k^{\beta_{k}}\right\}\right\}$
- have at most one barred entry in each cell
- cells in the first row cannot be filled with multisets containing only barred entries.

Example: $\operatorname{MCT}_{(3,3,3,2,1)}((6,4,2),(12,4))$

$$
\begin{aligned}
\operatorname{sh}(T) & =(4,3,3,3,2,1) /(3) \\
\overline{\operatorname{sh}(T)} & =(3,3,3,2,1)
\end{aligned}
$$

Reading the entries of a multiset tableau

\downarrow For any tableaux T, let $\operatorname{read}(T)$ be the word of entries in the tableau from bottom row to top row and from right to left in the rows.
\downarrow If S is a multiset of non-barred entries, then let $\operatorname{read}\left(\left.T\right|_{S}\right)$ represent the reading word of the barred entries in the cells with $\{\{\bar{j}, S\}\}$ as a label and let $\operatorname{read}\left(\left.T\right|_{-}\right)$represent the reading word of the cells which have only a barred entry, i.e., when $S=\varnothing$.
\downarrow The multiset with no barred entries do not contribute to the reading word.
\downarrow The reading word is the concatenation of all the reading words for all the multisets.

Example:

$$
\begin{aligned}
& \operatorname{read}\left(\left.T\right|_{-}\right)=\overline{12}, \\
& \operatorname{read}\left(\left.T\right|_{1}\right)=\overline{3212}, \\
& \operatorname{read}\left(\left.T\right|_{12}\right)=\overline{11} \\
& \operatorname{read}\left(\left.T\right|_{2}\right)=\overline{21}, \\
& \operatorname{read}\left(\left.T\right|_{12}\right)=\overline{31}
\end{aligned}
$$

T has reading word

$$
\operatorname{read}\left(\left.T\right|_{-}\right) \operatorname{read}\left(\left.T\right|_{1}\right) \operatorname{read}\left(\left.T\right|_{1^{2}}\right) \operatorname{read}\left(\left.T\right|_{2}\right) \operatorname{read}\left(\left.T\right|_{12}\right)=\overline{12} \cdot \overline{3212} \cdot \overline{11} \cdot \overline{21} \cdot \overline{31}
$$

The rule for \tilde{S}_{γ} in $h_{\alpha_{1}} h_{\alpha_{2}} \cdots h_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}$

Theorem: Let λ and γ be partitions and α any composition,

$$
h_{\alpha_{1}} h_{\alpha_{2}} \cdots h_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}=\sum_{\gamma} d_{\alpha, \lambda}^{\gamma} \tilde{s}_{\gamma},
$$

The coefficient $d_{\alpha, \lambda}^{\gamma}$ is equal to the number of $T \in \operatorname{MCT}_{\gamma}(\lambda, \alpha)$ such that T is a lattice tableaux.

Example: The coefficient of \tilde{s}_{4} in $h_{2} h_{1} \tilde{s}_{22}$ is equal to 8 .

$\overline{1}$	$\overline{1}$	1	$\overline{2} 2$	
				$\overline{2} 1$

$\overline{1}$	$\overline{1}$	$\overline{2} 1$	$\overline{2} 12$

$\overline{1}$	$\overline{1}$	$\overline{2} 1$	$\overline{2} 2$	
				1

$\overline{1}$	$\overline{1}$	$\overline{2} 1$	$\overline{2} 1$	
				2

$\overline{1}$	$\overline{1}$	$\overline{2} 11$	$\overline{2} 2$

The rule for \tilde{s}_{γ} in $\tilde{h}_{\alpha_{1}} \tilde{h}_{\alpha_{2}} \cdots \tilde{h}_{\alpha_{\ell(\alpha}} \tilde{s}_{\lambda}$

Theorem: Let λ and γ be partitions and α any composition,

$$
\tilde{h}_{\alpha_{1}} \tilde{h}_{\alpha_{2}} \cdots \tilde{h}_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}=\sum_{\gamma} m_{\alpha, \lambda}^{\gamma} \tilde{s}_{\gamma}
$$

The coefficient $m_{\alpha, \lambda}^{\gamma}$ is equal to the number of $T \in \operatorname{MCT}_{\gamma}(\lambda, \alpha)$ such that T is a lattice tableaux, and such that the entries of the tableaux are sets (no repeated entries).

Example: The same coefficient in $\tilde{h}_{2} \tilde{h}_{1} \tilde{s}_{22}$ is equal to 7

$\overline{1}$	$\overline{1} 1$	$\overline{2} 1$	$\overline{2} 2$	$\overline{1}$		$\overline{1}$	$\overline{2} 1$	2		$\overline{1}$	1	$\overline{1}$	1	$\overline{2} 1$		$\overline{1}$	İ	1	1	$\overline{2} 2$	
									$\overline{2} 1$						$\overline{2} 2$						$\overline{2} 1$

$\overline{1}$	$\overline{1}$		$\underline{2} 12$	$\overline{1}$		1	$\overline{2} 1$	$\overline{2} 2$		$\overline{1}$	1	$\underline{2}$	1	21	
									1						2

The rule for $\tilde{h}_{\mu} \tilde{S}_{\lambda}$

Theorem: Let λ, μ and γ be partitions

$$
\tilde{h}_{\mu} \tilde{s}_{\lambda}=\sum_{\gamma} a_{\mu, \lambda}^{\gamma} \tilde{\lambda}_{\gamma}
$$

The coefficient $a_{\mu, \lambda}^{\gamma}$ is equal to the number of $T \in \mathrm{MTC}_{\gamma}(\lambda, \mu)$ such that T is a lattice tableaux and whose entries are sets with at most one non-barred entry (and at most one barred entry).

Example The coefficient of \tilde{s}_{4} in $\tilde{h}_{21} \tilde{s}_{22}$ is equal to 6 since the tableaux described by the theorem are

			$\overline{2} 1$	1		$\overline{1}$			$\overline{2} 1$				$\overline{1}$,	2		$\overline{1}$	1		12			$\overline{1}$	1	1	1		1			$1 \overline{2} 2$		
												2						21						2					$\overline{2} 1$						1

The rule for \tilde{s}_{γ} in $\tilde{S}_{\alpha_{1}} \tilde{s}_{\alpha_{2}} \cdots \tilde{S}_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}$

Theorem: Let λ and γ be partitions and α any composition,

$$
\tilde{S}_{\alpha_{1}} \tilde{S}_{\alpha_{2}} \cdots \tilde{S}_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}=\sum_{\gamma} r_{\alpha, \lambda}^{\gamma} \tilde{S}_{\gamma}
$$

The coefficient $r_{\alpha, \lambda}^{\gamma}$ is equal to the number of $T \in \mathrm{MCT}_{\gamma}(\lambda, \alpha)$ such that T is a lattice tableaux, the entries of the tableaux are sets (no repeated entries) and only labels of sets of size greater than 1 are allowed in the first row.

Example: The same coefficient in $\tilde{s}_{2} \tilde{s}_{1} \tilde{s}_{22}$ is equal to 5

$\overline{1}$	$\overline{1} 1$	$\overline{2} 1$	$\overline{2} 2$

$\overline{1}$	$\overline{1}$	$\overline{2} 1$	2	
				$\overline{2} 1$

$\overline{1}$	$\overline{1}$	$\overline{2} 1$	$\overline{2} 12$

Final Remarks

- We want $\tilde{s}_{\mu} \tilde{s}_{\lambda}$, how close are we ?

$$
\begin{array}{rlr}
\tilde{s}_{\mu_{1}} \tilde{s}_{\mu_{2}} \cdots \tilde{s}_{\mu_{\ell}} \tilde{s}_{\lambda} & \leq \tilde{h}_{\mu_{1}} \tilde{h}_{\mu_{2}} \cdots \tilde{h}_{\mu_{\ell}} \tilde{s}_{\lambda} & \leq h_{\mu} \tilde{s}_{\lambda} \\
\mathrm{IV} & \mathrm{IV} & \mathrm{IV} \\
\tilde{s}_{\mu} \tilde{s}_{\lambda} & \leq & \tilde{h}_{\mu} \tilde{s}_{\lambda} \\
s_{\mu} \tilde{s}_{\lambda}
\end{array}
$$

- The products presented here have applications to construction of Bratteli diagrams of towers of algebras.
- Repeated products occur in Quantum entanglement.

Seth Chaiken (webmaster) (University at Albany) Laura Colmenarejo (North Carolina State University)
Cristian Lenart (University at Albany)
Antun Milas (University at Albany)
Karin Reinhold (University at Albany)
Lauren Rose (Bard College)
Changlong Zhong (University at Albany)

