The Kronecker Coefficients Rosa Orellana Dartmouth College joint work with Mike Zabrocki

April 28-30, 2023 Women in Algebra and Combinatorics

Three Problems in Classical Combinatorial **Representation Theory**

Restriction Problem: Given a polynomial representation of the GL_n, give a combinatorial description of the coefficients when restricted to S_n?

 $Res_{S_{n}}^{GL_{n}}V^{\lambda}$

Kronecker Problem: Given two representation of the S_n , give a combinatorial description of the coefficients when we tensor these representations?

Plethysm Problem: Given two polynomial representation of the GL_n, give a combinatorial description of the coefficients when we compose these representations?

$$\cong \bigoplus_{\mu} r_{\lambda,\mu} \mathbb{S}^{\mu}$$

$\mathbb{S}^{\lambda} \otimes \mathbb{S}^{\mu} \cong \bigoplus_{\nu} g(\lambda, \mu, \nu) \mathbb{S}^{\nu}$

1. $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally. $g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$ **2.** S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

3. These actions commute! Centralizer relationship produces

$$V^{\otimes k} \cong \bigoplus_{\lambda \vdash k} \mathbb{S}^{\lambda} \otimes V^{\lambda}$$

Schur-Weyl Duality

as a $S_k \times \operatorname{GL}_n$ bimodule

Consequences of Schur-Weyl Duality I. Tensoring and restriction/induction correspond:

where $c_{\lambda,\mu}^{\nu}$ is the Littlewood-Richardson coefficient.

I. Frobenius Formula: The character of $V^{\otimes k} \cong \bigoplus \mathbb{S}^{\lambda} \otimes V^{\lambda}$ $\lambda \vdash k$

at $(\sigma, g) \in S_k \times GL_n$ where

 \triangleright g has eigenvalues x_1, x_2, \ldots, x_n

 $\triangleright \sigma$ has cycle type μ

$$p_{\mu}(x_1,\ldots,x_n) = \sum_{\lambda \vdash k}$$

- $[V^{\lambda} \otimes V^{\mu} : V^{\nu}] = c^{\nu}_{\lambda,\mu} = [\mathbb{S}^{\nu} \downarrow^{S_{r+t}}_{S_{m} \times S_{t}} : \mathbb{S}^{\lambda} \times \mathbb{S}^{\mu}]$

 $\chi^{\lambda}(\mu)s_{\lambda}(x_1,\ldots,x_n)$

Symmetric Functions and characters of GLn

Let A be a matrix in GL_n with eigenvalues x_1, x_2, \dots, x_n and $V = \mathbb{C}^n$

Representation

irrep indexed by λ : V^{λ}

 $Sym^{\lambda_1}V \otimes \cdots \otimes Sym^{\lambda_\ell}V$

 $V^{\otimes k}$ as a $S_k imes GL_n$ rep.

 $V^{\lambda} \bigotimes V^{\mu}$

Character

Schur function: $s_{\lambda}(x_1, \ldots, x_n)$

homogeneous: $h_{\lambda}(x_1, \ldots, x_n)$

Power:
$$p_{\mu}(x_1,\ldots,x_n)$$

$$s_{\lambda}s_{\mu} = \sum_{\nu} c_{\lambda,\mu}^{\nu} s_{\nu}$$

The Kronecker Coefficients

The multiplicities $g(\lambda, \mu, \nu)$ are called Kronecker coefficients.

Example:

contains $g(\lambda, \mu, \nu)$ elements.

- Let \mathbb{S}^{λ} and \mathbb{S}^{μ} be irreducible representations of the symmetric group. Then,
 - $\mathbb{S}^{\lambda} \otimes \mathbb{S}^{\mu} \cong \bigoplus_{\nu} g(\lambda, \mu, \nu) \mathbb{S}^{\nu}$

- $\mathbb{S}^{3,2,1,1} \otimes \mathbb{S}^{4,2,1} = \mathbb{S}^{6,1} \oplus 3\mathbb{S}^{5,2} \oplus 3\mathbb{S}^{5,1,1} \oplus 3\mathbb{S}^{4,3} \oplus 8\mathbb{S}^{4,2,1}$ $\oplus 5\mathbb{S}^{4,1,1,1} \oplus 5\mathbb{S}^{3,2,1} \oplus 5\mathbb{S}^{3,2,2} \oplus 9\mathbb{S}^{3,2,1,1}$ $\oplus 4\mathbb{S}^{3,1,1,1,1} \oplus 4\mathbb{S}^{2,2,2,1} \oplus 4\mathbb{S}^{2,2,1,1,1}$
- **Open Problem:** Find a set of objects depending on three partitions λ , μ and ν that

An approach to Kronecker

RSK algorithm Standard tableaux Semistandard tableaux Littlewood-Richardson rule

Bowman, De Visscher Zabrocki Colmenarejo, Saliola, Schilling, and Zabrocki

Restricting Schur-Weyl Duality

Think of $S_n \subseteq GL_n$ as the subgroup of permutation matrices acting diagonally on $V^{\otimes k}$ $\sigma \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = \sigma v_1 \otimes \sigma v_2 \otimes \cdots \otimes \sigma v_k$

What commutes with this action?

Permutation of the factors, but a lot more!

The partition algebra!

The Partition Algebra

Fix
$$k \in \mathbb{Z}_{>0}$$
, and let $[k] = \{1, \dots, k\}$ a

$$d = \{\{1, 2, 1'\}\$$

or as diagrams (considering connected components)

- and $[k'] = \{1', \ldots, k'\}.$
- We're interested in set partitions of $[k] \cup [k']$. Either as sets of sets
 - $\{3\},\{2',3',4',4\}\}$

Multiplying diagrams:

The partition algebra $P_k(n)$ is the \mathbb{C} -span of the partition diagrams with this product.

Nice facts:

(*) Associative algebra with identity $1 = \{\{1, 1'\}, \ldots, \{k, k'\}\}$. (*) $\dim(P_k(n)) = \mathsf{the Bell number } B(2k).$

The Partition Algebra

The Partition Algebra and Kronecker

Theorem: (Jones 1994)

$V^{\otimes k} \cong \bigoplus_{\mathbf{\lambda}} L^{\bar{\lambda}} \otimes \mathbb{S}^{\lambda} \quad \text{ as a } P_k(n) \times S_n \text{ representation}$

Theorem: (Bowman, De Visscher and Orellana, 2015) For any partitions λ, μ , and ν of *n*, then

$$\left[\mathbb{S}^{\lambda} \otimes \mathbb{S}^{\mu} : \mathbb{S}^{\nu}\right] = g(\lambda, \mu, \nu) = \left[L(\overline{\nu}) \downarrow_{P_{n_{1}} \times P_{n_{2}}}^{P_{n_{1}+n_{2}}} : L(\overline{\lambda}) \times L(\overline{\mu})\right]$$

where $\overline{\lambda} = (\lambda_2, \lambda_3, \dots, \lambda_\ell)$.

In comparison to: $[V^{\lambda} \otimes V^{\mu} : V^{\nu}] =$

$$= c_{\lambda,\mu}^{\nu} = [\mathbb{S}^{\nu} \downarrow_{S_r \times S_t}^{S_{r+t}} : \mathbb{S}^{\lambda} \times \mathbb{S}^{\mu}]$$

The character

$$V^{\otimes k} \cong \bigoplus_{\lambda} L^{\overline{\lambda}} \otimes \mathbb{S}^{\lambda}$$
 as

The character at an element (d_{μ}, σ) in $P_k(n) \times S_n$ where σ has eigenvalues x_1, x_2, \ldots, x_n is

$$p_{\mu}(x_1, \dots, x_n) = \sum_{\lambda} \chi_{P_k(n)}^{\bar{\lambda}}(d_{\mu})\chi^{\lambda}(\sigma)$$
$$\mu(x_1, \dots, x_n) = \sum_{\lambda} \chi_{P_k(n)}^{\bar{\lambda}}(d_{\mu})\tilde{s}_{\lambda}(x_1, \dots, x_n)$$

$$p_{\mu}(x_1, \dots, x_n) = \sum_{\lambda} \chi_{P_k(n)}^{\bar{\lambda}}(d_{\mu})\chi^{\lambda}(\sigma)$$
$$p_{\mu}(x_1, \dots, x_n) = \sum_{\lambda} \chi_{P_k(n)}^{\bar{\lambda}}(d_{\mu})\tilde{s}_{\lambda}(x_1, \dots, x_n)$$

Note: This is in comparison with the Frobenius formula which arises from classical Schur-Weyl duality between the general linear group and the symmetric group:

$$p_{\mu}(x_1, \dots, x_n) = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}(x_1, \dots, x_n)$$

s a $P_k(n) \times S_n$ representation

A new basis of symmetric function $\{\tilde{s}_{\lambda}\}$

 $\tilde{s}_{(1)}(1,1,1) = 2 \quad \tilde{s}_{(1)}(1,-1) = 2$

These values correspond to the character $\chi^{(2,1)}$.

$$\chi^{(n-|\lambda|,\lambda)}(\mu)$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$1, -1, 1 \qquad 1, \xi, \xi^2$$

$$(-1,1) = 0$$
 $\tilde{s}_{(1)}(1,\xi,\xi^2) = -1$

The $\{\tilde{s}_{\lambda}\}$ basis

- $\{\tilde{s}_{\lambda}\}\$ is a "new" basis for symmetric functions:
 - When evaluated at roots of unity (eigenvalues of permutation matrices) we get the irreducible characters of the symmetric group.
 - The stable Kronecker coefficients are the structure coefficients.
- Compared to:
- The Schur functions $\{s_{\lambda}\}$ form a basis of symmetric functions:
 - When evaluated at the eigenvalues of a matrix A, we get the value of the irreducible characters of GL_n.
 - The Littlewood-Richardson coefficients are the structure coefficients.

Structure coefficients of $\{\tilde{s}_{\lambda}\}$

 \mathcal{V}

where $\overline{g}(\lambda, \mu, \nu)$ are the "stable" Kronecker coefficients.

Example:

 $\tilde{s}_{(2)}\tilde{s}_{(1)} = \tilde{s}_{(1)} + \tilde{s}_{(2)}$

which corresponds to

for $n \geq 6$.

 $\tilde{s}_{\lambda}\tilde{s}_{\mu} = \sum \overline{g}(\lambda,\mu,\nu)\tilde{s}_{\nu}$

$$(1,1) + \tilde{s}_{(2)} + \tilde{s}_{(2,1)} + \tilde{s}_{(3)}$$

 $\mathbb{S}^{(n-2,2)} \otimes \mathbb{S}^{(n-1,1)} = \mathbb{S}^{(n-1,1)} + \mathbb{S}^{(n-2,1,1)} + \mathbb{S}^{(n-2,2)} + \mathbb{S}^{(n-3,2,1)} + \mathbb{S}^{(n-3,3)}$

Symmetric functions and characters of S_n Let $\sigma \in S_n$ of cycle type μ with eigenvalues Ξ_{μ} .

Representation

irrep indexed by λ : \mathbb{S}^{λ}

$$1\uparrow^{S_n}_{S_\lambda}$$

 $V^{\otimes k}$

as an $P_k(n) \times S_n$ -module

 $\mathbb{S}^{(n-|\lambda|,\lambda)} \bigotimes \mathbb{S}^{n-|\mu|,\mu)}$

Character

irreducible character basis: $\tilde{s}_{\lambda}(\Xi_{\mu})$

induced trivial character basis: $\tilde{h}_{\lambda}(\Xi_{\mu})$

power $p_{\mu}(\Xi_{\mu})$

 $\tilde{s}_{\lambda}\tilde{s}_{\mu}=\sum g(\lambda,\mu,\nu)\tilde{s}_{\nu}$ ${\cal V}$

Schur-Weyl duality between partition algebra and the symmetric group

Note: The combinatorial objects governing this picture are **multiset tableaux**.

The objective for the rest of the talk! A rule for multiplying $h_{\mu}\tilde{s}_{\lambda}$

A rule for multiplying $\tilde{h}_{\mu}\tilde{s}_{\lambda}$

Products of symmetric functions

- A rule for multiplying $\tilde{h}_{\mu_1}\tilde{h}_{\mu_2}\cdots\tilde{h}_{\mu_k}\tilde{s}_{\lambda}$ A rule for multiplying $\tilde{s}_{\mu_1} \tilde{s}_{\mu_2} \cdots \tilde{s}_{\mu_k} \tilde{s}_{\lambda}$

Multisets

- A multiset is a collection of objects where the objects can be repeated. Example: $\{\!\{1, 1, 2, 3, 3, 4\}\!\}$
- Our multiset will contain barred and unbarred numbers: Ordered $\overline{1} < \overline{2} < \cdots < 1 < 2 < \cdots$
- \blacktriangleright Given two multisets M_1 and M_2 we want to order them using the reverse lexicographic order For example, $\{\!\{\overline{5}, 1, 1, 1, 2, 2, 3, 4\}\!\} < \{\!\{\overline{2}, 1, 1, 2, 3, 3, 4\}\!\}$.
- The content of a tableau T is defined as the multiset which contains $a_i^{m_i}$ where $a_i \in \{\overline{1}, \overline{2}, \ldots, 1, 2, \ldots\}$ occurs m_i times in T.
- The shape of a tableau T is the sequence obtained by reading the lengths of each row in T. We denote by sh(T) the shape of T. All of our tableaux will be of shape $(r, \gamma)/(\gamma_1)$ for a partition γ and some integer $r \geq \gamma_1$.

- \diamond Let α and β be compositions and γ a partition
- \diamond MCT_{γ}(α, β) contains tableaux T such that
 - are column strict
 - have shape $(r, \gamma)/(\gamma_1)$
 - have content {{ $\overline{1}^{\alpha_1}, \overline{2}, \alpha_2, ..., \overline{\ell}^{\alpha_\ell}, \ldots, \underline{\ell}^{\alpha_\ell}, \ldots, \underline{\ell}$
 - have at most one barred entry in each cell
 - cells in the first row cannot be filled with multisets containing only barred entries.

Example:
$$MCT_{(3,3,3,2,1)}((6,4,2),(12,4))$$

 $sh(T) = (4,3,3,3,2,1)/(3)$
 $\overline{sh(T)} = (3,3,3,2,1)$
 $T = \begin{bmatrix} \overline{112} \\ \overline{12} \\ \overline{312} \\ 11 \\ \overline{111} \\ \overline{22} \\ \overline{2} \\ \overline{21} \\ \overline{111} \\ \overline{111} \\ \overline{21} \\ 1 \\ \overline{111} \\ \overline{21} \\ \overline{111} \\ \overline{311} \\ \overline{311} \end{bmatrix}$

$$\overline{sh(T)} = (3,3,3,2,1)$$

Multiset Tableaux

$$, 1^{\beta_1}, 2^{\beta_2}, \ldots, k^{\beta_k} \} \}$$

Reading the entries of a multiset tableau

- and from right to left in the rows.
- \diamond If S is a multiset of non-barred entries, then let read(T | S) represent the reading word of the barred entries in the cells with $\{\{\overline{j}, S\}\}$ as a label and let $read(T|_)$ represent the reading word of the cells which have only a barred entry, i.e., when $S = \emptyset$.
- The multiset with no barred entries do not contribute to the reading word. The reading word is the concatenation of all the reading words for all the multisets.

Example:

 $read(T|_{-}) = \overline{12},$ $read(T|_1) = 3212$, $read(T|_{1^2}) = \overline{11}$ $read(T|_2) = \overline{21},$ $read(T|_{12}) = \overline{31}.$

T has reading word

 $read(T|_{1})read(T|_{1})read(T|_{1})read(T|_{1})read(T|_{2})read(T|_{1}) = \overline{12}.\overline{3212}.\overline{11}.\overline{21}.\overline{31}$

 \diamond For any tableaux T, let read(T) be the word of entries in the tableau from bottom row to top row

 $\overline{3}1$

Theorem: Let λ and γ be partitions and α any composition,

$$h_{\alpha_1}h_{\alpha_2}\cdots h_{\alpha_{\ell(\alpha)}}\tilde{s}_{\lambda} = \sum_{\gamma} d^{\gamma}_{\alpha,\lambda}\tilde{s}_{\gamma},$$

The coefficient of \tilde{s}_4 in h_2h **Example:**

The rule for \tilde{s}_{γ} in $h_{\alpha_1}h_{\alpha_2}\cdots h_{\alpha_{\ell(\alpha)}}\tilde{s}_{\lambda}$

The coefficient $d_{\alpha,\lambda}^{\gamma}$ is equal to the number of $T \in MCT_{\gamma}(\lambda, \alpha)$ such that T is a lattice tableaux.

$$h_1 \tilde{s}_{22}$$
 is equal to 8.

Theorem: Let λ and γ be partitions and α any composition, $\tilde{h}_{\alpha_1}\tilde{h}_{\alpha_2}\cdots\tilde{h}_{\alpha_{\ell(\alpha)}}\tilde{s}_{\lambda} =$

The same coefficient in \tilde{h}_2 Example:

The rule for \tilde{s}_{γ} in $\tilde{h}_{\alpha_1} \tilde{h}_{\alpha_2} \cdots \tilde{h}_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}$

$$= \sum_{\gamma} m^{\gamma}_{\alpha,\lambda} \tilde{s}_{\gamma},$$

The coefficient $m_{\alpha,\lambda}^{\gamma}$ is equal to the number of $T \in MCT_{\gamma}(\lambda, \alpha)$ such that T is a lattice tableaux, and such that the entries of the tableaux are sets (no repeated entries).

$$_2 ilde{h}_1 ilde{s}_{22}$$
 is equal to 7

Theorem: Let λ , μ and γ be partitions

 $\tilde{h}_{\mu}\tilde{s}_{\lambda} = \sum a_{\mu,\lambda}^{\gamma}\tilde{s}_{\gamma},$

barred entry).

Example The coefficient of \tilde{s}_4 in $\tilde{h}_{21}\tilde{s}_{22}$ is equal to 6 since the tableaux described by the theorem are

The rule for $h_{\mu}\tilde{s}_{\lambda}$

The coefficient $a_{\mu,\lambda}^{\gamma}$ is equal to the number of $T \in MTC_{\gamma}(\lambda,\mu)$ such that T is a lattice tableaux and whose entries are sets with at most one non-barred entry (and at most one

Theorem: Let λ and γ be partitions and α any composition,

$$\widetilde{S}_{\alpha_1}\widetilde{S}_{\alpha_2}\cdots\widetilde{S}_{\alpha_{\ell(\alpha)}}\widetilde{S}_{\lambda}$$

The coefficient $r_{\alpha\lambda}^{\gamma}$ is equal to the number of $T \in MCT_{\gamma}(\lambda, \alpha)$ such that T is a lattice tableaux, the entries of the tableaux are sets (no repeated entries) and only labels of sets of size greater than 1 are allowed in the first row.

Example: The same coefficient in $\tilde{s}_2 \tilde{s}_1 \tilde{s}_{22}$ is equal to 5

1	$\overline{1}1$	$\overline{2}1$	$\overline{2}2$	1	1	$\overline{2}1$	2]	1	1	1	$\overline{2}1$		1	1	1	$\overline{2}2$		1	1	$\overline{2}1$	$\overline{2}12$
								$\overline{2}1$					$\overline{2}2$					$\overline{2}1$				

The rule for \tilde{s}_{γ} in $\tilde{s}_{\alpha_1} \tilde{s}_{\alpha_2} \cdots \tilde{s}_{\alpha_{\ell(\alpha)}} \tilde{s}_{\lambda}$

$$=\sum r^{\gamma}_{\alpha,\lambda}\tilde{s}_{\gamma},$$

Final Remarks

• We want $\tilde{s}_{\mu}\tilde{s}_{\lambda}$, how close are we ?

- The products presented here have applications to construction of Bratteli diagrams of towers of algebras.
- Repeated products occur in Quantum entanglement.

Cristian Lenart (University at Albany) Antun Milas (University at Albany) Karin Reinhold (University at Albany) Lauren Rose (Bard College) Changlong Zhong (University at Albany)

- Seth Chaiken (webmaster) (University at Albany)
- Laura Colmenarejo (North Carolina State University)