# Castelnuovo-Mumford regularity of ladder determinantal ideals via Grothendieck polynomials 

Colleen Robichaux UCLA

joint work with Jenna Rajchgot and Anna Weigandt NEWAC50AWM
April 28, 2023

## Kazhdan-Lusztig varieties of Woo-Yong '06

We can identify $\mathcal{F} I_{n}(\mathbb{C})$ with $G L_{n}(\mathbb{C}) / B$, where $B \subset G L_{n}(\mathbb{C})$ is the Borel subgroup.

B acts on $\mathcal{F} I_{n}(\mathbb{C})$ with finitely many orbits $X_{w}^{\circ}$ called Schubert cells. The Schubert varieties $X_{w}$ are closures of these orbits.

Of particular interest is the Kazhdan-Lusztig variety

$$
\mathcal{N}_{v, w}=X_{w} \cap \Omega_{v}^{\circ}
$$

where $\Omega_{v}^{\circ}$ is the opposite Schubert cell.

## Kazhdan-Lusztig varieties

Kazhdan-Lusztig variety $\mathcal{N}_{v, w}$ has defining ideal

$$
I_{v, w}=\left\langle r_{w}(i, j)+1 \text { minors of } \mathbf{z}_{i \times j}(v)\right\rangle .
$$

Example: $w=4132, v=4231$


Matrix Schubert varieties and determinantal varieties are all examples of KL varieties.

## Minimal free resolution

Consider the coordinate ring $S / I$. The minimal free resolution

$$
0 \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{l, j}} \rightarrow \cdots \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{0, j}} \rightarrow S / I \rightarrow 0
$$

The K-polynomial of $S / I$

$$
\mathcal{K}(S / I ; \mathbf{t}):=\sum_{j \in \mathbb{Z}, i \geq 0}(-1)^{i} \beta_{i, j} t^{j}
$$

The Castelnuovo-Mumford regularity of $S / I$

$$
\operatorname{reg}(S / I):=\max \left\{j-i \mid \beta_{i, j} \neq 0\right\}
$$

Proposition
For Cohen-Macaulay S/I

$$
\operatorname{reg}(S / I)=\operatorname{deg} \mathcal{K}(S / I ; \mathbf{t})-\operatorname{codim}_{S} I .
$$

## Matrix Schubert varieties

Matrix Schubert varieties $\bar{X}_{w}$ are special cases of $\mathcal{N}_{v, w^{\prime}}$.
Combining results of Fulton '92 and Knutson-Miller '05,

## Theorem

$$
\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)\right)-\ell(w)
$$

where $\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)$ is the Grothendieck polynomial and $\ell(w)$ is the Coxeter length of $w$.

## Problem

Give an easily computable formula for $\operatorname{deg}\left(\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)\right)$, where $w \in S_{n}$.

## Finding the degree of $\mathfrak{G}_{v}$ vexillary

## Theorem [Rajchgot-R.-Weigandt '23]

Suppose $v \in S_{n}$ vexillary. Then

$$
\operatorname{deg}\left(\mathfrak{G}_{v}\right)=\ell(v)+\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

## Example: $v=5713624$


gives $\operatorname{deg}\left(\mathfrak{G}_{v}\right)=\ell(v)+(3+1)=12+4=16$.
Pechenik-Speyer-Weigandt '21 give a result for general $w \in S_{n}$.

## Finding the regularity of $\bar{X}_{v}$ vexillary

## Theorem [Rajchgot-R.-Weigandt '23]

Suppose $v \in S_{n}$ vexillary. Then

$$
\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{v}\right)-\ell(v)=\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

Example: $v=5713624$

gives $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=\operatorname{deg}\left(\mathfrak{G}_{v}\right)-\ell(v)=3+1=4$.

## Application: one-sided mixed ladder determinantal ideals

Consider a matrix $X=\left(x_{i j}\right)$ of indeterminates. Let $L$ denote the submatrix of $X$ defined by choosing SE corners. $I(L)$ is the ideal generated by the NW $r_{i}$ minors of $L$. This defines the one-sided mixed ladder determinantal variety $X(L)$.


These are KL-varieties $\mathcal{N}_{u_{\rho}, w_{v}}$ for $u_{\rho}, w_{v} \in S_{n}$ Grassmannian

$$
\mathbb{C}[X(L)] \cong \mathbb{C}\left[\mathcal{N}_{u_{\rho}, w_{v}}\right] \cong \mathbb{C}\left[\bar{X}_{v}\right]
$$

Corollary [Rajchgot-R.-Weigandt '23]

$$
\operatorname{reg}(\mathbb{C}[X(L)])=\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

## One-sided ladders and lattice paths

To each one-sided ladder, we can associate families of northeast-oriented lattice paths.

The marked points on horizontal edges determine starting points of the paths and the marked points on vertical edges determine ending points of the paths.

Example: $v=5713624$ corresponds to $L$ below.


This correspondence uses the combinatorics of excited Young diagrams.

## CM-regularity of one-sided ladders and lattice paths

Following work of Krattenhaler-Prohaska '99 and Ghorpade '02 combined with Knutson-Miller Yong '09 and Matsumura '17, $\mathcal{K}(X(L) ; \mathbf{t})$ is determinantal in terms of these lattice paths.

## Theorem

For a one-sided ladder $L$

$$
\operatorname{reg}(\mathbb{C}[X(L)])=\max _{P \in N / L P(L)} \#\{\text { elbows } \boxminus \text { in } P\}
$$

Example: $P \in N / L P(L)$ with maximal number of NE elbows

gives $\operatorname{reg}(\mathbb{C}[X(L)])=4=\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)$.

## Generalization: two-sided mixed ladder determinantal ideals

Consider a matrix $X=\left(x_{i j}\right)$ of indeterminates. Let $L$ denote the submatrix of $X$ defined by choosing SE and NW corners. $I(L)$ is the ideal generated by the NW $r_{i}$ minors of $L$. This defines the two-sided mixed ladder determinantal variety $\tilde{X}(L)$.


Further, for any such variety, we can construct $u, w \in S_{n}$ 321-avoiding such that $\tilde{X}(L) \cong \mathcal{N}_{u, w}$. In current work, we provide an algorithm to compute $\operatorname{reg}(\mathbb{C}[\tilde{X}(L)])$.

## Conclusions

- We can express reg $\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)$ in terms of the degree of the $K$-polynomial and the codimension of $I_{w}$.
- Use that $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)=\operatorname{deg} \mathfrak{G}_{w}-\ell(w)$.
- For $v$ vexillary, we obtain an easily computable formula for $\operatorname{deg} \mathfrak{G}_{v}$, and thus for $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)$.
- By relating $\mathcal{N}_{u_{\rho}, w_{v}}$ to $\bar{X}_{v}$, we obtain formulas for regularities of one-sided ladders. We then extend this construction to compute regularities of two-sided ladders.


## Computing CM-regularity of certain KL varieties

## Theorem [Rajchgot-R.-Weigandt '22+]

For $u_{\rho}, w_{v} \in S_{n}$ Grassmannian with descent $k,\left(u_{\rho}, w_{v}\right) \mapsto v$ vexillary such that

$$
\operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u_{\rho}, w_{v}}\right]\right)=\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=\sum_{i=1}^{n} \# \operatorname{ad}\left(\left.\lambda(v)\right|_{\geq i}\right)
$$

Example: $u_{(6,6,4,4,4)}, w_{(5,4,2,1,0)} \mapsto v=5713624$

$\operatorname{gives} \operatorname{reg}\left(\mathbb{C}\left[\mathcal{N}_{u_{\rho}, w_{v}}\right]\right)=\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{v}\right]\right)=4$.

