On POSITIVITY FOR FLAG MANIFOLDS AND Hessenberg spaces

A STORY OF COMBINATORICS, ALGEBRA, AND GEOMETRY

Rebecca Goldin

George Mason University

Women in Algebra and Combinatorics

Enumerative Geometry

Given two lines in \mathbb{R}^{2}, how many times do they intersect?
Answer: 0,1 or ∞.
Given 2 circles in the \mathbb{R}^{2}, how many common tangents do they have?
Answer: 0, 1, 2, 3, 4 or ∞.

What about generically?

Enumerative Geometry

Given two lines in \mathbb{R}^{2}, how many times do they intersect?
Answer: 0,1 or ∞.
Given 2 circles in the \mathbb{R}^{2}, how many common tangents do they have?
Answer: 0, 1, 2, 3, 4 or ∞.

What about generically?

A question posed by Schubert

Given four (red) lines, how many (blue) lines intersect all 4 ?

A question posed by Schubert

Given four (red) lines, how many (blue) lines intersect all 4 ?

Visualizing the Four Line Problem: the First Line

Visualizing the Four Line Problem: the First Line

The lines intersecting R_{1} could intersect it at any point.

Lines Intersecting R_{1} In \mathbb{R}^{3}

The set of all lines intersecting R_{1} is 3 -dimensional.

Visualizing the Four Line Problem: the First

 and SECond Lines

The set of (blue) lines intersecting both R_{1} and R_{2} is two dimensional.

Visualizing the Four Line Problem: the First, Second and Third Lines

As you sweep out the possible (blue) lines intersecting these (red) lines, you obtain a quadratic surface.

Visualizing the Four Line Problem: All Four Lines

Finally put in the fourth line: it intersects the quadratic surfaces in two points. Each of these is a blue line intersecting all four red lines.

Visualizing the Four Line Problem: All Four Lines

Moving the first line we drew down to intersect all four lines.

Visualizing the Four Line Problem

Modern Language

- Work in projective space because we want to count parallel lines as intersecting at infinity;
- Increase the dimension and talk about 2-dimensional planes through 0 rather than affine lines;
- Work over \mathbb{C} because it is algebraically closed
- Rather than lines in \mathbb{R}^{3}, we consider planes through 0 in \mathbb{C}^{4}.

DEFINITION

The Grassmannian of 2 planes on \mathbb{C}^{4} is denoted $\operatorname{Gr}(2,4)$ and is given as a set by $\left\{V_{2} \subset \mathbb{C}^{4}\right\}$, where V_{2} is a 2-dimensional subspace of \mathbb{C}^{4}.

The Grassmannian $\operatorname{Gr}(k, n)$

DEFINITION
 The Grassmannian of k planes on \mathbb{C}^{n} is denoted $\operatorname{Gr}(k, n)$ and is given as a set by $\left\{V_{k} \subset \mathbb{C}^{n}\right\}$, where V_{k} is a k-dimensional subspace of \mathbb{C}^{n}.

> The space of (all possible) blue lines through R_{1} forms a three-dimensional subvariety X_{1} of $\operatorname{Gr}(2,4)$. Similarly, the space of lines through each of R_{2}, R_{3} and R_{4} form three-dimensional subvarieties X_{2}, X_{3}, X_{4}, respectively.
> The only blue lines that intersect R_{1}, R_{2}, R_{3} and R_{4} are in the intersection

So the original question we posed was really about the number of points in this intersection.
Can we find formulas for the number of intersections for questions like these?

The Grassmannian $\operatorname{Gr}(k, n)$

DEFINITION

The Grassmannian of k planes on \mathbb{C}^{n} is denoted $\operatorname{Gr}(k, n)$ and is given as a set by $\left\{V_{k} \subset \mathbb{C}^{n}\right\}$, where V_{k} is a k-dimensional subspace of \mathbb{C}^{n}.

The space of (all possible) blue lines through R_{1} forms a three-dimensional subvariety X_{1} of $\operatorname{Gr}(2,4)$. Similarly, the space of lines through each of R_{2}, R_{3} and R_{4} form three-dimensional subvarieties X_{2}, X_{3}, X_{4}, respectively.
The only blue lines that intersect R_{1}, R_{2}, R_{3} and R_{4} are in the intersection

So the original question we posed was really about the number of points in this intersection Can we find formulas for the number of intersections for questions like these?

The Grassmannian $\operatorname{Gr}(k, n)$

Definition

The Grassmannian of k planes on \mathbb{C}^{n} is denoted $\operatorname{Gr}(k, n)$ and is given as a set by $\left\{V_{k} \subset \mathbb{C}^{n}\right\}$, where V_{k} is a k-dimensional subspace of \mathbb{C}^{n}.

The space of (all possible) blue lines through R_{1} forms a three-dimensional subvariety X_{1} of $\operatorname{Gr}(2,4)$. Similarly, the space of lines through each of R_{2}, R_{3} and R_{4} form three-dimensional subvarieties X_{2}, X_{3}, X_{4}, respectively.
The only blue lines that intersect R_{1}, R_{2}, R_{3} and R_{4} are in the intersection

$$
X_{1} \cap X_{2} \cap X_{3} \cap X_{4} .
$$

So the original question we posed was really about the number of points in this intersection.
Can we find formulas for the number of intersections for questions like these?

Hilbert's 15th Problem

"To establish rigorously and with an exact determination of the limits of their validity those geometrical numbers which Schubert especially has determined on the basis of the so-called principle of special position, or conservation of number, by means of the enumerative calculus developed by him." - Bulletin of the AMS, 1900

The search for positivity and nonnegative formulas over the past 150 years inspired work in many diverse fields within mathematics: combinatorics, singular homology, cohomology, Chow cohomology, equivariant cohomology, K-theory, quantum cohomology, intersection theory, and representation theory.

What is Positivity?

Multiple meanings, depending on the community involved.
A "positive" answer to a (combinatorial, geometric, algebraic) question is:Existence of a non-negative answer:Finding objects to count, where the number of objects answer theFinding a bijection from your set to another set, whose cardinality isConverting a geometric problem into an algebraic one, and
introducing a notion of algebraic positivity;Finding a combinatorial formula for certain polynomials (or other
algebraic objects), whose coefficients are positive (or nonnegative).

What is Positivity?

Multiple meanings, depending on the community involved.
A "positive" answer to a (combinatorial, geometric, algebraic) question is:
(1) Existence of a positive answer;
(2) Existence of a non-negative answer;
(3) Existence of a combinatorial formula for the answer;
(9) Finding objects to count, where the number of objects answer the question;
(3) Finding a bijection from your set to another set, whose cardinality is known;
(6) Converting a geometric problem into an algebraic one, and introducing a notion of algebraic positivity;

- Finding a combinatorial formula for certain polynomials (or other algebraic objects), whose coefficients are positive (or nonnegative).

Flag varieties

$G I(n, \mathbb{C}) / B, B$ upper triangular matrices:
Identify with set $\left\{V_{0}\right\}$ of nested vector spaces:

$$
\left\{\{0\} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n}=\mathbb{C}^{n}\right\}
$$

$$
\operatorname{dim}\left(V_{i}\right)=i .
$$

G complex semi-simple Lie group, with Lie algebra \mathfrak{g}
B choice of Borel, with Lie algebra \mathfrak{b}, and B^{-}opposite Borel
$T=B \cap B^{-}$a maximal torus, with Lie algebra t
G / B the flag variety.

The Flag Variety

$G /(n, \mathbb{C}) / B, B$ upper triangular
Represent a flag

$$
\begin{aligned}
& \text { matrices } \\
& V_{0}=\left(\{0\} \subset v_{1} \subset v_{2} \subset \cdots \subset v_{n}=\mathbb{C}^{n}\right) \quad\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
v_{1} & v_{2} & \ldots & v_{n} \\
\mid & \mid & \ldots & \mid
\end{array}\right)
\end{aligned}
$$

where $\left\langle v_{1}\right\rangle=V_{1}$, second column v_{2} with $\left\langle v_{1}, v_{2}\right\rangle=V_{2}$, etc.
For every $w \in S_{n}$, there is a Schubert cell BwB/B and Schubert variety $\overline{B w B / B}$.
S_{n} indexes coordinate flags: Given a basis e_{1}, \ldots, e_{n}, consider flags

$$
\left\langle e_{w(1)}\right\rangle \subseteq\left\langle e_{w(1)}, e_{w(2)}\right\rangle \subseteq \cdots \subseteq \mathbb{C}^{n}
$$

for $w \in S_{n}$

Schubert varieties

$W=N(T) / T$ the Weyl group. (or $W=S_{n}$, the permutation group)
If w is a represented by a permutation matrix $\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$, then
$B w B / B$ consists of matrices you can obtain by sweeping rows upward and then clearing out entries to the right of the 1 's.

$$
\left(\begin{array}{cccc}
\star & 1 & \star & \star \\
\star & 0 & 1 & \star \\
\star & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{llll}
\star & 1 & 0 & 0 \\
\star & 0 & 1 & 0 \\
\star & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$X_{v}=\overline{B v B / B}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.

Positivity for the Cohomology of the Flag Variety

$X_{v}=\overline{\overline{B v B / B}}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.
$X^{v}=\overline{B^{-} v B / B}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.

- $\left\{\left[X_{v}\right]: v \in W\right\}$ form a basis for the homology of G / B.
- $\left\{\left[X^{v}\right]: v \in W\right\}$ form a basis for the homology of G / B.
- There is a basis $\left\{\sigma_{w}: w \in W\right\}$ for $H^{*}(G / B)$ as a free module module over \mathbb{Z}
- $\left\{\sigma_{w}: w \in W\right\}$ dual basis to $\left\{\left[X_{v}\right]: v \in W\right\}$ under taking the cap product and integrating (Poincaré duality for bases on G / B)
- The structure constants $C_{u v}^{W} \in \mathbb{Z}$ defined by
have nonnegative coefficients.

Positivity for the Cohomology of the Flag Variety

$X_{v}=\overline{B v B / B}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.
$X^{v}=\overline{B^{-} v B / B}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.

- $\left\{\left[X_{v}\right]: v \in W\right\}$ form a basis for the homology of G / B.
- $\left\{\left[X^{\nu}\right]: v \in W\right\}$ form a basis for the homology of G / B.
- There is a basis $\left\{\sigma_{w}: w \in W\right\}$ for $H^{*}(G / B)$ as a free module module over \mathbb{Z}
- $\left\{\sigma_{w}: w \in W\right\}$ dual basis to $\left\{\left[X_{v}\right]: v \in W\right\}$ under taking the cap product and integrating (Poincaré duality for bases on G / B)
- The structure constants $c_{u v}^{w} \in \mathbb{Z}$ defined by

$$
\sigma_{u} \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w}
$$

have nonnegative coefficients.

Why is Schubert calculus positive?

$$
\sigma_{u} \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w} .
$$

- Multiplication in cohomology corresponds to intersecting the varieties they represent, placed in general position
Poincaré duality tells us that we may pick off each coefficient by pairing with the right homology class, which is another intersection
- The complex group G acts on G / B transitively, so we can make the intersection transverse.
- The group action preserves the complex structure, so all intersection points contribute a positive number.

$$
c_{u v}^{w}=\#\left(g X^{u} \cap X^{v} \cap X_{w}\right)
$$

Equivariant Cohomology of the Flag Variety

$X_{v}=\overline{B v B / B}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.
$X^{v}=\overline{B^{-} v B / B}$ Schubert varieties, closure of B-orbits in G / B, for $v \in W$.
Δ set of simple positive roots Φ^{+}set of positive simple roots for G

- H_{T}^{*} is a contravariant functor, like H^{*}, but it takes into account the T action.
- $H_{T}^{*}(p t)=S\left(\mathfrak{t}^{*}\right)$ is naturally given by polynomials in Φ^{+}.
- $\left\{\left[X_{v}\right]: v \in W\right\}$ and $\left\{\left[X^{v}\right]: v \in W\right\}$ form two bases for the equivariant homology of G / B.
- $H_{T}^{*}(G / B)$ is a free module module over $H_{T}^{*}(p t)$
- There is a basis $\left\{\sigma_{w}: w \in W\right\}$ for $H_{T}^{*}(G / B)$ that is the Poincaré dual class to $\left\{\left[X_{v}\right]: v \in W\right\}$ under a nondegenerate pairing.
- Each element σ_{w} is Poincaré dual to $\left[X^{\vee}\right]$ in topological sense.
- The structure constants $c_{u v}^{w} \in H_{T}^{*}(p t)$ defined by

$$
\sigma_{u} \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w}
$$

are polynomials in $\alpha \in \Phi^{+}$with nonnegative coefficients (Graham, '99)

Positivity for equivariant cohomology

The structure constants $c_{u v}^{w} \in H_{T}^{*}(p t)$ defined by

$$
\sigma_{u} \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w}
$$

are polynomials in $\alpha \in \Phi^{+}$with nonnegative coefficients. Does this generalize to other subvarieties of G / B ? (and what combinatorial formulas can be found for the coefficients?)

Hessenberg Varieties

A family of subschemes of G / B

$G=G I(n, \mathbb{C})$ (or any reductive Lie group) \mathfrak{g} its Lie algebra
B upper triangular matrices (or any Borel subgroup) \mathfrak{b} its Lie algebra T invertible diagonal matrices (or the maximal torus of B)

Additional data:

$$
\begin{aligned}
& x \in \mathfrak{g} \\
& H \subseteq \mathfrak{g} \mathfrak{b} \text {-invariant subspace containing } \mathfrak{b}
\end{aligned}
$$

DEFINITION

The Hessenberg variety associated to X, H is

$$
\mathcal{H e s s}(x, H)=\left\{g B \in G / B: \operatorname{Ad}\left(g^{-1}\right) x \in H\right\}
$$

$\mathcal{H e s s}(\mathrm{x}, H)=\left\{g B \in G / B: A d\left(g^{-1}\right) \mathrm{x} \in H\right\}$.

Many manifestations: the flag variety itself, Springer fibers, the Peterson variety, the toric variety associated to Weyl chambers
Many fields: combinatorics, geometric representation theory, hyperplane arrangements, algebraic geometry, quantum cohomology
Many open questions: Which properties of G / B are preserved by which Hessenberg varieties (specifying H, x)?

- Group action properties
- Cohomological properties
- Geometric properties
$\mathcal{H e s s}(\mathrm{x}, H)=\left\{g B \in G / B: \operatorname{Ad}\left(g^{-1}\right) \mathrm{x} \in H\right\}$. A REPHRASING FOR TYPE A

Let $h:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ with $h(i) \geq i$ and $h(i) \leq h(i+1)$

$$
H \leftrightarrow h
$$

$h=(2,2,4,4,5,6) \quad h_{0}=(2,3,4,5,6,6) \quad h_{\mathfrak{b}}=(1,2,3,4,5,6)$

For type $G=G I(n, \mathbb{C})$: Identify G / B with $\left\{V_{\bullet}: V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n}=\mathbb{C}^{n}, \operatorname{dim}_{\mathbb{C}} V_{i}=i\right\}$. For $\mathrm{x} \in \mathfrak{g}$,

$$
\mathcal{H e s s}(\mathrm{x}, h)=\left\{V_{\bullet}: x V_{i} \subseteq V_{h(i)}\right\}
$$

Some examples: permutohedron, Peterson

$$
\begin{aligned}
& H_{0}=\mathfrak{b} \oplus \bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{-\alpha} \\
& h_{0}=(2,3,4, \ldots, n-1, n, n)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \quad \mathcal{H e s s}\left(\mathrm{n}, H_{0}\right) \text { is a Peterson variety } \\
& \mathrm{s}=\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \cdots & 0 \\
0 & a_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n}
\end{array}\right] \quad \mathcal{H e s s}\left(\mathrm{s}, H_{0}\right) \text { is a permutohedral variety } \\
& \\
& a_{i} \neq a_{j} \text { for } i \neq j
\end{aligned}
$$

The Peterson variety

The Peterson variety Pet is

$$
\text { Pet }=\left\{V_{0}: X V_{i} \subset V_{i+1}\right\},
$$

where X is $\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0\end{array}\right)$
Pet has a \mathbb{C}^{*} action, via diagonal matrices with entries $\left(t^{n}, t^{n-1}, \ldots, t\right)$. For $n=3$, flags in Pet may be represented by elements:

The Peterson variety

The Peterson variety Pet is

$$
\text { Pet }=\left\{V_{\mathbf{0}}: X V_{i} \subset V_{i+1}\right\},
$$

where X is $\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & & \cdots & \cdots & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0\end{array}\right)$
Pet has a \mathbb{C}^{*} action, via diagonal matrices with entries $\left(t^{n}, t^{n-1}, \ldots, t\right)$. For $n=3$, flags in Pet may be represented by elements:

$$
\text { Pet }=\left(\begin{array}{lll}
a & b & 1 \\
b & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lll}
c & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cup\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & d & 1 \\
0 & 1 & 0
\end{array}\right) \cup\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Positivity in Schubert calculus and Peterson

 Schubert calculus$S=\operatorname{Diag}\left(t^{n}, t^{n-1}, \ldots, t\right)$ acts on Pet.
Its equivariant cohomology ring $H_{s}^{*}(P e t)$ has a linear basis

$$
\left\{p_{A}: A \subset\{1, \ldots, n-1\}\right\}
$$

indexed by subsets of $\{1, \ldots, n-1\}$ obtained by certain subvarieties.
In cohomology, expand the product in terms of this basis to get coefficients $b_{A B}^{C} \in \mathbb{Q}[t]$ defined by the relationship:

The basis is positive for geometric reasons.

The coefficients $b_{A B}^{C}$ are monomials with positive, integral coefficients.

Positivity in Schubert calculus and Peterson

 Schubert calculus$S=\operatorname{Diag}\left(t^{n}, t^{n-1}, \ldots, t\right)$ acts on Pet.
Its equivariant cohomology ring $H_{S}^{*}(P e t)$ has a linear basis

$$
\left\{p_{A}: A \subset\{1, \ldots, n-1\}\right\}
$$

indexed by subsets of $\{1, \ldots, n-1\}$ obtained by certain subvarieties. In cohomology, expand the product in terms of this basis to get coefficients $b_{A B}^{C} \in \mathbb{Q}[t]$ defined by the relationship:

$$
p_{A} p_{B}=\sum_{C} b_{A B}^{C} p_{C}
$$

The basis is positive for geometric reasons.
\square

Positivity in Schubert calculus and Peterson

Schubert calculus

$S=\operatorname{Diag}\left(t^{n}, t^{n-1}, \ldots, t\right)$ acts on Pet.
Its equivariant cohomology ring $H_{S}^{*}(P e t)$ has a linear basis

$$
\left\{p_{A}: A \subset\{1, \ldots, n-1\}\right\}
$$

indexed by subsets of $\{1, \ldots, n-1\}$ obtained by certain subvarieties. In cohomology, expand the product in terms of this basis to get coefficients $b_{A B}^{C} \in \mathbb{Q}[t]$ defined by the relationship:

$$
p_{A} p_{B}=\sum_{C} b_{A B}^{C} p_{C} .
$$

The basis is positive for geometric reasons.
THEOREM (G.-MiHALCEA-SiNGH)
The coefficients $b_{A B}^{C}$ are monomials with positive, integral coefficients.

A positive formula for Peterson Schubert CALCULUS

$$
p_{A} p_{B}=\sum_{C} b_{A B}^{C} p_{C} .
$$

For any set $A \subseteq\{1, \ldots, n-1\}$, let

$$
\begin{aligned}
\mathcal{H}_{A} & =\text { Largest element of } A \\
\mathcal{T}_{A} & =\text { Smallest element of } A
\end{aligned}
$$

A positive formula for Peterson Schubert CALCULUS

$$
p_{A} p_{B}=\sum_{C} b_{A B}^{C} p_{C} .
$$

For any set $A \subseteq\{1, \ldots, n-1\}$, let

$$
\begin{aligned}
\mathcal{H}_{A} & =\text { Largest element of } A \\
\mathcal{T}_{A} & =\text { Smallest element of } A
\end{aligned}
$$

Theorem (G.-Gorbutt)

Let $A, B, C \subseteq\{1, \ldots, n-1\}$ be nonempty consecutive subsets. If $C \supseteq A \cup B$ and $|C| \leq|A|+|B|$, then

$$
b_{A, B}^{C}=d!\binom{\mathcal{H}_{A}-\mathcal{T}_{B}+1}{d, \mathcal{T}_{A}-\mathcal{T}_{C}, \mathcal{H}_{C}-\mathcal{H}_{B}}\binom{\mathcal{H}_{B}-\mathcal{T}_{A}+1}{d, \mathcal{T}_{B}-\mathcal{T}_{C}, \mathcal{H}_{C}-\mathcal{H}_{A}} t^{d}
$$

for $d:=|A|+|B|-|C|$.

A STRANGE BINOMIAL IDENTITY

Let $m, n, w, x, y, z \in \mathbb{Z}$ with $w+x=y+z$.
THEOREM (G.-GORBUTT)

$$
\begin{aligned}
& \binom{w+m}{w}\binom{y+m}{x}\binom{w+n}{y}\binom{z+n}{z} \\
& =\sum_{\substack{0 \leq i \leq m \\
0 \leq j \leq n}}\binom{m+j}{i, j, m-i, x-i-j, z-x+j, y-x+i}\binom{w+i+n}{w+i+j}
\end{aligned}
$$

Proving it required a very fancy bijection of sets.

What about other Hessenberg varieties?

- They are paved by affines
- There is a \mathbb{C}^{*} action with isolated fixed points
- In some cases, Hessenberg varieties are known to be GKM (G-Tymoczko)
- In some cases, the Betti numbers of Hessenberg varieties are known to be palindromic
- In some cases, Hessenberg varieties satisfy hard Lefschetz
- In some cases, the cohomology ring is known (with algebraic rather than linear generators).
- In some cases, Hessenberg varieties themselves are known, and satisfy positivity. (G.-Precup)

CASE OF THE MINIMAL NILPOTENT ORBIT

$$
\mathcal{H e s s}(\mathrm{x}, h)=\left\{V_{\mathbf{0}}: x V_{i} \subseteq V_{h(i)}\right\} .
$$

Let

$$
\mathrm{n}=E^{1 n}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Suppose that H is indecomposable.

- As a variety, $\mathcal{H e s s}(\mathrm{n}, h)$ is a union of Schubert varieties (Abe-Crooks)
- As a scheme, $\mathcal{H e s s}(\mathrm{n}, h)$ is reduced (G.-Precup)

Matrix Hessenberg varieties

TYPE A ONLY
Let $\mathbf{z}:=\left\{z_{i j} \mid(i, j) \in[n] \times[n]\right\}$ for each $j \in[n]$. Write matrix $Z=\left(z_{i j}\right)$
using columns: $\left[\begin{array}{cccc}\mid & \mid & & \mid \\ v_{1} & v_{2} & \cdots & v_{n} \\ \mid & \mid & & \mid\end{array}\right]$ with $v_{j}:=\sum_{i=1}^{n} z_{i j} e_{i} \in M_{n, 1}(\mathbb{C}[\mathbf{z}])$.
Given x and h. Consider matrices in $M_{n}(\mathbb{C})$ satisfying $\times V_{i} \subseteq V_{h(i)}$ where V_{i} denotes the first i columns of the matrix.
Let $\mathcal{I}_{x, h, i}$ denote the equations obtained from the rank condition

Let $\mathcal{I}_{x, h}=\sum_{i} \mathcal{I}_{x, h, i}$.

DEFINITION

$\overline{\mathcal{H e s s}}(\mathrm{x}, h):=\operatorname{Spec}\left(\mathbb{C}[\mathbf{z}] / \mathcal{I}_{\mathrm{x}, h}\right)$ is the matrix Hessenberg scheme.

On the corners of the Hessenberg space

$\mathcal{I}_{x, h}=\sum_{i} \mathcal{I}_{x, h, i}$
$\mathcal{I}_{x, h, i}$ equations obtained from the rank condition

It is sufficient to sum over i indexing the corners of the Hessenberg space:

$$
\left.\begin{aligned}
& h=(2,2,2,5,5,6) \\
& \qquad \begin{array}{|l|l|l|l|l|l|}
\hline & \mathcal{I}_{x, h}=\mathcal{I}_{X, h, 1^{*}}
\end{array}+\mathcal{I}_{X, h, 4^{*}}+\mathcal{I}_{X, h, 6^{*}} \\
& \hline \star \\
& \hline
\end{aligned} \right\rvert\, \begin{array}{llllll|}
& * & & & \\
\hline & & & & & \\
\hline & & & \star & * & \\
\hline & & & & & \star * \\
\hline
\end{array}
$$

Minimal Hessenberg varieties: nilpotent case

 $\overline{\mathcal{H} \operatorname{ess}}(\mathrm{x}, h)=\operatorname{Spec}\left(\mathbb{C}[\mathbf{z}] / \mathcal{I}_{x, h}\right)$.$$
\mathrm{x}=\mathrm{n}=E^{1 n}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

THEOREM (ABE-CROOKS)

For $\mathrm{n}=E^{1 n}$, the Hessenberg variety in G / B is a union of Schubert varieties. Furthermore, the variety $\mathcal{H} \operatorname{ess}(\mathrm{n}, h)$ is the union of \mathcal{X}_{w} for w satisfying $w^{-1} E^{1 n} \in \phi_{H}^{+}$. If h is indecomposable, it is reduced.

THEOREM (G.-PRECUP)

For $\mathrm{n}=E^{1 n}$, the matrix Hessenberg scheme $\overline{\mathcal{H e s s}}(\mathrm{n}, h)$ is a union of matrix Schubert varieties. Furthermore... It is reduced if and only if h is indecomposable.

$\overline{\mathcal{H e s s}}(\mathrm{n}, h)=\operatorname{Spec}\left(\mathbb{C}[\mathbf{z}] / \mathcal{I}_{\mathrm{n}, h}\right)$

Theorem (G.-Precup)

For $\mathrm{n}=E^{1 n}$, the matrix Hessenberg scheme $\overline{\mathcal{H} e s s}(\mathrm{n}, h)$ is a union of matrix Schubert varieties. Furthermore,

$$
\begin{aligned}
\overline{\mathcal{H e s s}}(\mathrm{n}, h) & =\bigcup_{i \in \mathcal{C}(h)} \mathcal{X}_{w_{0} u_{i} v_{n(1)}} \text { with } \\
& u_{i}:=s_{1} s_{2} \cdots s_{i-1} \text { for all } i>1 \text { and } u_{1}:=e \\
& v_{i}:
\end{aligned}=s_{n-1} s_{n-2} \cdots s_{i} \text { for all } i<n \text { and } v_{n}:=e . . ~ \$
$$

It is reduced if and only if h is indecomposable.
Furthermore,

$$
\mathcal{I}_{\mathrm{n}, h}=\sum_{i \in \mathcal{C}(h)} \mathcal{I}_{\mathrm{n}, h, i}
$$

$$
\left.\mathcal{I}_{n, h, i}=\left\langle z_{n 1}, \ldots, z_{n i}\right\rangle \cdot\left\langle p_{J}: J \subseteq\{2,3, \ldots, n\},\right| J \mid=h(i)\right\}
$$

p_{J} are $h(i) \times h(i)$ minors of $\left(z_{i j}\right)$ with rows specified by J, columns $1, \ldots, h(i)$.

An example: minimal nilpotent Hessenberg

VARIETIES

Consider $h=(2,2,4,4)$. Observe that h is decomposable.

Two corners: only one contributes to the defining ideal.
$\left.\mathcal{I}_{n, h}=\mathcal{I}_{n, h, 2}=\left\langle z_{41}, z_{42}\right\rangle \cdot\left\langle p_{J}\right| J \subset\{2,3,4\},|J|=2\right\rangle$.
The associated primes of $\mathcal{I}_{n, h}$ (calculated with Macaulay2) are

$$
\begin{aligned}
& P_{1}=\left\langle z_{41}, z_{42}\right\rangle, \\
& P_{2}=\left\langle z_{31} z_{42}-z_{32} z_{41}, z_{21} z_{42}-z_{22} z_{41}, z_{21} z_{32}-z_{22} z_{31}\right\rangle, \\
& P_{3}=\left\langle z_{41}, z_{42}, z_{21} z_{32}-z_{22} z_{31}\right\rangle .
\end{aligned}
$$

$P_{1} \subsetneq P_{3}$, so that P_{3} corresponds to embedded points: $V\left(P_{3}\right)=\mathcal{X}_{\text {[3142] }}$
$V\left(P_{1}\right)=\mathcal{X}_{[3241]}$, and $V\left(P_{2}\right)=\mathcal{X}_{\text {[4132] }}$.
The Hessenberg's underlying variety is $\mathcal{X}_{[3241]} \cup \mathcal{X}_{\text {[4132] }}$, with an embedded Schubert variety $\mathcal{X}_{[3142]}$ (contained in both $\mathcal{X}_{[4132]}$ and $\mathcal{X}_{[3241]}$)

Minimal Hessenberg varieties: Semisimple case

 $\overline{\mathcal{H} \operatorname{ess}}(x, h)=\operatorname{Spec}\left(\mathbb{C}[z] / \mathcal{I}_{x, h}\right)$. For $a_{1}, a_{2} \in \mathbb{C}, a_{1} \neq a_{2}$, let$$
s=\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{2}
\end{array}\right]
$$

THEOREM (G.-PRECUP)

For s semisimple, the matrix Hessenberg scheme $\overline{\mathcal{H e s s}}(\mathrm{s}, h)$ is reduced for all h. It is a union of matrix Richardson varieties,

$$
\overline{\mathcal{H e s s}}(\mathrm{s}, h)=\operatorname{Spec}\left(\mathbb{C}[\mathbf{z}] / \mathcal{I}_{\mathrm{s}, h}\right)=\bigcup_{i \in \mathcal{C}(h)}\left(\mathcal{X}^{u_{i}} \cap \mathcal{X}_{w_{0} v_{h(i)}}\right)
$$

where $\mathcal{C}(h)$ are corners of the box diagram for h and

$$
\begin{aligned}
& u_{i}:=s_{1} s_{2} \cdots s_{i-1} \text { for all } i>1 \text { and } u_{1}:=e \\
& v_{i}:=s_{n-1} s_{n-2} \cdots s_{i} \text { for all } i<n \text { and } v_{n}:=e
\end{aligned}
$$

BACK TO POSITIVITY!

- Positivity occurs for the cohomology of the Hessenberg varieties over the minimal semisimple and nilpotent orbits; what about equivariantly?
- What can be said about the K-theory of Hessenberg vareities?
- How do we more generally find geometric representatives for cohomology classes of $\mathcal{H e s s}(\mathrm{n}, h)$?
- More generally, what are the relationships of these geometric representatives to those in $\mathcal{H e s s}(\mathrm{s}, h)$?

BACK TO POSITIVITY!

- Positivity occurs for the cohomology of the Hessenberg varieties over the minimal semisimple and nilpotent orbits; what about equivariantly?
- What can be said about the K-theory of Hessenberg vareities?
- How do we more generally find geometric representatives for cohomology classes of $\mathcal{H e s s}(\mathrm{n}, h)$?
- More generally, what are the relationships of these geometric representatives to those in $\mathcal{H e s s}(\mathrm{s}, h)$?

THANK YOU!

