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ENUMERATIVE GEOMETRY

Given two lines in R2, how many times do they intersect?
Answer: 0, 1 or ∞.
Given 2 circles in the R2, how many common tangents do they have?
Answer: 0, 1, 2, 3, 4 or ∞.

What about generically?
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A QUESTION POSED BY SCHUBERT
Given four (red) lines, how many (blue) lines intersect all 4?
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VISUALIZING THE FOUR LINE PROBLEM: THE FIRST

LINE

R1
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VISUALIZING THE FOUR LINE PROBLEM: THE FIRST

LINE

The lines intersecting R1 could intersect it at any point.
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LINES INTERSECTING R1 IN R3

The set of all lines intersecting R1 is 3-dimensional.
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VISUALIZING THE FOUR LINE PROBLEM: THE FIRST

AND SECOND LINES

R
1

2R

The set of (blue) lines intersecting both R1 and R2 is two dimensional.
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VISUALIZING THE FOUR LINE PROBLEM: THE FIRST,
SECOND AND THIRD LINES

3

Some freedom left!

R1

R2

R

As you sweep out the possible (blue) lines intersecting these (red) lines,
you obtain a quadratic surface.
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VISUALIZING THE FOUR LINE PROBLEM: ALL FOUR

LINES
Finally put in the fourth line: it intersects the quadratic surfaces in two
points. Each of these is a blue line intersecting all four red lines.
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VISUALIZING THE FOUR LINE PROBLEM: ALL FOUR

LINES

Moving the first line we drew down to intersect all four lines.
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VISUALIZING THE FOUR LINE PROBLEM
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MODERN LANGUAGE

Work in projective space because we want to count parallel lines as
intersecting at infinity;

Increase the dimension and talk about 2-dimensional planes through
0 rather than affine lines;

Work over C because it is algebraically closed

Rather than lines in R3, we consider planes through 0 in C4.

DEFINITION

The Grassmannian of 2 planes on C4 is denoted Gr(2, 4) and is given as
a set by {V2 ⊂ C4}, where V2 is a 2-dimensional subspace of C4.
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THE GRASSMANNIAN Gr(k , n)

DEFINITION

The Grassmannian of k planes on Cn is denoted Gr(k , n) and is given as
a set by {Vk ⊂ Cn}, where Vk is a k -dimensional subspace of Cn.

The space of (all possible) blue lines through R1 forms a
three-dimensional subvariety X1 of Gr(2, 4). Similarly, the space of lines
through each of R2, R3 and R4 form three-dimensional subvarieties
X2,X3,X4 , respectively.
The only blue lines that intersect R1,R2,R3 and R4 are in the intersection

X1 ∩ X2 ∩ X3 ∩ X4.

So the original question we posed was really about the number of points
in this intersection.
Can we find formulas for the number of intersections for questions like
these?
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HILBERT’S 15TH PROBLEM

“To establish rigorously and with an exact determination of the limits of
their validity those geometrical numbers which Schubert especially has
determined on the basis of the so-called principle of special position, or
conservation of number, by means of the enumerative calculus developed
by him.” – Bulletin of the AMS, 1900

The search for positivity and nonnegative formulas over the past 150 years
inspired work in many diverse fields within mathematics: combinatorics,
singular homology, cohomology, Chow cohomology, equivariant
cohomology, K -theory, quantum cohomology, intersection theory, and
representation theory.
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WHAT IS POSITIVITY?

Multiple meanings, depending on the community involved.
A “positive” answer to a (combinatorial, geometric, algebraic) question is:

1 Existence of a positive answer;
2 Existence of a non-negative answer;
3 Existence of a combinatorial formula for the answer;
4 Finding objects to count, where the number of objects answer the

question;
5 Finding a bijection from your set to another set, whose cardinality is

known;
6 Converting a geometric problem into an algebraic one, and

introducing a notion of algebraic positivity;
7 Finding a combinatorial formula for certain polynomials (or other

algebraic objects), whose coefficients are positive (or nonnegative).
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FLAG VARIETIES
Gl(n,C)/B, B upper triangular
matrices:
Identify with set {V•} of nested
vector spaces:

{{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn}

dim(Vi) = i.

G complex semi-simple Lie group,
with Lie algebra g

B choice of Borel, with Lie algebra b,
and B− opposite Borel

T = B ∩ B− a maximal torus, with
Lie algebra t

G/B the flag variety.
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THE FLAG VARIETY

Gl(n,C)/B, B upper triangular
matrices

V• = ({0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn)

Sn indexes coordinate flags: Given a
basis e1, . . . , en, consider flags

⟨ew(1)⟩ ⊆ ⟨ew(1), ew(2)⟩ ⊆ · · · ⊆ Cn

for w ∈ Sn

Represent a flag | | . . . |
v1 v2 . . . vn

| | . . . |


where ⟨v1⟩ = V1, second column v2

with ⟨v1, v2⟩ = V2, etc.
For every w ∈ Sn, there is a
Schubert cell BwB/B and Schubert
variety BwB/B.
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SCHUBERT VARIETIES

W = N(T )/T the Weyl group. (or W = Sn, the permutation group)

If w is a represented by a permutation matrix


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

, then

BwB/B consists of matrices you can obtain by sweeping rows upward and
then clearing out entries to the right of the 1’s.

⋆ 1 ⋆ ⋆
⋆ 0 1 ⋆
⋆ 0 0 1
1 0 0 0

 ∼


⋆ 1 0 0
⋆ 0 1 0
⋆ 0 0 1
1 0 0 0



Xv = BvB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .
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Positivity for the Cohomology of the Flag Variety

Xv = BvB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .
X v = B−vB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .

{[Xv ] : v ∈ W} form a basis for the homology of G/B.

{[X v ] : v ∈ W} form a basis for the homology of G/B.

There is a basis {σw : w ∈ W} for H∗(G/B) as a free module
module over Z
{σw : w ∈ W} dual basis to {[Xv ] : v ∈ W} under taking the cap
product and integrating (Poincaré duality for bases on G/B)

The structure constants cw
uv ∈ Z defined by

σuσv =
∑

w

cw
uvσw

have nonnegative coefficients.

(GMU) APRIL 28, 2023 19 / 39



Positivity for the Cohomology of the Flag Variety

Xv = BvB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .
X v = B−vB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .

{[Xv ] : v ∈ W} form a basis for the homology of G/B.

{[X v ] : v ∈ W} form a basis for the homology of G/B.

There is a basis {σw : w ∈ W} for H∗(G/B) as a free module
module over Z
{σw : w ∈ W} dual basis to {[Xv ] : v ∈ W} under taking the cap
product and integrating (Poincaré duality for bases on G/B)
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WHY IS SCHUBERT CALCULUS POSITIVE?

σuσv =
∑

w

cw
uvσw .

Multiplication in cohomology corresponds to intersecting the varieties
they represent, placed in general position
Poincaré duality tells us that we may pick off each coefficient by
pairing with the right homology class, which is another intersection

The complex group G acts on G/B transitively, so we can make the
intersection transverse.

The group action preserves the complex structure, so all intersection
points contribute a positive number.

cw
uv = #(gX u ∩ X v ∩ Xw)
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Equivariant Cohomology of the Flag Variety
Xv = BvB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .
X v = B−vB/B Schubert varieties, closure of B-orbits in G/B, for v ∈ W .
∆ set of simple positive roots Φ+ set of positive simple roots for G

H∗
T is a contravariant functor, like H∗, but it takes into account the T

action.
H∗

T (pt) = S(t∗) is naturally given by polynomials in Φ+.
{[Xv ] : v ∈ W} and {[X v ] : v ∈ W} form two bases for the
equivariant homology of G/B.
H∗

T (G/B) is a free module module over H∗
T (pt)

There is a basis {σw : w ∈ W} for H∗
T (G/B) that is the Poincaré

dual class to {[Xv ] : v ∈ W} under a nondegenerate pairing.
Each element σw is Poincaré dual to [X v ] in topological sense.
The structure constants cw

uv ∈ H∗
T (pt) defined by

σuσv =
∑

w

cw
uvσw

are polynomials in α ∈ Φ+ with nonnegative coefficients (Graham,
’99)
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POSITIVITY FOR EQUIVARIANT COHOMOLOGY

The structure constants cw
uv ∈ H∗

T (pt) defined by

σuσv =
∑

w

cw
uvσw

are polynomials in α ∈ Φ+ with nonnegative coefficients.
Does this generalize to other subvarieties of G/B? (and what
combinatorial formulas can be found for the coefficients?)
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HESSENBERG VARIETIES

A FAMILY OF SUBSCHEMES OF G/B

G = Gl(n,C) (or any reductive Lie group) g its Lie algebra
B upper triangular matrices (or any Borel subgroup) b its Lie algebra
T invertible diagonal matrices (or the maximal torus of B)

Additional data:

x ∈ g

H ⊆ g b-invariant subspace containing b

DEFINITION

The Hessenberg variety associated to X ,H is

Hess(x,H) = {gB ∈ G/B : Ad(g−1)x ∈ H}.
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Hess(x,H) = {gB ∈ G/B : Ad(g−1)x ∈ H}.

Many manifestations: the flag variety itself, Springer fibers, the Peterson
variety, the toric variety associated to Weyl chambers
Many fields: combinatorics, geometric representation theory, hyperplane
arrangements, algebraic geometry, quantum cohomology
Many open questions: Which properties of G/B are preserved by which
Hessenberg varieties (specifying H, x)?

Group action properties

Cohomological properties

Geometric properties
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Hess(x,H) = {gB ∈ G/B : Ad(g−1)x ∈ H}.
A REPHRASING FOR TYPE A
Let h : {1, . . . , n} → {1, . . . , n} with h(i) ≥ i and h(i) ≤ h(i + 1)

H ↔ h

h = (2, 2, 4, 4, 5, 6) h0 = (2, 3, 4, 5, 6, 6) hb = (1, 2, 3, 4, 5, 6)

For type G = Gl(n,C): Identify G/B with
{V• : V0 ⊆ V1 ⊆ · · · ⊆ Vn = Cn, dimC Vi = i}. For x ∈ g,

Hess(x, h) = {V• : xVi ⊆ Vh(i)}.
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SOME EXAMPLES: PERMUTOHEDRON, PETERSON

H0 = b⊕
⊕

α∈∆+ g−α

h0 = (2, 3, 4, . . . , n − 1, n, n)

n =



0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 1
0 0 0 · · · 0

 Hess(n,H0) is a Peterson variety

s =


a1 0 0 · · · 0
0 a2 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · an

 Hess(s,H0) is a permutohedral variety

ai ̸= aj for i ̸= j
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THE PETERSON VARIETY

The Peterson variety Pet is

Pet = {V• : XVi ⊂ Vi+1},

where X is


0 1 0 . . . 0
0 0 1 . . . 0

. . .

. . .
0 0 0 . . . 1
0 0 0 . . . 0


Pet has a C∗ action, via diagonal matrices with entries (tn, tn−1, . . . , t).
For n = 3, flags in Pet may be represented by elements:

Pet =

a b 1
b 1 0
1 0 0

 ∪

c 1 0
1 0 0
0 0 0

 ∪

1 0 0
0 d 1
0 1 0

 ∪

1 0 0
0 1 0
0 0 1
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POSITIVITY IN SCHUBERT CALCULUS AND PETERSON

SCHUBERT CALCULUS
S = Diag(tn, tn−1, . . . , t) acts on Pet .
Its equivariant cohomology ring H∗

S(Pet) has a linear basis

{pA : A ⊂ {1, . . . , n − 1}}

indexed by subsets of {1, . . . , n − 1} obtained by certain subvarieties.
In cohomology, expand the product in terms of this basis to get coefficients
bC

AB ∈ Q[t] defined by the relationship:

pApB =
∑

C

bC
ABpC .

The basis is positive for geometric reasons.

THEOREM (G.-MIHALCEA-SINGH)

The coefficients bC
AB are monomials with positive, integral coefficients.
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A POSITIVE FORMULA FOR PETERSON SCHUBERT

CALCULUS

pApB =
∑

C

bC
ABpC .

For any set A ⊆ {1, . . . , n − 1}, let

HA = Largest element of A

TA = Smallest element of A

THEOREM (G.-GORBUTT)
Let A,B,C ⊆ {1, . . . , n − 1} be nonempty consecutive subsets. If
C ⊇ A ∪ B and |C| ≤ |A|+ |B|, then

bC
A,B = d!

(
HA − TB + 1

d , TA − TC , HC −HB

)(
HB − TA + 1

d , TB − TC , HC −HA

)
td

for d := |A|+ |B| − |C|.
(GMU) APRIL 28, 2023 29 / 39



A POSITIVE FORMULA FOR PETERSON SCHUBERT

CALCULUS

pApB =
∑

C

bC
ABpC .

For any set A ⊆ {1, . . . , n − 1}, let

HA = Largest element of A

TA = Smallest element of A

THEOREM (G.-GORBUTT)
Let A,B,C ⊆ {1, . . . , n − 1} be nonempty consecutive subsets. If
C ⊇ A ∪ B and |C| ≤ |A|+ |B|, then

bC
A,B = d!

(
HA − TB + 1

d , TA − TC , HC −HB

)(
HB − TA + 1

d , TB − TC , HC −HA

)
td

for d := |A|+ |B| − |C|.
(GMU) APRIL 28, 2023 29 / 39



A STRANGE BINOMIAL IDENTITY

Let m, n,w , x , y , z ∈ Z with w + x = y + z.

THEOREM (G.-GORBUTT)

(
w + m

w

)(
y + m

x

)(
w + n

y

)(
z + n

z

)
=

∑
0≤i≤m
0≤j≤n

(
w + m + j

i, j, m − i, x − i − j, z − x + j, y − x + i

)(
w + i + n
w + i + j

)
.

Proving it required a very fancy bijection of sets.
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WHAT ABOUT OTHER HESSENBERG VARIETIES?

They are paved by affines

There is a C∗ action with isolated fixed points

In some cases, Hessenberg varieties are known to be GKM
(G-Tymoczko)

In some cases, the Betti numbers of Hessenberg varieties are known
to be palindromic

In some cases, Hessenberg varieties satisfy hard Lefschetz

In some cases, the cohomology ring is known (with algebraic rather
than linear generators).

In some cases, Hessenberg varieties themselves are known, and
satisfy positivity. (G.-Precup)
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CASE OF THE MINIMAL NILPOTENT ORBIT

Hess(x, h) = {V• : xVi ⊆ Vh(i)}.

Let

n = E1n =


0 0 . . . 0 1
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0


Suppose that H is indecomposable.

As a variety, Hess(n, h) is a union of Schubert varieties (Abe-Crooks)

As a scheme, Hess(n, h) is reduced (G.-Precup)
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MATRIX HESSENBERG VARIETIES
TYPE A ONLY

Let z := {zij | (i, j) ∈ [n]× [n]} for each j ∈ [n]. Write matrix Z = (zij)

using columns:

 | | |
v1 v2 · · · vn

| | |

 with vj :=
∑n

i=1 zijei ∈ Mn,1(C[z]).

Given x and h. Consider matrices in Mn(C) satisfying xVi ⊆ Vh(i) where Vi

denotes the first i columns of the matrix.
Let Ix,h,i denote the equations obtained from the rank condition

rank

 | | | | | |
xv1 xv2 · · · xvi v1 v2 · · · vh(i)
| | | | | |

 ≤ h(i).

Let Ix,h =
∑

i Ix ,h,i .

DEFINITION

Hess(x, h) := Spec(C[z]/Ix,h) is the matrix Hessenberg scheme.
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ON THE CORNERS OF THE HESSENBERG SPACE

Ix,h =
∑

i Ix ,h,i

Ix,h,i equations obtained from the rank condition

rank

 | | | | | |
xv1 xv2 · · · xvi v1 v2 · · · vh(i)
| | | | | |

 ≤ h(i).

It is sufficient to sum over i indexing the corners of the Hessenberg space:

h = (2, 2, 2, 5, 5, 6) Ix,h = Ix ,h,1∗ + Ix ,h,4∗ + Ix ,h,6∗

⋆ ∗

⋆ ∗
⋆∗
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MINIMAL HESSENBERG VARIETIES: NILPOTENT CASE

Hess(x, h) = Spec(C[z]/Ix,h).

x = n = E1n =


0 0 . . . 0 1
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0



THEOREM (ABE-CROOKS)
For n = E1n, the Hessenberg variety in G/B is a union of Schubert varieties.
Furthermore, the variety Hess(n, h) is the union of Xw for w satisfying
w−1E1n ∈ ϕ+

H . If h is indecomposable, it is reduced.

THEOREM (G.-PRECUP)
For n = E1n, the matrix Hessenberg scheme Hess(n, h) is a union of matrix
Schubert varieties. Furthermore... It is reduced if and only if h is indecomposable.
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Hess(n, h) = Spec(C[z]/In,h)

THEOREM (G.-PRECUP)

For n = E1n, the matrix Hessenberg scheme Hess(n, h) is a union of
matrix Schubert varieties. Furthermore,

Hess(n, h) =
⋃

i∈C(h)

Xw0ui vh(i) ,with

ui := s1s2 · · · si−1 for all i > 1 and u1 := e

vi := sn−1sn−2 · · · si for all i < n and vn := e.

It is reduced if and only if h is indecomposable.

Furthermore,
In,h =

∑
i∈C(h)

In,h,i

In,h,i = ⟨zn1, . . . , zni⟩ · ⟨pJ : J ⊆ {2, 3, . . . , n}, |J| = h(i)}
pJ are h(i) × h(i) minors of (zij ) with rows specified by J, columns 1, . . . , h(i).
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AN EXAMPLE: MINIMAL NILPOTENT HESSENBERG

VARIETIES
Consider h = (2, 2, 4, 4). Observe that h is decomposable.

⋆ ∗

⋆ ∗

Two corners: only one contributes to the defining ideal.

In,h = In,h,2 = ⟨z41, z42⟩ · ⟨pJ | J ⊂ {2, 3, 4}, |J| = 2⟩ .
The associated primes of In,h (calculated with Macaulay2) are

P1 = ⟨z41, z42⟩,
P2 = ⟨z31z42 − z32z41, z21z42 − z22z41, z21z32 − z22z31⟩,
P3 = ⟨z41, z42, z21z32 − z22z31⟩.

P1 ⊊ P3, so that P3 corresponds to embedded points: V (P3) = X[3142]
V (P1) = X[3241], and V (P2) = X[4132].
The Hessenberg’s underlying variety is X[3241] ∪ X[4132], with an
embedded Schubert variety X[3142] (contained in both X[4132] and X[3241])
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MINIMAL HESSENBERG VARIETIES: SEMISIMPLE CASE
Hess(x, h) = Spec(C[z]/Ix,h). For a1, a2 ∈ C, a1 ̸= a2, let

s =


a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . a2

 .

THEOREM (G.-PRECUP)
For s semisimple, the matrix Hessenberg scheme Hess(s, h) is reduced for all h.
It is a union of matrix Richardson varieties,

Hess(s, h) = Spec(C[z]/Is,h) =
⋃

i∈C(h)

(
X ui ∩ Xw0vh(i)

)
.

where C(h) are corners of the box diagram for h and

ui := s1s2 · · · si−1 for all i > 1 and u1 := e

vi := sn−1sn−2 · · · si for all i < n and vn := e.
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BACK TO POSITIVITY!

Positivity occurs for the cohomology of the Hessenberg varieties over
the minimal semisimple and nilpotent orbits; what about
equivariantly?

What can be said about the K -theory of Hessenberg vareities?

How do we more generally find geometric representatives for
cohomology classes of Hess(n, h)?

More generally, what are the relationships of these geometric
representatives to those in Hess(s, h)?

THANK YOU!
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