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A GENERALIZATION OF SUBNET WITH SOME RESULTING IMPROVEMENTS
IN MOORE-SMITH CONVERGENCE THEORY

George Benkart and Douglas W. Townsend
Ohio State University

Section 1. Introduction,

This paper is intended to improve the theory of Moore-Smith
Convergence by generalizing the definition of subnet. We begin by
examining some short-comings of the present Moore-Smith theory of con-
vergence. Given a net S, it is possible to construct in a natural way
a filter dependent on S. From this filter a second net T may be constructed.
While S may be shown to be a subnet of T, T in general is not a subnet
of S, even though S and T generate the same filter (See example 3).
Also, given nets S and T defined on the same directed set, T may equal
S on all but one element of the directed set and still not be a subnet
of S (See example 1). These limitations in the theory illustrate the
need for a new definition of subnet.

The new definition will generalize the classical definition of
subnet, It will have the advantage of preserving the classical theorems,
while eliminating the above disadvantages. It will also yield the
following powerful result:

Given nets S and T, and filters ¢ constructed from them,

®sE *p
this result will provide an easy method for finding a common supernet for
nets S and T,

S and °T
implies T is a subnet of S under the new definition. In addition,

Section 2, Definition and generalization of subnet,
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Jordan Algebras

A Jordan algebra (in char # 2) is a nonassociative unital algebra J
satisfying
rey=yer
wle(yer)=(1"ey)ex
for all z,y € J.

Every unital associative algebra A admits a Jordan structure AT,
with product a @ b = $(ab+ ba). Jordan subalgebras of A are
called special Jordan algebras. Almost all simple Jordan algebras
are special.



Tits-Kantor-Koecher Construction

TKK functor : Jordan algs — Lie algs
J — (sl(2) @ J) @ {J, J},

where {J,J} == (J®J)/(a®b+b®a, a®bc+b® ca+ c® ab),
with Lie bracket

[*®a,y®b =[z,y] ®ab+ (z|y){a, b}
{a,b},z@c=2® %(b, c,a)
[{a,b}, {c,d}] = 3{(b, ¢, a),d} + 3{c, (b,d, a)},

Every Aj-graded Lie algebra is a central quotient of some TKK(.J).
Jacobson used variants of this idea to construct Eg, E7, Eg.



Crossing the Jordan

Jordan definition

A subspace B of a special Jordan algebra J C A™ is an inner ideal
if zax € B for all a € J and x € B. For example, any 1-sided ideal
of A is an inner ideal of AT.

Benkart thesis

A subspace B of a Lie algebra L is an inner ideal if [B,[B, L]] C B.

For example, Span {( 8 é >} C sl(2) is an inner ideal.




Benkart, expanding on thesis

Benkart '77
Several original ideas:

1. Classification of minimal inner ideals in Lie algebras in terms of
ad-nilpotent elements.

2. Use of ad-nilpotent elements to find Jordan algs and their
modules inside inner artinian Lie algs.

3. First steps toward classification of fin dim simple Lie algs in
char > 5.
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Root systems

g fin dim simple Lie alg over C (e.g. g = sl(n))
h C g Cartan subalg (e.g. h=diagonal matrices in sl(n))

Then g = b & € ga, with
aEA
9o ={z €9g:[h,z] =ah)x forall h € h}
A={aeh*\0:g,#0} the root system of (g,h)
dim h = the rank of g.

{Iso classes of f.d. simple Lie algs/C} & {irred root systems}

Classification of irred root systems: A, B),, Cy,, Dy, + 5 exceptionals



Kostrikin-Shafarevich Conjecture

K-S Conjecture '66

Restricted fin-dim simple Lie algs / alg closed field F of char p > 3
are classical type or Cartan type.

Classical type: mod p reduction of A,, By, C,, D,,, exceptionals

Cartan type: W (m) = Der(Flz1,...,zm]/ (], ..., 2h)) and its
simple subalgs S(m), H(m), K(m)

Block-Wilson '84
K-S is true in char > 7. J




Classification in characteristic p

Benkart-Osborne '84

K-S holds for unrestricted rank 1 Lie algs in char > 7 if we
enlarge the truncated current alg using more divided powers

Premet-Strade-Wilson '04

For alg closed F of char > 3, the f.d. simple Lie algs are those of
classical, Cartan, or Melikyan type (only in char 5).

Missing piece: Recognition Thm

Classification of associated gradeds based on filtrations on simple
Lie algs. Kac conjectured and gave partial proof (1970); complete
proof written down by Benkart-Gregory-Premet '09.




Weight Lifting

Definition

Let h be a Cartan subalgebra of a fin dim simple Lie alg g over C.
A g-module M is a (g, h)-weight module if M = 69/\65)* M), and
My={m e M : h.m = XA(h)m for all h € b} is fin dim for all \.

Fernando thesis '83, TAMS '90

All simple weight modules M are obtained by parabolic induction:
M is the (unique) simple quotient of U/(g) @) IV for some
parabolic subalg p 2 h and simple weight p-module N. Can
assume N is cuspidal, i.e. dim N is constant for all A € supp V.




Classification of Weight Modules

Benkart-Britten-Lemire '97

Infinite-dimensional cuspidal modules occur only for types A and C.
When Ny <1 for all A\, these modules come from modules for
Weyl algebras.

Mathieu '00
Classification of simple weight modules for fin dim reductive Lie
algebras by classifying cuspidals in types A and C.
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Classification of root-graded Lie algebras

L Lie alg / C containing f.d. simple Lie alg g, Cartan h C g, and
A =A(g,h)
Then L is called a A-graded Lie algebra if

1. L = GaueAu{O} L, where L, is h-weight space;
2. Lo =3 yealLy L_y]-

If L is A-graded, it decomposes into fin dim simple g-submodules:
L=(goA) e (VeB)aeD,

where g is adjoint module, V' is little adjoint module (hi wt is
highest short root), D is a trivial module.

The possibilities for A, B, D and multiplication between
components generalize TKK to other nonassoc algs.

Proof. Type-by-type: Berman-Moody '92, Benkart-Zelmanov '96,
Neher '96, Allison-Benkart-Gao '02, Benkart-Smirnov '03.
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Classical Schur-Weyl Duality

V=Cr
GL,(C) ~ V®" diagonal action
VO ~ S, permutation of tensor factors

The Sp-action generates End¢y, (¢)(V®");
the GL,(C)-action generates Endg, (V®").

Commuting actions decompose V®" into sums of simples for S,
and GL,(C).

11/12



Generalized Schur-Weyl Duals

GL,.(C) «— C[S,] Symmetric gp alg (~1900)
O,(C) <— By(r) Brauer algebra (~1930)

- <— P,(r) Partition algebra (~1990)

Georgia+Chakrabarti, Halverson, Leduc, Lee, Stroomer '94

Determined the Schur-Weyl dual of GL,.(C) ~ V®™ @ (V*)®n,
now called the walled Brauer algebra.

Numerous further variations/generalizations by Georgia, together
with many other younger collaborators, notably with Tom
Halverson.
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We will miss you Georgia!



