Poset Structure

Kohnert diagrams & their not well-behaved poset structure

Laura Colmenarejo (NCSU)

Women in Algebra and Combinatorics Northeast Conference Celebrating the AWM: 50 Years and Counting

(w/ Felix Hutchins, Nick Mayers, and Etienne Phillips)

Enumerative Results

Poset Structure

MAIN INGREDIENTS

Diagrams

Enumerative Results

Poset Structure

MAIN INGREDIENTS

Kohnert Moves

Enumerative Results

Poset Structure

MAIN INGREDIENTS

Kohnert Moves

Enumerative Results

Poset Structure

Main ingredients

Set of Kohnert diagrams of $D: \mathbb{KD}(D)$

Kohnert diagrams & their poset structure

April 29, 2023 - AWM23 Albany

Enumerative Results

Poset Structure

Kohnert Polynomials

$$wt(D) = x_1 x_2^2 x_3$$

Enumerative Results

Poset Structure

Kohnert Polynomials

$$wt(D) = x_1 x_2^2 x_3$$

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

Poset Structure

WHERE ARE THEY COMING FROM?

Poset Structure

ENUMERATIVE RESULTS

Question: Can we find a formula for $|\mathbb{KD}(D)|$?

First observations:

- Finding a formula for all *D* seems impossible.
- Even figuring out the *parameters* is complicated.
- First semester plan: Let's play around and see what we find.
 - Felix had never done research before and has a very interesting background.
 - Etienne had done research before and was in my combinatorics grad course.
 - Fun for both of them because they ran a lot of experiments with a program we wrote.
 - They also enjoyed finding out some of the proofs, and struggled with others.
 - We got many ideas that we would like to explore.

Enumerative Results

Poset Structure

Row of Boxes

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

Poset Structure

Row of Boxes

Enumerative Results

Poset Structure

COLUMN OF BOXES

Enumerative Results

Poset Structure

COLUMN OF BOXES

Enumerative Results

Poset Structure

COLUMN OF BOXES

Poset Structure

BINOMIAL RESULTS

• Let D be a diagram with n boxes in total, all in row r. Then,

$$|\mathbb{KD}(D)| = \binom{n+r-1}{n}$$

• Let *D* be a diagram with only boxes in one column from row r_1 to row r_2 , with $r_1 < r_2$. Then,

$$|\mathbb{KD}(D)| = \binom{r_2}{r_2 - r_1 + 1}.$$

Enumerative Results

Poset Structure

DIAGONAL

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

DIAGONAL

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

Enumerative Results

Poset Structure

ANTI-DIAGONAL

L. Colmenarejo

Kohnert diagrams & their poset structure

April 29, 2023 – AWM23 Albany

Enumerative Results

Poset Structure

ANTI-DIAGONAL

L. Colmenarejo

Kohnert diagrams & their poset structure

April 29, 2023 – AWM23 Albany

Enumerative Results

Poset Structure

ANTI-DIAGONAL

Kohnert diagrams & their poset structure A

Poset Structure

RESULTS

• Let *D* be a diagonal diagram with *n* boxes. Then

 $|\mathbb{KD}(D)| = n!.$

• Let D be an anti-diagonal diagram with n boxes. Then

$$|\mathbb{KD}(D)| = \frac{1}{n+1} \binom{2n}{n} = C_n.$$

Enumerative Results

Poset Structure

ROW WITH APPENDAGE

$$|\mathbb{KD}(D)| = \sum_{j=2}^{r+2} \binom{r+i-j+1}{i-1} \binom{n-i+j-1}{j-1} (j-1)$$

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

Poset Structure

OTHER EXPERIMENTS

2n+1 boxes in total

 $|\mathbb{KD}(D)| = 2^n n!$

 $1,\ 2,\ 6,\ 36,\ 373,\ 6389,\ldots \quad 1,\ 2,\ 6,\ 41,\ 373,\ 8236,\ldots$

Enumerative Results

Poset Structure

Kohnert Poset $(\mathbb{KD}(D), \prec)$

 $D_2 \ll D_1$, for D_1 , $D_2 \in KD(D)$, if D_2 can be formed from D_1 by applying Kohnert moves

Poset Structure

KOHNERT POSET $(\mathbb{KD}(D), \prec)$ $D_2 \prec D_1$, for $D_1, D_2 \in \mathbb{KD}(D)$, if D_2 can be formed from D_1 by applying Kohnert moves

Poset Structure

Poset results

Question: When does the poset $\mathbb{KD}(D)$ have a unique minimal element?

 $|Min(\mathbb{D}(a))| = 1$ at least in the following cases:

- When D is a diagram for which all boxes are contained in columns c₁ < c₂ < ··· < c_n and b₁ ≥ b₂ ≥ ··· ≥ b_n, where b_i denotes the number of boxes in column c_i.
- When D is a diagram which has at most one box in each column.
- When *D* is a diagram associated to a composition *a*.
- ▶ In some cases when the diagram *D* has boxes in only two rows.

Poset Structure

TWO ROW CASE

• Let *D* be a diagram with all boxes in rows r_1 and r_2 , where $r_1 < r_2$. Then

$$|Min(D)| = \begin{cases} |Col^{\leftarrow}(D; r_1)| + 1, & r_1 > 1; \\ 1, & r_1 = 1. \end{cases}$$

Poset Structure

CHECKERED

For the checkered diagrams,

$$|Min(Ch^{1}(n))| = |Min(Ch^{2}(n))| = \begin{cases} 1, & n \text{ even}; \\ \binom{n-1}{(n-1)/2}, & n \text{ odd}. \end{cases}$$

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

 \times

Х

Poset Structure

RANKED POSETS

Question: When is the poset corresponding to *D* ranked?

×	×	×
Х	Х	×

Poset Structure

RANKED POSETS

Question: When is the poset corresponding to *D* ranked?

Poset Structure

RANKED POSETS

Question: When is the poset corresponding to *D* ranked?

Kohnert diagrams & their poset structure April

April 29, 2023 - AWM23 Albany

Poset Structure

RANKED RESULTS

- ▶ We have identified several subdiagrams for which we would get the situation above, and so P(D) is not ranked.
- Let D be a row/column diagram. Then P(D) is ranked only if
 - D has all boxes in one column or
 - all boxes except one are bottom justified in each column.
- For diagrams with at most one box per column, P(D) is always ranked.
- For the two-row case, we have characterized when the poset is ranked.
- The poset corresponding to the checkered diagrams is ranked if and only if $1 \le n < 4$.

Poset Structure

Thank you!

¡Muchas gracias!

L. Colmenarejo

Kohnert diagrams & their poset structure April 29, 2023 - AWM23 Albany

References

- S. Armon, S. Assaf, G. Bowling, and H. Ehrhard. "Kohnert's rule for flagged schur modules ." J. Algebra 617(1): 352–381, 2023.
- S. Assaf. "Demazure crystals for Kohnert polynomials." *Trans. Amer. Math. Soc.* 375(3): 2147 – 2186, 2022.
- S. Assaf and D. Searles. "Kohnert polynomials." *Experiment. Math.* 31(1): 93 – 119, 2019.
- A. Kohnert. "Weintrauben, Polynome, Tableaux." Bayreuth. Math. Schr., 38: 1 – 97, 1991. Dissertation, Universität Bayreuth, Bayreuth, 1990.

