Folded Alcove Walks and their Applications

Elizabeth Milićević Haverford College

Joint with Kaisa Taipale, Petra Schwer & Anne Thomas April 29, 2023

Women in Algebra and Combinatorics Northeast Conference Celebrating AWM: 50 Years & Counting

To study flag varieties, we very often:

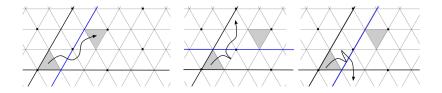
• carve them into orbits of convenient subgroups,

To study flag varieties, we very often:

- carve them into orbits of convenient subgroups, and then
- describe the structure of these orbits; e.g. how they meet.

To study flag varieties, we very often:

- carve them into orbits of convenient subgroups, and then
- describe the structure of these orbits; e.g. how they meet. *PUNCHLINE!* Such orbits are usually *folded alcove walks*.



Flag Varieties: Finite Flags

Notation:

- Fix a Borel containing a split maximal torus $G \supset B \supset T$
- The opposite Borel subgroup is B^-
- W is the finite Weyl group $N_G(T)/T$

Example $(G = GL_3)$

 ${\cal B}$ is upper-triangular matrices and ${\cal T}$ is the diagonal matrices:

$$B = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \quad \supset \quad T = \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \right\}$$
$$B^{-} = \left\{ \begin{pmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix} \right\} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in W = S_{3}$$

Elizabeth Milićević (Haverford College) Folded Alcove Walks & Applications

Flag Varieties: Finite Flags

Notation:

- G split connected reductive group over $\mathbb C$
- Fix a Borel containing a split maximal torus $G \supset B \supset T$
- The opposite Borel subgroup is B^-
- W is the finite Weyl group $N_G(T)/T$

Definition

The *flag variety* is the quotient $G(\mathbb{C})/B$.

Flag Varieties: Finite Flags

Notation:

- G split connected reductive group over $\mathbb C$
- Fix a Borel containing a split maximal torus $G \supset B \supset T$
- The opposite Borel subgroup is B^-
- W is the finite Weyl group $N_G(T)/T$

Definition

The flag variety is the quotient $G(\mathbb{C})/B$.

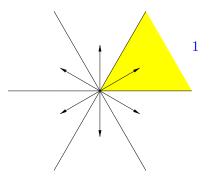
Fact (Bruhat Decomposition)

The flag variety G/B decomposes into various *Schubert cells* via

$$G(\mathbb{C}) = \bigsqcup_{u \in W} BuB = \bigsqcup_{v \in W} B^{-}vB.$$

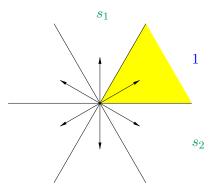
Finite Weyl Group:

For $G = SL_3$, the group $W \cong S_3$



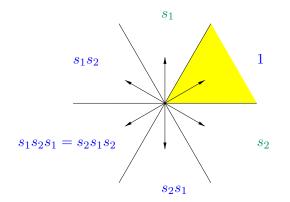
Finite Weyl Group:

For $G = SL_3$, the group $W \cong S_3$ is generated by two reflections.



Finite Weyl Group:

For $G = SL_3$, the group $W \cong S_3$ is generated by two reflections.



Affine Setting:

•
$$F = \mathbb{C}((t)) \supset \mathcal{O} = \mathbb{C}[[t]] \supset \mathcal{O}^{\times} = \mathbb{C}^{\times} + t\mathbb{C}[[t]]$$

Affine Setting:

- $F = \mathbb{C}((t)) \supset \mathcal{O} = \mathbb{C}[[t]] \supset \mathcal{O}^{\times} = \mathbb{C}^{\times} + t\mathbb{C}[[t]]$
- Iwahori subgroup I of G(F) is the preimage of $B(\mathbb{C})$ under the projection $G(\mathcal{O}) \to G(\mathbb{C})$ by $t \mapsto 0$

Affine Setting:

- $F = \mathbb{C}((t)) \supset \mathcal{O} = \mathbb{C}[[t]] \supset \mathcal{O}^{\times} = \mathbb{C}^{\times} + t\mathbb{C}[[t]]$
- Iwahori subgroup I of G(F) is the preimage of $B(\mathbb{C})$ under the projection $G(\mathcal{O}) \to G(\mathbb{C})$ by $t \mapsto 0$

Example $(G = SL_2)$

If ${\cal B}$ is upper-triangular matrices, the Iwahori subgroup equals

$$I = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}) \middle| b \in \mathcal{O}; a, d \in \mathcal{O}^{\times}; c \in t\mathcal{O} \right\}$$

Affine Setting:

- $F = \mathbb{C}((t)) \supset \mathcal{O} = \mathbb{C}[[t]] \supset \mathcal{O}^{\times} = \mathbb{C}^{\times} + t\mathbb{C}[[t]]$
- Iwahori subgroup I of G(F) is the preimage of $B(\mathbb{C})$ under the projection $G(\mathcal{O}) \to G(\mathbb{C})$ by $t \mapsto 0$

Example $(G = SL_2)$

If ${\cal B}$ is upper-triangular matrices, the Iwahori subgroup equals

$$I = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}) \middle| b \in \mathcal{O}; a, d \in \mathcal{O}^{\times}; c \in t\mathcal{O} \right\}$$

Definition

The affine flag variety is the quotient G(F)/I.

The affine flag variety is the quotient G(F)/I.

We can also study the affine flag variety by carving it up using an appropriate analog of the Bruhat decomposition.

The affine flag variety is the quotient G(F)/I.

We can also study the affine flag variety by carving it up using an appropriate analog of the Bruhat decomposition.

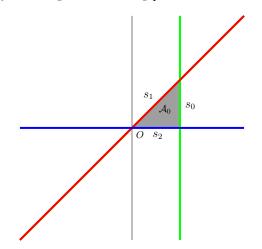
Fact (Affine Bruhat Decomposition)

G(F)/I decomposes into various affine Schubert cells

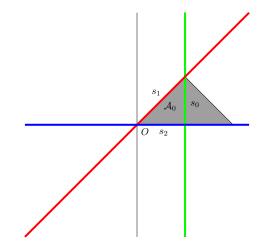
$$G(F) = \bigsqcup_{x \in \widetilde{W}} IxI = \bigsqcup_{y \in \widetilde{W}} I^- yI,$$

where \widetilde{W} is the *affine Weyl group*.

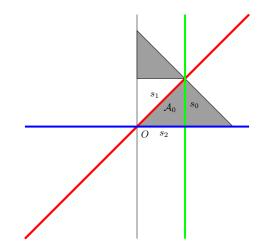
Affine Weyl Group: Let $G = Sp_4$



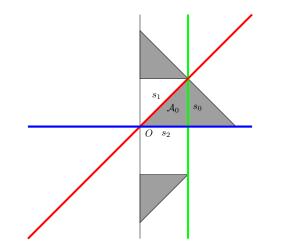
The additional generator s_0 is an affine transformation.



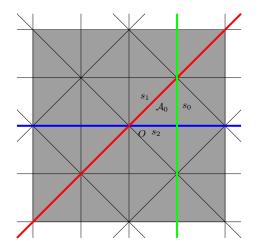
The result of applying s_0 to the base alcove $\mathcal{A}_{\circ} \longleftrightarrow 1$.



The result of applying s_1 to $s_0(\mathcal{A}_{\circ})$ is $s_1s_0(\mathcal{A}_{\circ})$.



The result of applying s_2 to $s_1s_0(\mathcal{A}_{\circ})$ is $s_2s_1s_0(\mathcal{A}_{\circ})$.



Elements of the affine Weyl group \widetilde{W} correspond to alcoves.

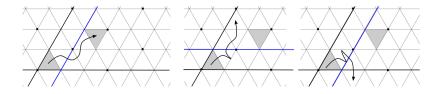
To study the affine flag variety G/I, we could use:

To study the affine flag variety G/I, we could use:

• Richardson stratification by cells $IxI \cap I^-yI$ with $x, y \in \widetilde{W}$.

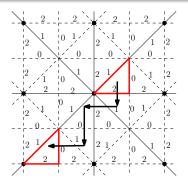
To study the affine flag variety G/I, we could use:

• Richardson stratification by cells $IxI \cap I^-yI$ with $x, y \in W$. PUNCHLINE! These orbits are labeled **folded alcove walks**.



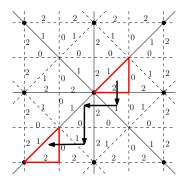
Definition

An *alcove walk* is a sequence of moves from an alcove to an adjacent alcove obtained by crossing an affine hyperplane.



An alcove walk corresponding to the word $s_2s_1s_2s_0s_1s_0$. $\{\text{alcove walks}\} \longleftrightarrow \{\text{words in } \widetilde{W}\}$

Given a minimal walk to x, labeling each crossing by a parameter $c_i \in \mathbb{C}$ gives the full *I*-orbit of the point xI in G/I.

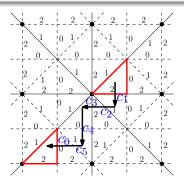


A minimal alcove walk to s_{212010} .

Given a minimal walk to x, labeling each crossing by a parameter $c_i \in \mathbb{C}$ gives the full *I*-orbit of the point xI in G/I.

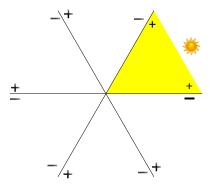
Theorem (Steinberg 1967, Parkinson-Ram-Schwer 2009)

{*labeled* alcove walks} \longleftrightarrow {*double* cosets IxI}



All points of Sp_4/I in the affine Schubert cell $Is_{212010}I$.

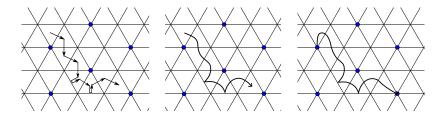
For each $x \in W$, the orientation induced by x is defined so that alcove x is on the positive side of every affine hyperplane.



The orientation induced by \mathcal{A}_{\circ} .

Orient the hyperplanes so that the identity alcove \mathcal{A}_{\circ} is on the positive side of every affine hyperplane. A fold is a *positive fold* if it occurs on the positive side of a hyperplane.

Orient the hyperplanes so that the identity alcove \mathcal{A}_{\circ} is on the positive side of every affine hyperplane. A fold is a *positive fold* if it occurs on the positive side of a hyperplane.



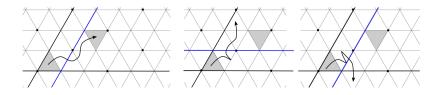
Several equivalent ways to draw a positively folded alcove walk.

Rules for creating folded alcove walks:

- 1 Can only do positive folds.
- **2** Must fold tail-to-tip.

Rules for creating folded alcove walks:

- 1 Can only do positive folds.
- **2** Must fold tail-to-tip.



For $x, y \in \widetilde{W}$, define $\mathcal{A}_{o}(x, y)$ to be the set of all labeled folded alcove walks γ such that:

For $x, y \in \widetilde{W}$, define $\mathcal{A}_{o}(x, y)$ to be the set of all labeled folded alcove walks γ such that:

• γ is obtained by folding a minimal walk from 1 to x,

For $x, y \in \widetilde{W}$, define $\mathcal{A}_{o}(x, y)$ to be the set of all labeled folded alcove walks γ such that:

- γ is obtained by folding a minimal walk from 1 to x,
- γ ends in the y alcove, and

For $x, y \in \widetilde{W}$, define $\mathcal{A}_{o}(x, y)$ to be the set of all labeled folded alcove walks γ such that:

- γ is obtained by folding a minimal walk from 1 to x,
- γ ends in the y alcove, and
- γ is positively folded with respect to the orientation induced by A_o.

Definition

For $x, y \in \widetilde{W}$, define $\mathcal{A}_{o}(x, y)$ to be the set of all labeled folded alcove walks γ such that:

- γ is obtained by folding a minimal walk from 1 to x,
- γ ends in the y alcove, and
- γ is positively folded with respect to the orientation induced by A_o.

Labeled folded alcove walks parameterize affine Schubert cells.

Theorem (M.–Taipale, arXiv:2303.12170)

 $\mathcal{A}_{\circ}(x,y) \stackrel{\sim}{\longleftrightarrow} IxI \cap I^{-}yI$

Equivariant Cohomology of Flag Varieties:

Equivariant Cohomology of Flag Varieties:

The inclusion of the T(F)-fixed points into G/I induces

$$\begin{array}{rccc} H_T^*(G/I) & \hookrightarrow & H_T^*(G/I)^T \\ [X_v] & \mapsto & \xi^v \end{array}$$

where $\xi^v : \widetilde{W} \to \mathbb{Z}[\alpha_1, \dots, \alpha_{n-1}, \delta]$ is a polynomial function.

Equivariant Cohomology of Flag Varieties:

The inclusion of the T(F)-fixed points into G/I induces

$$\begin{array}{rccc} H_T^*(G/I) & \hookrightarrow & H_T^*(G/I)^T \\ [X_v] & \mapsto & \xi^v \end{array}$$

where $\xi^v : \widetilde{W} \to \mathbb{Z}[\alpha_1, \dots, \alpha_{n-1}, \delta]$ is a polynomial function.

Theorem (Goresky-Kottwitz-MacPherson; Kostant-Kumar)

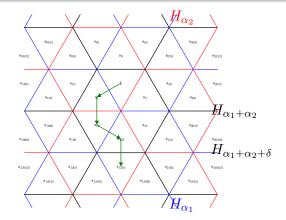
The ring structure of $H^*_T(G/I)$ is completely determined by the pointwise product of the functions ξ^v in this image.

The Philosophy

To compute the function values $\xi^v(w) \ldots$

The Philosophy

To compute the function values $\xi^{v}(w) \dots PUNCHLINE!$ We can use **folded alcove walks**.



Fix any walk to $w = s_1 s_2 s_1 s_0$, and note the hyperplanes crossed.

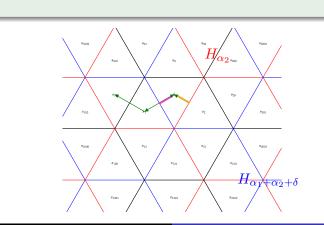
Example

Fix $v = s_1 s_0$. Can form $v \le w = s_1 s_2 s_1 s_0$ via two subwords:

Example

2

Fix $v = s_1 s_0$. Can form $v \le w = s_1 s_2 s_1 s_0$ via two subwords:



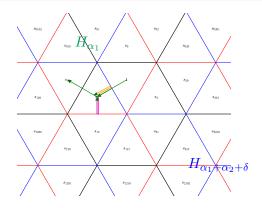
Elizabeth Milićević (Haverford College) Folded Alcove Walks & Applications

Example

Fix $v = s_1 s_0$. Can form $v \le w = s_1 s_2 s_1 s_0$ via two subwords:

 $0 \ v = \widehat{s_1} \widehat{s_2} s_1 s_0 \leftrightarrow (\text{fold, fold, step, step}) \leftrightarrow \alpha_2 (\alpha_1 + \alpha_2 + \delta)$

 $v = s_1 \hat{s_2} \hat{s_1} s_0 \leftrightarrow (\text{step, fold, fold, step}) \leftrightarrow \alpha_1 (\alpha_1 + \alpha_2 + \delta)$



Theorem (M.–Taipale, arXiv:2303.12170)

Let $w, v \in \widetilde{W}$, and fix any unfolded alcove walk to w. Then

$$\xi^{v}(w) = \sum_{\substack{folded walks\\ending in v}} \left(\prod_{steps} \left(\alpha + k\delta\right)\right)$$

Theorem (M.–Taipale, arXiv:2303.12170)

Let $w, v \in \widetilde{W}$, and fix any unfolded alcove walk to w. Then

$$\xi^{v}(w) = \sum_{\substack{folded \ walks\\ ending \ in \ v}} \left(\prod_{steps} \left(\alpha + k\delta\right)\right)$$

Example

Let $w = s_1 s_2 s_1 s_0$. Can form $v = s_1 s_0 \le w$ via two subwords:

 $0 \ v = \widehat{s_1} \widehat{s_2} s_1 s_0 \leftrightarrow (\text{fold, fold, step, step}) \leftrightarrow \alpha_2(\alpha_1 + \alpha_2 + \delta)$

 $v = s_1 \hat{s_2} \hat{s_1} s_0 \leftrightarrow (\text{step, fold, fold, step}) \leftrightarrow \alpha_1 (\alpha_1 + \alpha_2 + \delta)$

Theorem (M.–Taipale, arXiv:2303.12170)

Let $w, v \in \widetilde{W}$, and fix any unfolded alcove walk to w. Then

$$\xi^{v}(w) = \sum_{\substack{folded \ walks\\ ending \ in \ v}} \left(\prod_{steps} \left(\alpha + k\delta \right) \right)$$

Example

Let $w = s_1 s_2 s_1 s_0$. Can form $v = s_1 s_0 \le w$ via two subwords:

v = ŝ₁ŝ₂s₁s₀ ↔ (fold, fold, step, step) ↔ α₂(α₁ + α₂ + δ)
v = s₁ŝ₂ŝ₁s₀ ↔ (step, fold, fold, step) ↔ α₁(α₁ + α₂ + δ)
The theorem says to sum over these two folded alcove walks:

$$\xi^{s_1 s_0}(s_1 s_2 s_1 s_0) = (\alpha_1 + \alpha_2)(\alpha_1 + \alpha_2 + \delta).$$

Kazhdan-Lusztig Polynomials:

- **1** Carry important representation theoretic information.
- **2** Are defined recursively in terms of R-polynomials.

Kazhdan-Lusztig Polynomials:

- **1** Carry important representation theoretic information.
- **2** Are defined recursively in terms of R-polynomials.

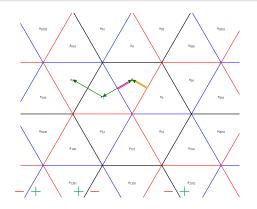
Theorem (Deodhar, M.–Schwer–Thomas) Let $v, w \in \widetilde{W}$, and fix any minimal unfolded walk to w. Then $R_{v,w} = \sum_{\substack{positively\\folded walks\\ending in v}} (q-1)^{\#folds} q^{\#positive \ crossings}$

Example

Let $w = s_1 s_2 s_1 s_0$. Can form $v = s_1 s_0 \leq w$ via two subwords:

 $\bullet v = \widehat{s_1} \widehat{s_2} s_1 s_0 \leftrightarrow (\text{fold, fold, step, step}) \leftrightarrow 2 \text{ positive folds}$

2 $v = s_1 \widehat{s_2} \widehat{s_1} s_0 \leftrightarrow (\text{step, fold, fold, step})$

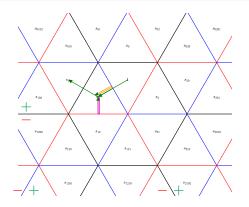


Example

Let $w = s_1 s_2 s_1 s_0$. Can form $v = s_1 s_0 \leq w$ via two subwords:

 $0 \ v = \widehat{s_1} \widehat{s_2} s_1 s_0 \leftrightarrow (\text{fold, fold, step, step}) \leftrightarrow 2 \text{ positive folds}$

2 $v = s_1 \widehat{s_2} \widehat{s_1} s_0 \leftrightarrow (\text{step, fold, fold, step}) \leftrightarrow \text{non-positive fold}$



Theorem (Deodhar, M.–Schwer–Thomas)

Let $v, w \in W$, and fix any minimal unfolded walk to w. Then

$$R_{v,w} = \sum_{\substack{\text{positively}\\folded walks\\ending in v}} (q-1)^{\#folds} q^{\#\text{positive crossings}}$$

Example

Let $w = s_1 s_2 s_1 s_0$. Can form $v = s_1 s_0 \le w$ via two subwords:

- $2 \ v = s_1 \widehat{s_2} \widehat{s_1} s_0 \leftrightarrow (\text{step, fold fold, step}) \leftrightarrow 0$

Theorem (Deodhar, M.–Schwer–Thomas)

Let $v, w \in W$, and fix any minimal unfolded walk to w. Then

$$R_{v,w} = \sum_{\substack{\text{positively}\\\text{folded walks}\\\text{ending in } v}} (q-1)^{\#\text{folds}} q^{\#\text{positive crossings}}$$

Example

Let $w = s_1 s_2 s_1 s_0$. Can form $v = s_1 s_0 \le w$ via two subwords:

$$v = \widehat{s_1} \widehat{s_2} s_1 s_0 \leftrightarrow (\text{fold, fold, step, step}) \leftrightarrow (q-1)^2 q^0$$

 $2 \ v = s_1 \widehat{s_2} \widehat{s_1} s_0 \leftrightarrow (\text{step, fold fold, step}) \leftrightarrow 0$

The theorem says to sum the statistics on these alcove walks:

$$R_{s_1s_0,s_1s_2s_1s_0} = (q-1)^2 q^0 + 0 = (q-1)^2$$

Thank you!

