Mode transition algebras and higher-level Zhu algebras

Chiara Damiolini

April 30, 2023

Women in Algebra and Combinatorics
Northeast Conference Celebrating the Association for Women in Mathematics:
50 Years and Counting

Mode transition algebras and higher-level Zhu algebras

Chiara Damiolini
jt. with Angela Gibney and Danny Krashen

April 30, 2023

Women in Algebra and Combinatorics
Northeast Conference Celebrating the Association for Women in Mathematics:
50 Years and Counting

What are we going to talk about?

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)}
$$

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}_{0}\right.}
$$

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}\right)_{0}}
$$

The algebras A_{d} are not easy to compute!

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}_{0}\right)_{0}}
$$

New entry:

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}\right)_{0}}
$$

New entry:

- Mode Transition Algebra \mathfrak{A}

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}_{0}\right.}
$$

New entry:
\Rightarrow Mode Transition Algebra $\quad \mathfrak{A}=\frac{\mathscr{U}}{\mathscr{U} \cdot \mathscr{U}_{\leq-1}} \otimes_{\mathscr{U}_{0}} \mathrm{~A}_{0} \mathscr{U}_{0} \otimes \frac{\mathscr{U}}{\mathscr{U} \geq 1 \cdot \mathscr{U}}$

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}\right)_{0}}
$$

New entry:
$>$ Mode Transition Algebra $\quad \mathfrak{A}=\frac{\mathscr{U}}{\mathscr{U} \cdot \mathscr{U}_{\leq-1}} \otimes_{\mathscr{U}_{0}} A_{\mathscr{U}_{0}} \otimes_{\mathscr{U}_{0}} \otimes \frac{\mathscr{U}}{\mathscr{U} \geq 1 \cdot \mathscr{U}}$

$$
\mathbb{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \mathfrak{A}_{d,-e}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}^{\otimes} \mathrm{A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}
$$

What are we going to talk about?

Given a vertex operator algebra V one can associate various associative algebras describing the representation theory of V-modules:

- Universal enveloping algebra $\quad \mathscr{U}(V)=\mathscr{U}=\bigoplus_{\ell \in \mathbb{Z}} \mathscr{U}_{\ell}$
- Zhu algebras $\quad \mathrm{A}_{d} \quad$ for $d \in \mathbb{N}$

$$
\mathrm{A}_{d}=\frac{V}{O_{d}(V)} \cong \frac{\mathscr{U}_{0}}{\sum_{i \in \mathbb{N}} \mathscr{U}_{d+1+i} \cdot \mathscr{U}_{-d-1-i}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U}_{\geq d+1} \cdot \mathscr{U}\right)_{0}}
$$

New entry:

- Mode Transition Algebra $\quad \mathfrak{A}=\frac{\mathscr{U}}{\mathscr{U} \cdot \mathscr{U}_{\leq-1}} \otimes_{\mathscr{U}_{0}} A_{\mathscr{U}_{0}} \otimes \frac{\mathscr{U}}{\mathscr{U}_{\geq 1} \cdot \mathscr{U}}$

$$
\mathbb{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \mathfrak{A}_{d,-e}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}^{\otimes} \mathrm{A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}
$$

Today's goal: understand the relation between A_{d} and $\mathfrak{A}_{d}=\mathfrak{A}_{d,-d}$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{(\mathscr{U} \geq 1 \cdot \mathscr{U})_{-e}}$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

$$
\mathfrak{a} \star \mathfrak{b}=
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

$$
\mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{(\mathscr{U} \geq 1 \cdot \mathscr{U})_{-e}}$
Product structure of \mathfrak{A}

$$
\mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes a \cdot(\bar{x} \otimes \bar{y}) \cdot b \otimes \bar{z}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

$$
\mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } \mathrm{A}_{0}} \otimes \bar{z}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{(\mathscr{U} \geq 1 \cdot \mathscr{U})_{-e}}$
Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } A_{0}} \otimes \bar{z} \\
& \bar{x} \otimes \bar{y}:=\left\{\begin{array}{l}
\\
\end{array}\right.
\end{aligned}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{(\mathscr{U} \geq 1 \cdot \mathscr{U})_{-e}}$
Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } \mathrm{A}_{0}} \otimes \bar{z} \\
& \bar{x} \otimes \bar{y}:=\left\{\begin{array}{l}
\underbrace{x \cdot y}_{\text {product in } \mathscr{U}}
\end{array}\right.
\end{aligned}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } A_{0}} \otimes \bar{z} \\
& \bar{x} \otimes \bar{y}:= \begin{cases}\underbrace{x \cdot y}_{\text {product in } \mathscr{U}} & \text { if } \underbrace{\operatorname{deg}(x)+\operatorname{deg}(y)=0}_{\text {the element } x \cdot y \text { belongs to } \mathscr{U}_{0}}\end{cases}
\end{aligned}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } A_{0}} \otimes \bar{z} \\
& \bar{x} \otimes \bar{y}:=\left\{\begin{array}{l}
\overbrace{[\underbrace{x \cdot y}_{\text {product in } \mathscr{U}}]_{0}}^{\text {image in } A_{0}} \text { if } \quad \underbrace{\operatorname{deg}(x)+\operatorname{deg}(y)=0}_{\text {the element } x \cdot y \text { belongs to } \mathscr{U}_{0}}
\end{array}\right.
\end{aligned}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\oplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$
Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } A_{0}} \otimes \bar{z} \\
& \bar{x} \otimes \bar{y}:= \begin{cases}\overbrace{\left[\begin{array}{c}
x \cdot y
\end{array}\right]_{0}}^{\text {image in } \mathrm{A}_{0}} & \text { if } \underbrace{\mathscr{U}_{0}}_{\text {the element } x \cdot y \text { belongs to } \mathscr{U}} \\
\begin{array}{c}
\text { product in } \mathscr{U} \\
0
\end{array} & \begin{array}{c}
\operatorname{deg}(x)+\operatorname{deg}(y)=0
\end{array}\end{cases}
\end{aligned}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\bigoplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$

Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } \mathrm{A}_{0}} \otimes \bar{z} \\
& \bar{x} \otimes \bar{y}:=\left\{\begin{array}{l}
\overbrace{[\underbrace{\text { image in } \mathrm{A}_{0}}_{\substack{x \cdot y \\
\text { product in } \mathscr{U}}}}^{0} \mathrm{O}
\end{array}\right. \\
& \text { if } \underbrace{\operatorname{deg}(x)+\operatorname{deg}(y)=0}_{\text {the element } x \cdot y \text { belongs to } \mathscr{U}_{0}} \\
& \text { otherwise } \\
& \Rightarrow \quad \mathfrak{A}_{d, e} \star \mathfrak{A}_{e, f} \subseteq \mathfrak{A}_{d, f} \quad \text { and } \quad \mathfrak{A}_{d, e} \star \mathfrak{A}_{d^{\prime}, e^{\prime}}=0 \text { whenever } e \neq d^{\prime}
\end{aligned}
$$

Understanding the Mode Transition Algebras \mathfrak{A}_{d}

Recall $\quad \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}=\underset{d, e \in \mathbb{N}^{2}}{\bigoplus} \frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-e}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-e}}$

Product structure of \mathfrak{A}

$$
\begin{aligned}
& \mathfrak{a} \star \mathfrak{b}=(\bar{w} \otimes a \otimes \bar{x}) \star(\bar{y} \otimes b \otimes \bar{z})=\bar{w} \otimes \underbrace{a \cdot(\bar{x} \otimes \bar{y}) \cdot b}_{\text {product in } A_{0}} \otimes \bar{z} \\
& \bar{x} \circledast \bar{y}:= \begin{cases}\overbrace{[\underbrace{x \cdot y}_{\text {product in } \mathscr{U}}]_{0}}^{\text {image in } A_{0}} \quad \text { if } \underbrace{\operatorname{deg}(x)+\operatorname{deg}(y)=0}_{\text {the element } x \cdot y \text { belongs to } \mathscr{U}_{0}} \\
0 \quad \text { otherwise }\end{cases} \\
& \quad \Rightarrow \quad \mathfrak{A}_{d, e} \star \mathfrak{A}_{e, f} \subseteq \mathfrak{A}_{d, f} \quad \text { and } \quad \mathfrak{A}_{d, e} \star \mathfrak{A}_{d^{\prime}, e^{\prime}}=0 \text { whenever } e \neq d^{\prime}
\end{aligned}
$$

$\left(\mathfrak{A}_{d},+, \star\right)$ is an associative algebra and $\left(\mathfrak{A}_{0},+, \star\right)=\left(\mathrm{A}_{0},+, \cdot\right)$

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)$

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$$
\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)
$$

- $\mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathrm{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$$
\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)
$$

$\Rightarrow \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism

$$
\begin{aligned}
& \mathrm{A}_{1} \cong \mathrm{~A}_{0} \oplus \mathbb{C}[x] \\
& \mathrm{A}_{2} \cong \mathrm{~A}_{1} \oplus \operatorname{Mat}_{2}(\mathbb{C}[x])
\end{aligned}
$$

[Barron-Vander Werf-Yang]
[Addabbo-Barron]

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$$
\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)
$$

$\Rightarrow \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism

$$
\begin{array}{lr}
\mathrm{A}_{1} \cong \mathrm{~A}_{0} \oplus \mathbb{C}[x] & \text { [Barron-Vander Werf-Yang] } \\
\mathrm{A}_{2} \cong \mathrm{~A}_{1} \oplus \mathrm{Mat}_{2}(\mathbb{C}[x]) & \text { [Addabbo-Barron] }
\end{array}
$$

Conjecture [Addabbo-Barron]: $\quad \mathrm{A}_{d} \cong \mathrm{~A}_{d-1} \oplus \operatorname{Mat}_{p(d)}(\mathbb{C}[x])$.

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$$
\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)
$$

$\triangleright \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism
$>\mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}} \quad$ has a basis over $\mathbb{C}[x]$ given by $\left\{\epsilon_{\mathfrak{l}, \mathfrak{r}}\right\}$ with \mathfrak{l} and \mathfrak{r} partitions of d

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$$
\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)
$$

$\triangleright \mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism
$>\mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}} \quad$ has a basis over $\mathbb{C}[x]$ given by $\left\{\epsilon_{l, r}\right\}$ with \mathfrak{l} and \mathfrak{r} partitions of d

$$
\begin{aligned}
& d=7 \quad \mathfrak{l}=[2 \mid 5] \quad \mathfrak{r}=[1|3| 3] \\
& \epsilon_{\mathfrak{l}, \mathfrak{r}}=H t^{-5} \cdot H t^{-2} \otimes 1 \otimes H t^{1} \cdot H t^{3} \cdot H t^{3}
\end{aligned}
$$

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$

$$
\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)
$$

$>\mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism
$>\mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}} \quad$ has a basis over $\mathbb{C}[x]$ given by $\left\{\epsilon_{\mathfrak{l}, \mathfrak{r}}\right\}$ with \mathfrak{l} and \mathfrak{r} partitions of d
satisfying
$\epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}} \star \epsilon_{\mathfrak{l}, \mathfrak{r}^{\prime}}= \begin{cases}\alpha(\mathfrak{r}) \epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}^{\prime}} & \text { if } \mathfrak{l}=\mathfrak{r} \\ 0 & \text { otherwise }\end{cases}$
with $\alpha(\mathfrak{r}) \in \mathbb{N}_{\geq 1}$.

$$
\begin{aligned}
& d=7 \quad \mathfrak{l}=[2 \mid 5] \quad \mathfrak{r}=[1|3| 3] \\
& \epsilon_{\mathfrak{l}, \mathfrak{r}}=H t^{-5} \cdot H t^{-2} \otimes 1 \otimes H t^{1} \cdot H t^{3} \cdot H t^{3}
\end{aligned}
$$

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$
$\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)$

- $\mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism
$>\mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0}{\underset{\mathscr{U}}{0}}^{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}} \quad$ has a basis over $\mathbb{C}[x]$ given by $\left\{\epsilon_{\mathfrak{l}, \mathfrak{r}}\right\}$ with \mathfrak{l} and \mathfrak{r} partitions of d
satisfying
$\epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}} \star \epsilon_{\mathfrak{l}, \mathfrak{r}^{\prime}}= \begin{cases}\alpha(\mathfrak{r}) \epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}^{\prime}} & \text { if } \mathfrak{l}=\mathfrak{r} \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& d=7 \quad \mathfrak{l}=[2 \mid 5] \quad \mathfrak{r}=[1|3| 3] \\
& \epsilon_{l, r}=H t^{-5} \cdot H t^{-2} \otimes 1 \otimes H t^{1} \cdot H t^{3} \cdot H t^{3} \\
& \epsilon_{l^{\prime}, \mathfrak{l}} \star \epsilon_{l, r^{\prime}}=(2 \cdot 5) \epsilon_{\Gamma^{\prime}, r^{\prime}}
\end{aligned}
$$

with $\alpha(\mathfrak{r}) \in \mathbb{N}_{\geq 1}$.

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$
$\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)$

- $\mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism
$>\mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0}{\underset{\mathscr{U}}{0}}^{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}} \quad$ has a basis over $\mathbb{C}[x]$ given by $\left\{\epsilon_{\mathfrak{l}, \mathfrak{r}}\right\}$ with \mathfrak{l} and \mathfrak{r} partitions of d
satisfying
$\epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}} \star \epsilon_{\mathfrak{l}, \mathfrak{r}^{\prime}}= \begin{cases}\alpha(\mathfrak{r}) \epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}^{\prime}} & \text { if } \mathfrak{l}=\mathfrak{r} \\ 0 & \text { otherwise }\end{cases}$ with $\alpha(\mathfrak{r}) \in \mathbb{N}_{\geq 1}$.

$$
\begin{aligned}
& d=7 \quad \mathfrak{l}=[2 \mid 5] \quad \mathfrak{r}=[1|3| 3] \\
& \epsilon_{l, r}=H t^{-5} \cdot H t^{-2} \otimes 1 \otimes H t^{1} \cdot H t^{3} \cdot H t^{3} \\
& \epsilon_{l^{\prime}, \mathfrak{l}} \star \epsilon_{l, r^{\prime}}=(2 \cdot 5) \epsilon_{r^{\prime}, r^{\prime}} \\
& \epsilon_{l^{\prime}, \mathfrak{r}} \star \epsilon_{\mathfrak{r}, \mathfrak{r}^{\prime}}=(1 \cdot 3 \cdot 3)(2!) \epsilon_{l^{\prime}, r^{\prime}}
\end{aligned}
$$

Example: Heisenberg Lie algebra $\mathfrak{h}=H \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k$
$\left[H t^{n}+\alpha k, H t^{m}+\beta k\right]=\delta_{n+m=0} k \quad \operatorname{deg}\left(H t^{n}\right)=-n \quad \mathscr{U}:=U(\mathfrak{h}) /(k=1)$

- $\mathrm{A}_{0}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{0}} \longrightarrow \mathbb{C}[x], \quad[H] \mapsto x \quad$ is a ring isomorphism
$>\mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \mathscr{\mathscr { U }}_{0} \mathrm{~A}_{0}{\underset{\mathscr{U}}{0}}^{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}} \quad$ has a basis over $\mathrm{C}[x]$ given by $\left\{\epsilon_{\mathfrak{l}, \mathfrak{r}}\right\}$ with \mathfrak{l} and \mathfrak{r} partitions of d
satisfying
$\epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}} \star \epsilon_{\mathfrak{l}, \mathfrak{r}^{\prime}}= \begin{cases}\alpha(\mathfrak{r}) \epsilon_{\mathfrak{l}^{\prime}, \mathfrak{r}^{\prime}} & \text { if } \mathfrak{l}=\mathfrak{r} \\ 0 & \text { otherwise }\end{cases}$ with $\alpha(\mathfrak{r}) \in \mathbb{N}_{\geq 1}$.

$$
\begin{aligned}
& d=7 \quad \mathfrak{l}=[2 \mid 5] \quad \mathfrak{r}=[1|3| 3] \\
& \epsilon_{l, r}=H t^{-5} \cdot H t^{-2} \otimes 1 \otimes H t^{1} \cdot H t^{3} \cdot H t^{3} \\
& \epsilon_{l^{\prime}, \mathfrak{l}} \star \epsilon_{l, r^{\prime}}=(2 \cdot 5) \epsilon_{l^{\prime}, r^{\prime}} \\
& \epsilon_{l^{\prime}, \mathfrak{r}} \star \epsilon_{\mathfrak{r}, \mathbf{r}^{\prime}}=(1 \cdot 3 \cdot 3)(2!) \epsilon_{l^{\prime}, r^{\prime}}
\end{aligned}
$$

$\left(\mathfrak{A}_{d},+, \star\right)$ is isomorphic to the algebra of matrices $\operatorname{Mat}_{p(d)}(\mathbb{C}[x])$

The map μ_{d}

Recall $\quad \mathrm{A}_{d}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}} \mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}}^{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}$

The map μ_{d}

Recall $\quad \mathrm{A}_{d}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}^{\otimes} \mathrm{A}_{0}{\underset{\mathscr{U}}{0}}^{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}$
We define the map $\mu_{d}: \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d}$ as

The map μ_{d}

Recall $\quad \mathrm{A}_{d}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}^{\otimes} \mathrm{A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}$
We define the map $\mu_{d}: \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d}$ as

$$
\mu_{d}\left(\bar{x} \otimes[u]_{0} \otimes \bar{y}\right)=\overbrace{[\underbrace{x \cdot u \cdot y}_{\text {element of } \mathscr{U}_{0}}]_{d}}^{\text {image in } \mathrm{A}_{d}}
$$

The map μ_{d}

Recall $\quad \mathrm{A}_{d}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}^{\otimes} \mathrm{A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-d}}{(\mathscr{U} \geq 1 \cdot \mathscr{U})_{-d}}$
We define the map $\mu_{d}: \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d}$ as

$$
\mu_{d}\left(\bar{x} \otimes[u]_{0} \otimes \bar{y}\right)=\overbrace{[\underbrace{x \cdot u \cdot y}_{\text {element of } \mathscr{U}_{0}}]_{d}}^{\text {image in } \mathrm{A}_{d}}
$$

$$
\begin{aligned}
\text { Proposition } & \text { The image of } \mu_{d} \text { equals the kernel of the } \\
\text { [D-Gibney-Krashen] } & \text { canonical projection } \pi_{d}: \mathrm{A}_{d} \rightarrow \mathrm{~A}_{d-1} .
\end{aligned}
$$

The map μ_{d}

Recall $\quad \mathrm{A}_{d}=\frac{\mathscr{U}_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}} \quad$ and $\quad \mathfrak{A}_{d}=\frac{\mathscr{U}_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}^{\otimes} \mathrm{A}_{0} \underset{\mathscr{U}_{0}}{\otimes} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}$
We define the map $\mu_{d}: \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d}$ as

$$
\mu_{d}\left(\bar{x} \otimes[u]_{0} \otimes \bar{y}\right)=\overbrace{[\underbrace{x \cdot u \cdot y}_{\text {element of } \mathscr{U}_{0}}]_{d}}^{\text {image in } \mathrm{A}_{d}}
$$

$$
\begin{aligned}
\text { Proposition } & \text { The image of } \mu_{d} \text { equals the kernel of the } \\
\text { [D-Gibney-Krashen] } & \text { canonical projection } \pi_{d}: \mathrm{A}_{d} \rightarrow \mathrm{~A}_{d-1} .
\end{aligned}
$$

$$
\boldsymbol{\infty}^{4} \quad \operatorname{ker}\left(\pi_{d}\right)=\frac{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d}\right)_{0}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-d-1}\right)_{0}} \quad \text { and } \quad x \cdot u \cdot y \in \mathscr{U}_{d} \cdot \mathscr{U}_{-d}
$$

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary:
Addabbo-Barron's conjecture is true!

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

$$
\begin{aligned}
& \text { For every left } A_{0} \text {-module } M \text {, the } \star \text {-action of } \mathfrak{A}_{d} \text { on } \\
& \frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} \text {. }
\end{aligned}
$$

Corollary:
Addabbo-Barron's conjecture is true!

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).
か. For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\begin{aligned}
& \quad \frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} . \\
& \mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right)
\end{aligned}
$$

Corollary:
Addabbo-Barron's conjecture is true!

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary:
Addabbo-Barron's conjecture is true!
$\mathscr{\alpha}^{4}$ For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} .
$$

$\mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right) \quad \Rightarrow \quad \mathfrak{a}$ acts trivially on $\frac{(\mathscr{U})_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}\left(\mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}\right)=\mathfrak{A}_{d}$

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary:
Addabbo-Barron's conjecture is true!
$\mathfrak{\alpha}^{4}$ For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} .
$$

$\mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right) \quad \Rightarrow \quad \mathfrak{a}$ acts trivially on $\frac{(\mathscr{U})_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}\left(\mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}\right)=\mathfrak{A}_{d}$
$\Rightarrow \quad \mathfrak{a} \star \mathfrak{b}=0$ for every $\mathfrak{b} \in \mathfrak{A}_{d}$

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary:
Addabbo-Barron's conjecture is true!
$\mathfrak{\alpha}^{4}$ For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} .
$$

$\mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right) \quad \Rightarrow \quad \mathfrak{a}$ acts trivially on $\frac{(\mathscr{U})_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}\left(\mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}\right)=\mathfrak{A}_{d}$
$\Rightarrow \quad \mathfrak{a} \star \mathfrak{b}=0$ for every $\mathfrak{b} \in \mathfrak{A}_{d} \quad \Rightarrow \quad$ if $\mathfrak{b}=1_{\mathfrak{A}_{d}}$, then $\mathfrak{a}=0$.

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary: Addabbo-Barron's conjecture is true!
$\boldsymbol{\alpha}^{4}$ For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} .
$$

$\mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right) \quad \Rightarrow \quad \mathfrak{a}$ acts trivially on $\frac{(\mathscr{U})_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}\left(\mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}\right)=\mathfrak{A}_{d}$
$\Rightarrow \quad \mathfrak{a} \star \mathfrak{b}=0$ for every $\mathfrak{b} \in \mathfrak{A}_{d} \quad \Rightarrow \quad$ if $\mathfrak{b}=1_{\mathfrak{A}_{d}}$, then $\mathfrak{a}=0$.
\&4 $\quad 1_{\mathfrak{A}_{d}}$ and $1_{\mathrm{A}_{d}}-1_{\mathfrak{A}_{d}}$ are orthogonal central idempotents of A_{d}

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary:
Addabbo-Barron's conjecture is true!
$\mathfrak{\alpha}^{4}$ For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} .
$$

$\mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right) \quad \Rightarrow \quad \mathfrak{a}$ acts trivially on $\frac{(\mathscr{U})_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}\left(\mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}\right)=\mathfrak{A}_{d}$
$\Rightarrow \quad \mathfrak{a} \star \mathfrak{b}=0$ for every $\mathfrak{b} \in \mathfrak{A}_{d} \quad \Rightarrow \quad$ if $\mathfrak{b}=1_{\mathfrak{A}_{d}}$, then $\mathfrak{a}=0$.
\& $1_{\mathfrak{A}_{d}}$ and $1_{\mathrm{A}_{d}}-1_{\mathfrak{A}_{d}}$ are orthogonal central idempotents of A_{d}
$\Rightarrow \quad \mathrm{A}_{d}=\mathrm{A}_{d}\left(1_{\mathfrak{A}_{d}}\right) \times \mathrm{A}_{d}\left(1_{\mathrm{A}_{d}}-1_{\mathfrak{A}_{d}}\right)$

Theorem [D-Gibney-Krashen]

If the algebra \mathfrak{A}_{d} is unital, then the short sequence

$$
0 \longrightarrow \mathfrak{A}_{d} \xrightarrow{\mu_{d}} \mathrm{~A}_{d} \xrightarrow{\pi_{d}} \mathrm{~A}_{d-1} \longrightarrow 0
$$

is split exact and $\mathrm{A}_{d}=\mathrm{A}_{d-1} \times \mathfrak{A}_{d}$ (as rings).

Corollary:
Addabbo-Barron's conjecture is true!
$\mathfrak{\alpha}^{4}$ For every left A_{0}-module M, the \star-action of \mathfrak{A}_{d} on

$$
\frac{(\mathscr{U})_{d}}{(\mathscr{U} \cdot \mathscr{U} \leq-1)_{d}} \otimes_{\mathscr{U}_{0}} M \text { factors through } \mu_{d} .
$$

$\mathfrak{a} \in \operatorname{ker}\left(\mu_{d}\right) \quad \Rightarrow \quad \mathfrak{a}$ acts trivially on $\frac{(\mathscr{U})_{d}}{\left(\mathscr{U} \cdot \mathscr{U}_{\leq-1}\right)_{d}} \otimes_{\mathscr{U}_{0}}\left(\mathrm{~A}_{0} \otimes_{\mathscr{U}_{0}} \frac{\mathscr{U}_{-d}}{\left(\mathscr{U}_{\geq 1} \cdot \mathscr{U}\right)_{-d}}\right)=\mathfrak{A}_{d}$
$\Rightarrow \quad \mathfrak{a} \star \mathfrak{b}=0$ for every $\mathfrak{b} \in \mathfrak{A}_{d} \quad \Rightarrow \quad$ if $\mathfrak{b}=1_{\mathfrak{A}_{d}}$, then $\mathfrak{a}=0$.
\&4 $\quad 1_{\mathfrak{A}_{d}}$ and $1_{\mathrm{A}_{d}}-1_{\mathfrak{A}_{d}}$ are orthogonal central idempotents of A_{d}

$$
\Rightarrow \quad \mathrm{A}_{d}=\mathrm{A}_{d}\left(1_{\mathfrak{A}_{d}}\right) \times \mathrm{A}_{d}\left(1_{\mathrm{A}_{d}}-1_{\mathfrak{A}_{d}}\right) \cong \mathfrak{A}_{d} \times \mathrm{A}_{d-1}
$$

Final remarks

Final remarks

- The sequence

$$
0 \rightarrow \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d} \rightarrow \mathrm{~A}_{d-1} \rightarrow 0
$$

can be exact also if \mathfrak{A}_{d} is not unital e.g. $V=\operatorname{Vir}_{c}$

Mode transition algebras and higher-level Zhu algebras

Final remarks

- The sequence

$$
0 \rightarrow \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d} \rightarrow \mathrm{~A}_{d-1} \rightarrow 0
$$

can be exact also if \mathfrak{A}_{d} is not unital e.g. $V=\operatorname{Vir}_{c}$
\Rightarrow If $\mathfrak{A}_{d}(V)$ have strong units for every $d \in \mathbb{N}$ and V is C_{2}-cofinite, then sheaves of conformal blocks arising from V-modules are locally free sheaves on the moduli space of nodal curves.

Final remarks

- The sequence

$$
0 \rightarrow \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d} \rightarrow \mathrm{~A}_{d-1} \rightarrow 0
$$

can be exact also if \mathfrak{A}_{d} is not unital e.g. $V=\operatorname{Vir}_{c}$
\Rightarrow If $\mathfrak{A}_{d}(V)$ have strong units for every $d \in \mathbb{N}$ and V is C_{2}-cofinite, then sheaves of conformal blocks arising from V-modules are locally free sheaves on the moduli space of nodal curves.

- V is rational $\Rightarrow \mathfrak{A}_{d}(V)$ has strong units for every $d \in \mathbb{N}$

Final remarks

- The sequence

$$
0 \rightarrow \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d} \rightarrow \mathrm{~A}_{d-1} \rightarrow 0
$$

can be exact also if \mathfrak{A}_{d} is not unital e.g. $V=\operatorname{Vir}_{c}$
\Rightarrow If $\mathfrak{A}_{d}(V)$ have strong units for every $d \in \mathbb{N}$ and V is C_{2}-cofinite, then sheaves of conformal blocks arising from V-modules are locally free sheaves on the moduli space of nodal curves.

- V is rational $\Rightarrow \mathfrak{A}_{d}(V)$ has strong units for every $d \in \mathbb{N}$
- $\mathcal{W}(p)$ does not have strong units

Final remarks

- The sequence

$$
0 \rightarrow \mathfrak{A}_{d} \rightarrow \mathrm{~A}_{d} \rightarrow \mathrm{~A}_{d-1} \rightarrow 0
$$

can be exact also if \mathfrak{A}_{d} is not unital e.g. $V=\operatorname{Vir}_{c}$
\Rightarrow If $\mathfrak{A}_{d}(V)$ have strong units for every $d \in \mathbb{N}$ and V is C_{2}-cofinite, then sheaves of conformal blocks arising from V-modules are locally free sheaves on the moduli space of nodal curves.

- V is rational $\Rightarrow \mathfrak{A}_{d}(V)$ has strong units for every $d \in \mathbb{N}$
- $\mathcal{W}(p)$ does not have strong units

Thanks!

