Dimension formula of generalized splines of degree 2

Anne Schilling

Department of Mathematics, UC Davis
based on joint work with Shaheen Nazir (Lahore University) and Julianna Tymoczko (Smith College)

Women in Algebra and Combinatorics SUNY Albany
April 30, 2023

What are splines?

Fix a commutative ring R and a finite graph $G=(V, E)$.

Definition

An edge-labeling for G is a function $\alpha: E \rightarrow R$.

What are splines?

Fix a commutative ring R and a finite graph $G=(V, E)$.

Definition

An edge-labeling for G is a function $\alpha: E \rightarrow R$.

Definition

A spline on the edge-labeled graph (G, α) is an element $p \in R^{|V|}$ so that for each edge $u v \in E$ we have

$$
p(u)-p(v) \text { is a multiple of } \alpha(u v)
$$

What are splines?

Fix a commutative ring R and a finite graph $G=(V, E)$.

Definition

An edge-labeling for G is a function $\alpha: E \rightarrow R$.

Definition

A spline on the edge-labeled graph (G, α) is an element $p \in R^{|V|}$ so that for each edge $u v \in E$ we have

$$
p(u)-p(v) \text { is a multiple of } \alpha(u v)
$$

The collection of all splines on (G, α) forms a ring and an R-module with vertex-wise addition, multiplication, and scaling.

What are splines? (example)

Consider the labeled graph

Label vertices so that $p(u)-p(v)$ is a multiple of $\alpha(u v)$

What are splines? (example)

Consider the labeled graph

Label vertices so that $p(u)-p(v)$ is a multiple of $\alpha(u v)$

What are splines? (example)

Consider the labeled graph

Label vertices so that $p(u)-p(v)$ is a multiple of $\alpha(u v)$

What are splines? (example)

Consider the labeled graph

Label vertices so that $p(u)-p(v)$ is a multiple of $\alpha(u v)$

What are splines? (example)

Consider the labeled graph

Label vertices so that $p(u)-p(v)$ is a multiple of $\alpha(u v)$

Basis for splines:

What are splines? (example)

Consider the labeled graph

Label vertices so that $p(u)-p(v)$ is a multiple of $\alpha(u v)$

Basis for splines:

What are splines?

Splines for Meshes with Irregularities, J. Peters, SMAI journal of computational mathematics, 2019.

What are splines? (context)

- Our definition of splines is dual (in an algebraic sense) to the classical definition of splines.

What are splines? (context)

- Our definition of splines is dual (in an algebraic sense) to the classical definition of splines.
- Our definition coincides with a combinatorial construction of equivariant cohomology called GKM theory. GKM theory gives conditions on a variety X with the action of a torus T so that

What are splines? (context)

- Our definition of splines is dual (in an algebraic sense) to the classical definition of splines.
■ Our definition coincides with a combinatorial construction of equivariant cohomology called GKM theory. GKM theory gives conditions on a variety X with the action of a torus T so that
- the T-fixed points and one-dimensional T-orbits form a graph G_{X}
- when the edges of G_{X} are labeled with the T-weights then

$$
H_{T}^{*}(X) \cong \text { splines on }\left(G_{X}, \alpha_{X}\right)
$$

Our problem: the upper-bound conjecture in (classical) splines

The upper-bound conjecture asks for a dimension formula for splines of degree at most d and smoothness r on triangulated regions in the plane.

Our problem: the upper-bound conjecture in (classical) splines

The upper-bound conjecture asks for a dimension formula for splines of degree at most d and smoothness r on triangulated regions in the plane.

A dimension formula for planar triangulations of smoothness 1 is

- proven for $d \geqslant 4$ (Alfeld-Schumaker '90, Hong '91)

Our problem: the upper-bound conjecture in (classical) splines

The upper-bound conjecture asks for a dimension formula for splines of degree at most d and smoothness r on triangulated regions in the plane.

A dimension formula for planar triangulations of smoothness 1 is

- proven for $d \geqslant 4$ (Alfeld-Schumaker '90, Hong '91)
- conjectured for $d=3$ (Strang '74)

Our problem: the upper-bound conjecture in (classical) splines

The upper-bound conjecture asks for a dimension formula for splines of degree at most d and smoothness r on triangulated regions in the plane.

A dimension formula for planar triangulations of smoothness 1 is

- proven for $d \geqslant 4$ (Alfeld-Schumaker '90, Hong '91)
- conjectured for $d=3$ (Strang '74)
- proven in the generic case for $d=3$ (Billera '88)

Our problem: the upper-bound conjecture in (classical) splines

The upper-bound conjecture asks for a dimension formula for splines of degree at most d and smoothness r on triangulated regions in the plane.

A dimension formula for planar triangulations of smoothness 1 is

- proven for $d \geqslant 4$ (Alfeld-Schumaker '90, Hong '91)
- conjectured for $d=3$ (Strang '74)
- proven in the generic case for $d=3$ (Billera '88)

■ and completely unknown when $d=2$.

Our problem: a version of the upper-bound conjecture

- Smoothness 1 means that edges of the dual graph are labeled with $(a x+b y+c)^{2}$
- the edge of the original triangulation is on the line $a x+b y+c=0$

Our problem: a version of the upper-bound conjecture

- Smoothness 1 means that edges of the dual graph are labeled with $(a x+b y+c)^{2}$
- the edge of the original triangulation is on the line $a x+b y+c=0$
■ We assume $R=\mathbb{C}[x, y]$ and each $\alpha(u v)=(a x+b y)^{2}$.
- By translating the original triangulation, we can assume this about any individual face without loss of generality.

Our problem: a version of the upper-bound conjecture

- Smoothness 1 means that edges of the dual graph are labeled with $(a x+b y+c)^{2}$
- the edge of the original triangulation is on the line $a x+b y+c=0$
■ We assume $R=\mathbb{C}[x, y]$ and each $\alpha(u v)=(a x+b y)^{2}$.
- By translating the original triangulation, we can assume this about any individual face without loss of generality.
- We make no particular assumptions on the graph, except planar.
- For instance, vertices may have degree greater than three, unlike in graph that are dual to a triangulation.

Our problem: a version of the upper-bound conjecture

■ Smoothness 1 means that edges of the dual graph are labeled with $(a x+b y+c)^{2}$

- the edge of the original triangulation is on the line $a x+b y+c=0$
■ We assume $R=\mathbb{C}[x, y]$ and each $\alpha(u v)=(a x+b y)^{2}$.
- By translating the original triangulation, we can assume this about any individual face without loss of generality.
- We make no particular assumptions on the graph, except planar.
- For instance, vertices may have degree greater than three, unlike in graph that are dual to a triangulation.

We want a dimension formula for splines of degree 2

Splines on trees and cycles

Splines on trees have a straightforward basis:

(Generalized by Gilbert, Tymoczko, Viel)

Splines on trees and cycles

Splines on trees have a straightforward basis:

(Generalized by Gilbert, Tymoczko, Viel)
Splines on cycles are more complicated:

$$
\begin{aligned}
p+c_{1} \ell_{1} \quad \ell_{2} \\
\ell_{1} \prod_{p \ell_{4}} p+c_{1} \ell_{1}+c_{2} \ell_{2} \\
\ell_{3} \\
p+c_{1} \ell_{1}+c_{2} \ell_{2}+c_{3} \ell_{3}
\end{aligned}
$$

Splines on trees and cycles

Splines on trees have a straightforward basis:

(Generalized by Gilbert, Tymoczko, Viel)
Splines on cycles are more complicated:

$$
\begin{aligned}
p+c_{1} \ell_{1} \quad \ell_{2} \\
\ell_{1} \prod_{p \ell_{4}} p+c_{1} \ell_{1}+c_{2} \ell_{2} \\
\ell_{3} \\
p+c_{1} \ell_{1}+c_{2} \ell_{2}+c_{3} \ell_{3}
\end{aligned}
$$

We get an equation $c_{1} \ell_{1}+c_{2} \ell_{2}+c_{3} \ell_{3}+c_{4} \ell_{4}=0$ for each cycle

Cycle bases

Let $G=(V, E)$ be a finite, connected, planar graph.

Cycle bases

Let $G=(V, E)$ be a finite, connected, planar graph.
■ A cycle in G is a sequence of vertices $v_{1} v_{2} \ldots v_{k} v_{1}$ such that $v_{k} v_{1}$ and each $v_{i} v_{i+1}$ are edges.

Cycle bases

Let $G=(V, E)$ be a finite, connected, planar graph.
■ A cycle in G is a sequence of vertices $v_{1} v_{2} \ldots v_{k} v_{1}$ such that $v_{k} v_{1}$ and each $v_{i} v_{i+1}$ are edges.

- A planar graph drawn without any crossing edges divides the plane into a set of regions called faces, each of which is bounded by a cycle called a face cycle.

Cycle bases

Let $G=(V, E)$ be a finite, connected, planar graph.
■ A cycle in G is a sequence of vertices $v_{1} v_{2} \ldots v_{k} v_{1}$ such that $v_{k} v_{1}$ and each $v_{i} v_{i+1}$ are edges.

- A planar graph drawn without any crossing edges divides the plane into a set of regions called faces, each of which is bounded by a cycle called a face cycle.

Cycle bases

Let $G=(V, E)$ be a finite, connected, planar graph.
■ A cycle in G is a sequence of vertices $v_{1} v_{2} \ldots v_{k} v_{1}$ such that $v_{k} v_{1}$ and each $v_{i} v_{i+1}$ are edges.

- A planar graph drawn without any crossing edges divides the plane into a set of regions called faces, each of which is bounded by a cycle called a face cycle.

An important question in topological graph theory is which cycles are independent in a reasonable sense, namely form a cycle basis.

Face cycle basis matrix

Order the edges $E=\left\{e_{1}, e_{2}, \ldots, e_{e_{G}}\right\}$ and the (bounded) faces $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{f_{G}}\right\}$. The face cycle basis matrix M is the $f_{G} \times e_{G}$ matrix that is zero except 1 in row r and column c if edge e_{c} is an edge on face cycle of F_{r}.

Extended face cycle basis matrix

In our case, edge-labels have the form $\ell_{i}=\left(a_{i} x+y\right)^{2}$.
The equation

$$
c_{1} \ell_{1}+c_{2} \ell_{2}+c_{3} \ell_{3}+c_{4} \ell_{4}=0
$$

becomes

$$
c_{1}\left(a_{1} x+y\right)^{2}+c_{2}\left(a_{2} x+y\right)^{2}+c_{3}\left(a_{3} x+y\right)^{2}+c_{4}\left(a_{4} x+y\right)^{2}=0
$$

Rearranging gives

$$
\begin{gathered}
\left(c_{1} a_{1}^{2}+c_{2} a_{2}^{2}+c_{3} a_{3}^{2}+c_{4} a_{4}^{2}\right) x^{2}+\left(c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}+c_{4} a_{4}\right) 2 x y \\
+\left(c_{1}+c_{2}+c_{3}+c_{4}\right) y^{2}=0
\end{gathered}
$$

This vanishes as a polynomial so each red coefficient is 0 .

Extended face cycle basis matrix

The extended face cycle basis matrix $M^{\text {ext }}$ replaces each row of the face cycle basis matrix with three rows, with column i zero if the original entry is zero, and $\left(1, a_{i}, a_{i}^{2}\right)^{T}$ if it's one.

Extended face cycle basis matrix

The extended face cycle basis matrix $M^{\text {ext }}$ replaces each row of the face cycle basis matrix with three rows, with column i zero if the original entry is zero, and $\left(1, a_{i}, a_{i}^{2}\right)^{T}$ if it's one.

The dimension of degree 2 splines

Theorem (Nazir, S., Tymoczko 2023)

Let $\operatorname{Spl}_{2}(G, \ell)$ be collection of degree two splines associated to the labelled, finite, planar graph (G, ℓ). Then

$$
\operatorname{dim} \operatorname{Spl}_{2}(G, \ell)=e_{G}-\operatorname{rank} M^{\mathrm{ext}}
$$

where e_{G} is the number of edges in G.

The dimension of degree 2 splines

Theorem (Nazir, S., Tymoczko 2023)

Let $\operatorname{Spl}_{2}(G, \ell)$ be collection of degree two splines associated to the labelled, finite, planar graph (G, ℓ). Then

$$
\operatorname{dim} \operatorname{Spl}_{2}(G, \ell)=e_{G}-\operatorname{rank} M^{\mathrm{ext}}
$$

where e_{G} is the number of edges in G.

When $M^{\text {ext }}$ is full rank, the dimension of degree two splines is

$$
e_{G}-3 f_{G} .
$$

When does this happen?

Dimension of degree 2 splines

Note the 3×3 Vandermonde matrices with determinant

$$
\left(a_{i}-a_{j}\right)\left(a_{j}-a_{k}\right)\left(a_{i}-a_{k}\right)
$$

Dimension of degree 2 splines

Note the 3×3 Vandermonde matrices with determinant

$$
\left(a_{i}-a_{j}\right)\left(a_{j}-a_{k}\right)\left(a_{i}-a_{k}\right)
$$

- Square submatrices of $M^{\text {ext }}$ have determinants related to these Vandermonde determinants.
■ Generically when $a_{i} \neq a_{j} \neq a_{k}$ these determinants are nonzero.
■ Three is a special number for these splines.

Dimension of degree 2 splines

An edge-injective function φ assigns to each face F in a planar graph G up to three (unordered) edges on the boundary of F so that no edge is assigned to more than one face. The size of an edge-injective function is the total number of edges in its image.

Dimension of degree 2 splines

An edge-injective function φ assigns to each face F in a planar graph G up to three (unordered) edges on the boundary of F so that no edge is assigned to more than one face. The size of an edge-injective function is the total number of edges in its image.

Theorem (Nazir, S., Tymoczko 2023)

N is any square $3 k \times 3 k$ submatrix of $M^{\text {ext }}$. Then

$$
\operatorname{det} N=\sum_{\substack{\varphi: \mathcal{F} \rightarrow \mathcal{E}_{\mathcal{Z}} \\ \text { edge-injective }}} \prod_{F \in \mathcal{F}} \operatorname{det} N_{F, \varphi(F)},
$$

$N_{F, \varphi(F)}=$ submatrix of N with the 3 rows corresponding to F and columns indexed by $\varphi(F)$.

Algorithm: Dimension of degree 2 splines

The generic case is when $\operatorname{det} N$ is a nonzero polynomial in the labels a_{i}.

Algorithm: Dimension of degree 2 splines

The generic case is when $\operatorname{det} N$ is a nonzero polynomial in the labels a_{i}.

- Case $e_{G} \leqslant 3 f_{G}: \operatorname{dim} \operatorname{Spl}_{2}(G, \ell)=0$.

■ Case G no leaves and no subgraph G^{\prime} with $e_{G^{\prime}} \leqslant 3 f_{G^{\prime}}$: $\operatorname{dim} \operatorname{Spl}_{2}(G, \ell)=e_{G}-3 f_{G}$.

Algorithm: Dimension of degree 2 splines

The generic case is when $\operatorname{det} N$ is a nonzero polynomial in the labels a_{i}.

- Case $e_{G} \leqslant 3 f_{G}: \operatorname{dim} \operatorname{Spl}_{2}(G, \ell)=0$.

■ Case G no leaves and no subgraph G^{\prime} with $e_{G^{\prime}} \leqslant 3 f_{G^{\prime}}$: $\operatorname{dim} \operatorname{Spl}_{2}(G, \ell)=e_{G}-3 f_{G}$.

If G has contractible subgraph G^{\prime} with $e_{G^{\prime}} \leqslant 3 f_{G^{\prime}}$, contract G^{\prime}.

Examples: The dimension of degree 2 splines

Examples: The dimension of degree 2 splines

Dimension of degree 2 splines is 2 in general

Examples: The dimension of degree 2 splines

Dimension of degree 2 splines is 2 in general

Examples: The dimension of degree 2 splines

Dimension of degree 2 splines is 2 in general

Dimension of degree 2 splines is 0 in general

Examples: Dimension of degree 2 splines

Subgraph

Examples: Dimension of degree 2 splines

Subgraph

Contracted graph

has dimension 1.

Existence of edge-injective functions

Theorem (Nazir, S., Tymoczko 2023)

If G is a finite, planar graph and contains no proper contractible subset of faces, there is an edge-injective function.

Existence of edge-injective functions

Theorem (Nazir, S., Tymoczko 2023)

If G is a finite, planar graph and contains no proper contractible subset of faces, there is an edge-injective function.

Conjecture (Nazir, S., Tymoczko 2023)

If G is a finite, planar graph, contains no proper contractible subset of faces, and no two faces share more than three edges, there exists a generic edge labeling.

Edge-injective function on dual graph

G
G^{\star}

Construction of all edge-injective functions

Takeaway

■ Computing the dimension of splines has a combinatorial aspect (existence of certain kinds of Euler paths/edge-injective functions/coloring of edges)

-and an algebraic aspect (whether certain determinants vanish or not).
■ The combinatorial aspect governs the generic case, where we obtain a formula for degree 2 splines.
- The algebraic aspect determines the non-generic case.

Thank you!

