Braid group actions, crystals, and cacti
(joint work with T. Licata, I. Losev, O. Yacobi)

Iva Halacheva
Northeastern University

Northeast Women in Algebra and Combinatorics Conference
Celebrating the 50th Anniversary of the AWM
November 21, 2021
Let \mathfrak{g} be a simply-laced Kac–Moody Lie algebra.
Categorical g–action I

Warm-up case: $g = \mathfrak{sl}_2$

Suppose $\mathfrak{sl}_2 = \mathbb{C}\{e, f, h\} \curvearrowright V = \bigoplus_{n \in \mathbb{Z}} V_n$, an integrable \mathfrak{sl}_2–rep.

$$e : V_n \to V_{n+2}, \quad f : V_n \to V_{n-2}, \quad (ef - fe)|_{V_n} = n \text{Id}_{V_n} \quad \forall n \in \mathbb{Z}.$$

Categorified \mathfrak{sl}_2–action (Chuang–Rouquier, Khovanov–Lauda):

- an abelian category $\mathcal{C} = \bigoplus_n C_n$ (with $K_0(C_n) = V_n$)
- exact endofunctors E, F of \mathcal{C}, $E : C_n \to C_{n+2}, F : C_n \to C_{n-2}$
- natural transformations $\epsilon : EF \to I, \eta : I \to FE$ (unit and counit of adjunction)

$$X : E \to E, T : E^2 \to E^2$$

such that...
Categorical g–action II

- For $n \geq 0$ (analogously for $n < 0$), we have an isomorphism:

$$(\sigma, \epsilon, \epsilon \circ Xl_F, \ldots, \epsilon \circ X^{n-1}l_F) : EF|_{C_n} \xrightarrow{\cong} FE|_{C_n} \oplus l_{C_n}^{\oplus n},$$

where σ is composed of η, T, and ϵ.

- The natural transformations X, T give an action of the nil affine Hecke algebra H_n on E^n.

Example The adjoint representation of \mathfrak{sl}_2:

$$(C_2 = \mathbb{C} - \text{mod}) \xrightarrow{\text{Ind}} (C_0 = \mathbb{C}[x]/x^2 - \text{mod}) \xleftarrow{\text{Res}} (C_{-2} = \mathbb{C} - \text{mod})$$
Categorical g–action III

More generally:

The 2–category \mathcal{U}_g categorifies (Lusztig’s idempotent form) $\dot{\mathcal{U}}_g$:

- objects are elements λ of the g–weight lattice.
- 1-morphisms are generated by $E_i : \lambda \to \lambda + \alpha_i$, $F_i : \lambda \to \lambda - \alpha_i$.
- 2-morphisms are generated by
 \[
 X_i = \begin{pmatrix} 1 \end{pmatrix}_i : E_i \to E_i,
 X_i = \begin{pmatrix} 1 \end{pmatrix}_i : F_i \to F_i,
 T_{ij} = \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} : E_i E_j \to E_j E_i,
 T_{ij} = \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} : F_i F_j \to F_j F_i
 \]
 \[
 \bigwedge^i : E_i F_i \to I,
 \bigvee^i : F_i E_i \to I,
 \bigcup^i : I \to F_i E_i,
 \bigcup^i : I \to E_i F_i
 \]
 + KLR algebra and further relations.

A categorical g–representation is a 2–functor $\mathcal{U}_g \to \mathcal{K}$ to an appropriate 2-category.

Note: A graded version, \mathcal{U}_{qg}, categorifies $\dot{\mathcal{U}}_{qg}$.
The Rickard complex I

\(g = \mathfrak{sl}_2: \) Let \(s = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \exp(-f) \exp(e) \exp(-f) \in SL_2. \)

Then \(s \) restricts to an isomorphism on weight spaces, of the form

\[
s|_{V_{-n}} = \sum_k (-1)^k e^{(n+k)} f(k)
\]

Rickard complex: Consider the complex of functors \(\Theta = \bigoplus_n \Theta_n, \)

\[
\Theta_n : \text{Comp}(C_{-n}) \to \text{Comp}(C_n)
\]

\[
\Theta_n = (\ldots \to E^{(n+2)} F(2) \to E^{(n+1)} F(1) \to E^{(n)})
\]

- \(E^{(n)} \subseteq E^n, F^{(n)} \subseteq F^n \) defined using the \(H_n \)-action
- \(E^{(n+k)} F(k) \to E^{(n+k-1)} F(k-1) \) comes from adjunction
The Rickard complex II

Theorem (Chuang-Rouquier ’08)
\(\Theta \) induces a self-equivalence on \(D^b(C) \) and, by restriction, an equivalence \(D^b(C-\mathfrak{n}) \cong D^b(C_\mathfrak{n}) \). Furthermore, \([\Theta] = s \).

Example: Let \(R = \mathbb{C}[x]/x^2 \). For the adjoint \(\mathfrak{sl}_2 \)-representation and \(N \in C_0 = R - \text{mod} \),

\[\Theta_0 : D^b(R - \text{mod}) \to D^b(R - \text{mod}) \]
\[N \mapsto (R \otimes N \xrightarrow{\text{act}} N) \]
Perverse equivalences

Suppose that $\mathcal{A}, \mathcal{A}'$ are abelian categories, $F : D^b(\mathcal{A}) \xrightarrow{\cong} D^b(\mathcal{A}')$, we have filtrations $\mathcal{A}_\bullet, \mathcal{A}'_\bullet$ by Serre subcategories

$$0 = \mathcal{A}_{-1} \subset \mathcal{A}_0 \subset \mathcal{A}_1 \subset \ldots \subset \mathcal{A}_r = \mathcal{A}$$

$$0 = \mathcal{A}'_{-1} \subset \mathcal{A}'_0 \subset \mathcal{A}'_1 \subset \ldots \subset \mathcal{A}'_r = \mathcal{A}'$$

and a perversity function $p : \{0, \ldots, r\} \to \mathbb{Z}$.

Definition

F is perverse with respect to $(\mathcal{A}_\bullet, \mathcal{A}'_\bullet, p)$ if:

1. $F[-p(i)]$ restricts to an equivalence $D^b_{\mathcal{A}_i}(\mathcal{A}) \xrightarrow{\cong} D^b_{\mathcal{A}_i}(\mathcal{A}')$.

2. The induced $D^b_{\mathcal{A}_i}(\mathcal{A})/D^b_{\mathcal{A}_{i-1}}(\mathcal{A}) \xrightarrow{\cong} D^b_{\mathcal{A}_i}(\mathcal{A}')/D^b_{\mathcal{A}'_{i-1}}(\mathcal{A}')$ equivalence induces an equivalence

$$\mathcal{A}_i/\mathcal{A}_{i-1} \xrightarrow{\cong} \mathcal{A}'_i/\mathcal{A}'_{i-1}.$$
Perversity of the Rickard complexes

Consider \mathcal{C} endowed with an \mathfrak{sl}_2-categorical action. Let S be the set of simple objects, and consider the filtrations:

$$S_i = \{ V \in S : F^{i+1} V = 0 \} \quad \text{and} \quad S'_i = \{ V \in S : E^{i+1} V = 0 \}.$$

Proposition (Chuang–Rouquier)

The equivalence $\Theta : D^b(\mathcal{C}) \xrightarrow{\sim} D^b(\mathcal{C})$ is perverse with respect to $(S_\bullet, S'_\bullet, \rho = \text{Id})$.

For general g, take a reduced word $w = s_{i_1} \ldots s_{i_k}$ and weight μ, consider the composition $\Theta^\mu_w = \Theta^\mu_{s_{i_2} \ldots s_{i_k}} \circ \ldots \circ \Theta^\mu_{s_{i_1}}$.

Theorem 1 (H–Licata–Losev–Yacobi)

Let $w_0 \in W$ be the longest element, and μ a weight of \mathcal{C}. Then $\Theta^\mu_{w_0} : D^b(\mathcal{C}_\mu) \to D^b(\mathcal{C}_{w_0(\mu)})$ is a perverse equivalence.
Construction details

Set $\mathcal{A} = C_\mu$ and $\mathcal{A}' = C_{w_0(\mu)}$. Consider $\Theta^\mu_{w_0} : D^b(\mathcal{A}) \to D^b(\mathcal{A}')$. $V = [C]_C = \bigoplus_{\lambda \in X_+} \text{Iso}_\lambda(V)$ is an integrable g-rep.

Theorem (Jordan–Hölder filtration)

There is a filtration of \mathcal{C} by Serre subcategories

$$0 = C_0 \subseteq C_1 \subseteq \ldots \subseteq C_r = C,$$

such that

1. C_i is a subrepresentation of \mathcal{C},
2. $C_i/C_{i-1} \cong \mathcal{L}(\lambda_i) \otimes A_i$ is a simple rep., with $\mathcal{L}(\lambda_i)$ a minimal categorification and A_i an abelian category.

There are induced filtrations on \mathcal{A} and \mathcal{A}'.

Let $\lambda_0, \ldots, \lambda_r$ be the dominant weights that appear. The perversity function $p : \{0, \ldots, r\} \to \mathbb{Z}$ can be defined as $p(i) = ht(\mu - w_0(\lambda_i))$.
Braid and cactus groups I

The **braid group** Br_g is generated by $\sigma_i, i \in I$, with relations:

\[
\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{if } i \text{ and } j \text{ are connected},
\]

\[
\sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{if } i \text{ and } j \text{ are not connected}.
\]

The **cactus group** C_g is generated by c_J, for connected $J \subseteq I$, with:

\[
c_J^2 = 1 \quad \forall J \subseteq I
\]

\[
c_J c_K = c_K c_J \quad \forall J \cup K \subseteq I \text{ not connected}
\]

\[
c_J c_K = c_{\tau_J(K)} c_J \quad \forall K \subseteq J \subseteq I
\]

Where $\forall j \in J$, α_j simple root, $\alpha_{\tau_J(j)} = -w_0^j \alpha_j$.

Proposition (Cautis–Kamnitzer ’10)

The Rickard complexes satisfy the braid relations.
Braid and cactus groups II

We have $PBr_n \to Br_n \to S_n$ and $PC_n \to C_n \to S_n$. Topologically,

$$PBr_n \cong \pi_1 \left(\text{Configurations of } n \text{ distinct points in the plane} \right) \cong \pi_1(\mathbb{C}^n \setminus \bigcup_{i \neq j} \{z_i = z_j\})$$

$$PC_n \cong \pi_1(\overline{M_{0,n+1}}(\mathbb{R}))$$

The real locus of the Deligne–Mumford moduli space of curves with $n + 1$ marked points

Example. Consider $\overline{M_{0,4}}(\mathbb{R})$.

Figure: Opuntia cactus.

$$\pi_1(\overline{M_{0,4}}(\mathbb{R})) \cong \mathbb{Z} \cong PC_3 = \langle c_{12}c_1c_2c_1 \rangle$$
A cactus group action I

Combinatorial realization: $C_g \curvearrowright B = \bigsqcup \lambda B_\lambda$ on any \mathfrak{g}-crystal B via generalized Schützenberger involutions.

Let $\xi_\lambda : B_\lambda \to B_\lambda$ be the unique map:

1. $e_i \cdot \xi_\lambda(b) = \xi_\lambda(f_{\tau(i)} \cdot b)$
2. $f_i \cdot \xi_\lambda(b) = \xi_\lambda(e_{\tau(i)} \cdot b)$
3. $\text{wt}(\xi_\lambda(b)) = w_0 \cdot \text{wt}(b)$

where e_i, f_i are the Kashiwara operators on B_λ.

$\xi : B \to B$ applies ξ_λ to each connected B_λ.

Cactus action: $c_J(b) = \xi_{B_J}(b)$ for all $J \subset I$ and $b \in B$, where $B_J = B$ restricted to J.
Example

Consider \mathfrak{sl}_3 and the adjoint rep. crystal $B_{\alpha_1 + \alpha_2}$.

$C_{\mathfrak{sl}_3} = \langle c_1, c_2, c_{12} \mid c_1^2 = c_2^2 = c_{12}^2 = 1, c_1 c_{12} = c_{12} c_2 \rangle$

The c_{12} action.

The c_1 action.

The c_2 action.
A cactus group action II

Theorem 2 (H–Licata–Losev–Yacobi)

Let $\theta_J : \text{Irr}(\mathcal{C}) \to \text{Irr}(\mathcal{C})$ denote the bijection induced from Θ_{w_0}. Then the map $c_J \mapsto \theta_J$ defines a cactus group action $C_g \acts \text{Irr}(\mathcal{C})$ which coincides with the combinatorial action of the cactus group on crystals.
The End

Thank you!