CSI 445/660 - Network Science - Fall 2015

Solutions to Homework VI

Problem 1: The underlying graph of a deterministic synchronous dynamical system (SyDS), where each node has a state value from $\{0,1\}$, is shown below. Assume that this is also a progressive system; that is, once a node reaches the state 1 , it stays in that state for ever.

It is known that the local function associated with each of the nodes 1 through 4 is the 1 -threshold function. It is also known that the local functions associated with nodes 5 and 6 are threshold functions; however, we don't know the corresponding threshold values.

Recall that a configuration specifies the state value of each node. Since the graph has 6 nodes, we specify each configuration of the system as a vector with 6 components which represent the states of nodes 1 through 6 in that order. Observations of the system indicate the following.
(i) The configuration $(0,0,0,0,0,0)$ is a fixed point of the system.
(ii) When the system is started in the configuration ($0,1,0,1,0,0$), the configuration at the next time step is $(1,1,1,1,1,0)$.
(iii) When the system is started in the configuration ($0,1,0,1,1,0$), the configuration at the next time step is $(1,1,1,1,1,1)$.

Using these observations, find the threshold values of nodes 5 and 6 of the system. Be sure to indicate how you arrived at your solution.

Solution to Problem 1: Since the configuration ($0,0,0,0,0,0$) is a fixed point, the threshold values for nodes 5 and 6 must be at least 1. (If their threshold values were 0 , then the states of nodes 5 and 6 would have changed to 1 in the successor configuration of ($0,0,0,0,0,0$).)

In the configuration ($0,1,0,1,0,0$), exactly one of the inputs to nodes 5 and exactly one of the inputs to node 6 are 1 . Since the next configuration is ($1,1,1,1,1,0$), it follows that the threshold for node 5 is 1 and that for node 6 is greater than 1 .

In the configuration ($0,1,0,1,1,0$), exactly two of the inputs to node 6 are 1 . Since the next configuration is $(1,1,1,1,1,1)$, it follows that the threshold for node 6 is 2 .

Thus, the threshold values of nodes 5 and 6 are 1 and 2 respectively.

Problem 2: Consider the 2-player game given by the following payoff matrix.

Note that there are six combinations of the strategies by the two players. For each combination, indicate whether or not it is a pure Nash equilibrium. For each combination that is not a pure Nash Equilibrium, indicate which player has an incentive to switch and to which strategy.

Solution:

Combination	Pure NE?	Who has incentive to switch
(A, A)	No	P1 has an incentive to switch to C (with payoff 94). Also, P2 has an in- centive to switch to B (with payoff 80).
(A, B)	No	P1 has an incentive to switch to C (with payoff 87).
(B, A)	No	P1 has an incentive to switch to C (with payoff 94). Also, P2 has an in- centive to switch to B (with payoff 45).
(B, B)	No	P1 has an incentive to switch to C (with payoff 87).
(C, A)	No	P2 has an incentive to switch to B (with payoff 33).
(C, B)	Yes	None

Problem 3: Prove that there is no mixed Nash equilibrium for the following game when the probability values are required to be strictly between 0 and 1 .

Solution: The proof is by contradiction.
Suppose there is a mixed NE for this game where player B uses strategy P with probability q (and strategy E with probability $1-q$). We first compute the expected payoff to player A assuming that A uses a pure strategy.

Case 1: Player A uses pure strategy P.
In this case, the payoff to A is 90 with probability q and 86 with probability $1-q$. So, A's expected payoff in this case $=90 q+86(1-q)=4 q+86$.

Case 2: Player A uses pure strategy E.
In this case, the payoff to A is 92 with probability q and 88 with probability $1-q$. So, A's expected payoff in this case $=92 q+88(1-q)=4 q+88$.

To obtain a mixed Nash equilibrium, player B should choose q so that A's expected payoff is the same regardless of which pure strategy is used by that player. In other words, player B must choose q so that

$$
4 q+86=4 q+88
$$

Obviously, there is no solution to the above equation under the requirement that $0<q<1$. Thus, there is no mixed NE for this game if all probability vales must be strictly between 0 and 1 .

Note: The combination (E, E) is a pure NE for this game.

