CSI 445/660 - Network Science - Fall 2015

Solutions to Homework V

Problem 1: Let G be a connected undirected graph with 100 nodes such that the degree of each node in G is at least 50. Find the largest possible value for the farness centrality of a node of G. Be sure to explain how you arrived at your answer.

Solution to Problem 1: To compute the required value, we use the following lemma.
Lemma 1: If $G(V, E)$ is a connected graph with 100 nodes and the degree of each node is at least 50 , then the diameter of the graph is at most 2 .

Proof of Lemma 1: Consider any pair of nodes u and v. We will show that there is a path of length at most 2 between u and v. Let $N(u)$ denote the set of neighbors of u. ($N(u)$ does not include u.) Thus, $|N(u)| \geq 50$. Let $Q=V-N(u)-\{u\}$. Note that $|Q|=100-|N(u)|-1 \leq 49$, since $|N(u)| \geq 50$. If $v \in N(u)$, then the distance between u and v is 1 , and the lemma holds. So, let $v \in Q$. Note that the degree of v is at least 50 . However, $|Q|<50$ and v is not a neighbor of u. Therefore, v must be adjacent to at least one node, say w, in $N(u)$. Thus, in this case, there is a path $\langle u, w, v\rangle$ of length 2 between u and v. This completes the proof.

Calculating the largest possible farness centrality: Consider any node u of G and let d denote the degree of u. Thus, u has a path of length 1 to d nodes. By Lemma 1 , the distance between u and the remaining $100-d-1=99-d$ nodes (excluding u) is 2 . Therefore, the farness centrality of u is $d+2(99-d)=198-d$. Since $d \geq 50$, the largest value of farness centrality is $198-50=148$.

Problem 1(b) (optional - for extra credit): Suppose the answer you arrived at for Problem 1 is α. Find a graph G which has 100 nodes and in which each node has a degree of at least 50 such that the farness centrality of every node in G is exactly α.

Your answer for Problem 1(b) must include a clear description of the graph (and not a drawing of the graph) along with an explanation of why the farness centrality of each node is α.

Solution to Problem 1(b): Let $G\left(V_{1}, V_{2}, E\right)$ be the complete bipartite graph with 50 nodes on each side of the bipartition. Consider any node u of G. In G, there are exactly 50 nodes which are at a distance of 1 from u and exactly 49 nodes which are at a distance of 2 from u. Thus, the farness centrality of u is $50+2 \times 49=148$, which matches the value derived above.

Problem 2: The underlying graph of a deterministic synchronous dynamical system (SyDS), where each node has a state value from $\{0,1\}$, is shown below. Assume that the system is progressive; that is, once a node reaches the state 1 , it remains in that state forever.

The local function associated with each node is the 2-threshold function. Recall that a configuration specifies a state value for each node. This problem has two parts.
(a) Suppose the system starts at time 0 in the configuration where nodes 1,6 and 7 are in state 1 while the other nodes are in state 0 . Show the successive configurations of the system until the system reaches a fixed point.
(b) Find an initial configuration with the smallest number of nodes in state 1 such that the system reaches the fixed point where every node is in state 1. Be sure to indicate how you arrived at your solution.

Solution: Part (a): The sequence of configurations is shown below.

```
Time t = 0: (1, 0, 0, 0, 0, 1, 1)
Time t = 1: (1, 0, 1, 0, 0, 1, 1)
Time t = 2: (1, 1, 1, 0, 0, 1, 1)
```

The configuration (1, 1, 1, 0, 0, 1, 1) reached at time $t=2$ is a fixed point.
Part (b): Consider node 4 whose degree is 1 . Thus, the local function at node 1 has only two inputs. If the state of 4 is 0 in the initial configuration, node 4 will never change to state 1 , since the local function at node 4 is the 2 -threshold function. Thus, in order to reach the final configuration where every node is in state 1 , the initial state of node 4 must be 1 . The same argument applies to nodes 5,6 and 7 . Thus, in any initial configuration from which the system can reach the fixed point (1, 1, 1, 1, 1, 1, 1) must have at least four of the nodes (namely, nodes $4,5,6$ and 7) in state 1 .

Now, suppose the configuration of the system at time 0 is ($0,0,0,1,1,1,1$). At time 1 , node 3 will change to 1 and the resulting configuration is ($0,0,1,1,1,1,1$). At time 2, nodes 1 and 2 will change to 1 and the resulting configuration is ($1,1,1,1,1,1,1$), which is a fixed point.

Thus, the initial configuration with the smallest number of nodes in state 1 , which allows the system to reach the fixed point in which all nodes are in state 1 is $(0,0,0,1,1,1,1)$.

Problem 3: Let $G(V, E)$ be the projected network of an affiliation network G_{A}. Suppose G is connected and there is an independent set of size α in G. (In other words, G contains a set V^{\prime} with α nodes such that there is no edge between any pair of nodes in V^{\prime}.) Prove or disprove: The number of focal points in G_{A} is at least α.

Solution: The statement is true.
Proof: The proof is by contradiction. Suppose there is an affiliation network G_{A} with less than α focal points such that G is the projected network of G_{A}. Consider an independent set V^{\prime} of size α in G. Since G is connected, at least one edge is incident on each node of V^{\prime}. Thus, in G_{A}, each node of V^{\prime} must have at least one edge to a focal point of G_{A}. However, since G_{A} has less than α focal points, by pigeonhole principle, two of the nodes in V^{\prime}, say u and v, must be adjacent to the same focal point, say f, of G_{A}. Then, the projected network must contain the edge $\{u, v\}$, contradicting the assumption that V^{\prime} is an independent set. Hence, G_{A} must have at least α focal points.

