## CSI 445/660 - Network Science - Fall 2015

## Solutions to Homework IV

Problem 1: Consider the following graph.


The problem has three parts.
(a) Compute the total number of shortest paths between nodes $s$ and $t$ using the top-down algorithm discussed in class.
(b) Compute the total number of shortest paths between nodes $s$ and $t$ that don't contain node $v$, again using the top-down algorithm discussed in class.
(c) Using the answers from (a) and (b), compute the total number of shortest paths between nodes $s$ and $t$ that contain node $v$.

## Solution:

Part (a): The following figure shows the graph above, with the integer appearing in parentheses next to the node's name giving the number of shortest paths from $s$ to that node. These numbers have been computed using the top-down algorithm discussed in class.


Thus, the total number of shortest paths between $s$ and $t$ is 27 .

Part (b): The following figure shows the graph above with node $v$ deleted. Again, the integer appearing in parentheses next to the node's name is the number of shortest paths from $s$ to that node.


Thus, the total number of shortest paths between $s$ and $t$ that don't contain node $v$ is 18 .
Part (c): From the results of Parts (a) and (b), it follows that the total number of shortest paths between $s$ and $t$ that contain node $v$ is $27-18=9$.

Problem 2: The following table shows the values of functions $f(x)$ and $g(x)$ for various values of the independent variable $x$.

| $x$ | $f(x)$ |
| :---: | :---: |
| 5.00 | 252822.43 |
| 7.50 | 84599.77 |
| 11.25 | 28308.89 |
| 16.88 | 9472.76 |
| 25.31 | 3169.79 |
| 37.97 | 1060.68 |
| 56.95 | 354.93 |
| 85.43 | 118.77 |
| 128.14 | 39.74 |
| 192.22 | 13.30 |


| $x$ | $g(x)$ |
| :---: | :---: |
| 3.00 | 5824779.30 |
| 5.10 | 1185913.90 |
| 8.67 | 347172.77 |
| 14.74 | 114200.30 |
| 25.06 | 40746.59 |
| 42.60 | 17235.83 |
| 72.41 | 69248.85 |
| 123.10 | 384.66 |
| 209.27 | 10.41 |
| 355.76 | 0.13 |

By plotting these functions suitably, determine whether each of the above functions exhibits a power-law behavior. If yes, determine the power-law exponent.

Solution: Log-log plots of functions $f(x)$ and $g(x)$ are shown below.


Since the $\log -\log$ plot for the function $f(x)$ is a straightline, it exhibits a power-law behavior. However, $g(x)$ does not exhibit a power-law behavior.

To compute the power-law exponent for $f(x)$, we will consider the values $(11.25,28308.89)$ and $(16.88,9472.76)$. The slope of the line joining these two points in the log-log plot is given by

$$
\frac{\log _{10}(9472.76)-\log _{10}(28308.89)}{\log _{10}(16.88)-\log _{10}(11.25)}=-2.698028
$$

So, the power law exponent for function $f(x)$ is 2.69808 .
Note: The data for $f(x)$ was created using the exponent of 2.7 .

Problem 3: Suppose $G$ is a connected undirected graph. Let $\rho$ and $\Delta$ denote respectively the radius and diameter of $G$. Prove that $\Delta \leq 2 \rho$.

Solution: To establish the result, we will show that for any pair of nodes $u$ and $v$, the shortest distance is at most $2 \rho$.

Consider any pair of nodes $u$ and $v$. Let $p$ be a center of the graph. From the definitions of center and radius, the distance between $p$ and $u$ is at most $\rho$ and that between $p$ and $v$ is at most $\rho$. In other words, there is a path of length at most $2 \rho$ between $u$ and $v$ (passing through $p$ ). Hence the shortest distance between $u$ and $v$ cannot be larger than $2 \rho$, and this completes the proof.

Note: It is easy to construct an example where the diameter of the graph is exactly twice the radius. (For example, consider a simple path with three nodes. The middle node of the path is the center and so the radius is 1 . The diameter is 2 , which is the shortest distance between the two end nodes.)

