
CSI 445/660 – Part 10

(Link Analysis and Web Search)

Ref: Chapter 14 of [EK] text.

10–1 / 27



Searching the Web – Ranking Web Pages

Suppose you type “UAlbany” to Google.

The web page for UAlbany is among the top few results displayed.

Search engines use automated methods to rank pages.

These methods are generally based on link analysis.

Search engines also maintain and try to get clues from a user’s
search history.

Common difficulties:

Synonymy: Multiple ways to describe the same thing
(e.g. “scallions” vs “green onions”).

Polysemy: Multiple meanings for the same word (e.g. “mercury”
may refer to the planet, a car model, the chemical element or
newspaper).

10–2 / 27



Information Retrieval – Then and Now

Pre-web era: Problem of scarcity.

Example: A lawyer searching for certain types of cases could only locate
a few documents.

Now: Problem of abundance.

The search engine should try to produce the most relevant
information (from a whole lot of information).

A popular area of research.

Focus: Use of link analysis in ranking.

Some basic issues:

Suppose a user types a one word query “Cornell” into a search
engine.

Are there clues within the web to suggest that cornell.edu is a
good answer to the query?

10–3 / 27



Information Retrieval ... (continued)

Idea 1 – Voting by in-links:

cornell.edu

"Vote" for cornell.edu

If many other pages link to
cornell.edu, one can think of that
page as receiving collective
endorsement.

Some of those pages may actually
express negative opinions about
cornell.edu.

Idea 2 – List finding:

Consider the query “newspapers” to a search engine.

There is no single “best” answer to this query.

10–4 / 27



Information Retrieval ... (continued)

Idea 2: List finding (continued):

Suppose we collect a set of web pages that have the word
”newspapers” and then check which pages they “endorse”
(i.e., to which pages they have in-links).

The answers typically consist of the following:

High scores for web pages of prominent newspapers.

High scores for other web pages such as Google, Amazon,
Facebook, etc.

Note: Web pages for Google, Amazon, Facebook, etc. generally receive

a high score no matter what the query is.

10–5 / 27



Information Retrieval ... (continued)

Example:

10–6 / 27



List Finding ... (continued)

Pages that contain lists of resources relevant to a topic are also
useful.

For the query “newspapers”, we may try to find pages that have
lists of links to newspapers.

We can try to compute a measure that represents the value of a
page as a list.

One possible measure: The list value of a page X is the sum of the
votes received by the pages voted for by X .

10–7 / 27



Information Retrieval ... (continued)

Example (with list values):

10–8 / 27



List Finding ... (continued)

Idea 3 – Principle of iterative improvement:

Since pages with high list values are important, their votes should
be weighted more heavily. (Endorsements from more important
people should count more.)

So, it is useful to tabulate the votes again, using the list values.

After this, we can recompute the list values again; that is, repeat
the vote count and list count steps.

The resulting algorithm (due to Kleinberg) is called HITS
(Hyperlink-Induced Topic Search).

10–9 / 27



Information Retrieval ... (continued)

Example (with list values and new vote counts):

10–10 / 27



A Description of the HITS Algorithm

Definitions:

Authorities for a query: Pages that are prominent and highly
endorsed answers.

Hubs for a query: Pages that have high list values.

Preliminary ideas:

For each page p, we maintain two numerical values denoted by
auth(p) and hub(p). Initially, auth(p) = hub(p) = 1.

Two update rules are used.

p1

p2

p

pr

1. Authority update rule (or voting step):
For each page p, update auth(p) to be the sum
of the hub scores for all the pages that
point to p.

10–11 / 27



A Description of the HITS Algorithm (continued)

Update rules (continued):

p2

p1

pr

p

2. Hub update rule (or list finding step):
For each page p, update hub(p) to be the sum
of the authority scores for all the pages to which
p points.

Outline of the HITS Algorithm:

1 For each page p, set auth(p) = hub(p) = 1. Choose a value for
the number of steps k .

2 Repeat the following steps k times:

Apply the Authority update rule.

Apply the Hub update rule.

3 Normalize the scores and output pages in non-increasing order of
their authority scores.

10–12 / 27



HITS Algorithm ... (continued)

Result produced by the HITS Algorithm:

10–13 / 27



HITS Algorithm ... (continued)

Final remarks:

Kleinberg [1999] shows that the scores converge to appropriate
limits as k →∞ (except in some degenerate cases).

It is possible to express the HITS Algorithm as an iterative
algorithm on matrices MMT and MTM, where M is the
adjacency matrix formed by the initial pages.

The authority scores and hub scores of pages converge to specific
eigenvectors of MMT and MTM respectively.

The resulting authority and hub scores represent a form of
equilibrium (under the authority update and hub update rules).

10–14 / 27



Page Rank

HITS Algorithm works well in commercial contexts where competing
firms don’t (generally) link to each other.

In other contexts (e.g. academic pages, scientific literature),
page rank algorithm generally outperforms the HITS Algorithm.

Page rank computation uses ideas similar to those of HITS:

A page rank update rule.

Idea of iterative improvement.

A physical model for page rank:

Think of page rank as a fluid that circulates through the links of
the web network.

The fluid accumulates at nodes that are “most important”.

10–15 / 27



Page Rank Computation (continued)

Notation: For any page u,

PR(u) denotes its page rank.

OD(u) denotes its outdegree.

Outline of the algorithm:

1 Let n denote the number of pages. For each node u,
let PR(u) = 1/n.

2 Choose a value for k (the number of iterations).

3 Repeat the following step k times:

Apply the Basic Page Rank Update Rule to
all the nodes in parallel.

10–16 / 27



Page Rank Computation (continued)

Basic Page Rank Update Rule: For any node u,

1 (Flow generation step)

If OD(u) = 0 then u sends PR(u) to itself.

If OD(u) ≥ 1, then u sends PR(u)/OD(u) along
each of its outgoing edges.

2 (Flow accumulation step)

Suppose node u has r incoming edges and the flow along
the i th edge is αi .

If OD(u) = 0, then

PR(u) = PR(u)+ α1 + α2 + · · ·+ αr .

If OD(u) ≥ 1, then

PR(u) = α1 + α2 + · · ·+ αr .

10–17 / 27



Page Rank Computation (continued)

Examples for the flow generation step:

Example 1:

x y z

u
Suppose PR(u) = 1/2.

Since OD(u) = 3, u sends 1/6 along each of
the three outgoing edges.

Example 2:

x zy

u

Suppose PR(u) = 1/10.

Since OD(u) = 0, u sends 1/10 to itself.

10–18 / 27



Page Rank Computation (continued)

Examples for the flow accumulation step:

Example 3:

x zy

u

1/5

1/4

1/3

Here, OD(u) = 0.

Let the current value of PR(u) be 1/10.

New value of PR(u) =
1/10 + 1/3 + 1/4 + 1/5 = 53/60.

Example 4:

x zy

1/5

1/4

1/3

u

ba

Let the current value of PR(u) be 1/10.

Since OD(u) = 2, u has already sent 1/20 to
each of a and b.

New value of PR(u) = 1/3 + 1/4 + 1/5 =
47/60.

10–19 / 27



Page Rank Computation (continued)

A more detailed example:

b c

d

a

(1/4)

(1/4)

(1/4)(1/4)

Initially, PR(a) = PR(b) = PR(c) =
PR(d) = 1/4.

Each node has outdegree > 0. So, in
every step, each node sends out its page
rank along the outgoing edges.

Step 1:

Node a receives 1/8 from b and 1/4 from c .
So, PR(a) = 1/8 + 1/4 = 3/8.

Node b receives 1/8 each from a and d .
So, PR(b) = 1/8 + 1/4 = 3/8.

Node c receives 1/8 from a. So, PR(c) = 1/8.

Node d receives 1/8 from b. So, PR(d) = 1/8.

10–20 / 27



Page Rank Computation (continued)

A more detailed example (continued):

b c

d

a

(1/8)

(1/8)

(3/8)

(3/8)
At the end of Step 1, PR(a) = PR(b) =
3/8 and PR(c) = PR(d) = 1/8.

Step 2:

Node a receives 3/16 from b and 1/8 from c .
So, PR(a) = 3/16 + 1/8 = 5/16.

Node b receives 3/16 from a and 1/8 from d .
So, PR(b) = 3/16 + 1/8 = 5/16.

Node c receives 3/16 from a. So, PR(c) = 3/16.

Node d receives 3/16 from b. So, PR(d) = 3/16.

10–21 / 27



Page Rank Computation (continued)

Table showing successive page rank values:

Step PR(a) PR(a) PR(a) PR(a)

0 1/4 1/4 1/4 1/4
1 3/8 3/8 1/8 1/8
2 5/16 5/16 3/16 3/16

Remarks:

There is no normalization here; the total page rank is always 1.

It can be shows that (except for degenerate cases), the page rank
values converge to a limit as k →∞.

10–22 / 27



Page Rank Computation (continued)

Example for equilibrium state (or fixed point):

a

b c

Suppose PR(a) = 0, PR(b) = 1/2 and
PR(c) = 1/2.

These values won’t change; that is,
this is an equilibrium state.

Another form of equilibrium:

Initially, let PR(a) = 0, PR(b) = 3/4 and PR(c) = 1/4.

At the end of Step 1: PR(a) = 0, PR(b) = 1/4 and PR(c) = 3/4.

At the end of Step 2: PR(a) = 0, PR(b) = 3/4 and PR(c) = 1/4
(which is the initial state).

Remark: If the network is strongly connected, it can be shown that
there is a unique equilibrium state.

10–23 / 27



Page Rank Computation (continued)

A drawback: In some networks, the page rank update rule allows
“wrong” nodes to end up with all the page rank.

g h

a

e fdcb One would expect node a to have
a high page rank.

However, the current page rank
update rule cause all the page rank
to flow out of a.

All the page rank accumulates at g
and h; it doesn’t flow back to the
other nodes.

Remedy: Modify the page rank update rule.

10–24 / 27



Scaled Page Rank Update Rule

Steps:

1 Pick a scaling factor s, where 0 < s < 1.

2 Apply the basic page rank update rule.

3 Scale down all the page rank values by the factor s.
(This step reduces the total page rank from 1 to s.)

4 Divide the residual 1− s units of page rank equally among the n
nodes; that is, add (1− s)/n units of page rank to each node.
(This step restores the total page rank value to 1.)

Remarks:

It can be shows that (except for degenerate cases), the scaled page
rank values converge to a limit as k →∞.

It is believed that the value of s used by Google is in the
range 0.8 to 0.9.

10–25 / 27



A Random Walk Interpretation of Page Rank

Basic page rank update rule and random walks:

1 Suppose we have n web pages p1, p2, . . ., pn.

2 Choose an initial page: each page is chosen with
probability = 1/n. Let pi be the chosen page.

3 Repeat k times:

Suppose the OD(pi ) = r .

If r = 0, stay at pi itself.
If r ≥ 1, choose one of the outgoing edges of pi with
probability = 1/r .
Update pi to the other end point of that edge.

Theorem: For each i , 1 ≤ i ≤ n, the probability that the above random
walk is at node pi is equal to the page rank of pi after k applications
of the basic page rank update rule.

10–26 / 27



A Random Walk Interpretation of Page Rank (continued)

Notes:

The random walk approach provides another way
to estimate page ranks.

The approach can also be extended to the scaled page rank
update rule. In the body of the loop for Step 3, do the following:

With probability s (the chosen scale factor) continue the
random walk as before.

With probability 1− s choose another node, say pj , with all
nodes being equally likely and continue the random walk
from pj .

Search engine companies are generally very secretive about the
exact methods they use for computing page ranks.

10–27 / 27


