CSI 445/660 — Part 9

(Introduction to Game Theory)

Ref: Chapters 6 and 8 of [EK] text.
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Game Theory Pioneers

m John von Neumann (1903-1957)
Ph.D. (Mathematics), Budapest, 1925

Contributed to many fields including
Mathematics, Economics, Physics and
Computer Science.

Taught at the Institute for Advanced Study in
Princeton.

A key participant in the Manhattan Project.

Note: The book “Theory of Games and Economic Behavior" by
von Neumann and Morgenstern (which marks the beginning of Game
Theory) was first published in 1944.
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Game Theory Pioneers

m Oskar Morgenstern (1902-1977)

m Ph.D. (Political Science), University of
Vienna, 1925.
m Taught at Princeton University and the

Institute for Advanced Study at Princeton.

m Many contributions to Economics and
Mathematics.

John Nash (1928-2015)
Ph.D. (Mathematics), Princeton, 1950.

Many deep contributions to Mathematics.

Taught at MIT.

m Nobel Prize in Economics in 1994 and the Abel
Prize in Mathematics in 2015.
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Game Theory — Introduction

Game Theory: Useful in analyzing situations where outcomes depend
on a person's decisions as well as the choices made by others interacting
with the person.

Some Applications:

m Pricing a product (when other companies have a similar product).
m Auctions.
m Choosing routes in transportation networks.

m International relations.

An example of a 2-person game:

m Two students (“players”) A and B.
m They have an exam and a joint presentation the next day.
m Each can only prepare for one and not both.
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Game Example (continued)

m Score for the exam:

m If the student studies, then score = 92.
m If the student doesn’t study, then score = 80.

m Score for the presentation:

m If both A and B prepare, then score = 100.
m If only one student prepares, then score = 92.
m If neither A nor B prepares, then score = 84.

m A and B cannot contact each other; however, they must
make a decision.

Analysis:
Both A and B prepare for the presentation.

m Each gets 100 for the presentation.
m Each gets 80 for the exam.
m Average score for each = 90.
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Game Example (continued)

Analysis: (continued)
H Both A and B study for the exam.

m Each gets 92 for the exam.
m Each gets 84 for the presentation.
m Average score for each = 88.

A studies for the exam and B prepares for the presentation.

m A gets 92 for the exam and 92 for the presentation.
So, average score for A = 92.
m B gets 80 for the exam and 92 for the presentation.
So, average score for B = 86.
B A prepares for the presentation and B studies for the exam.
m A gets 80 for the exam and 92 for the presentation.
So, average score for A = 86.

m B gets 92 for the exam and 92 for the presentation.
So, average score for B = 92.
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Game Example (continued)

Summary of the Analysis — Payoff matrix:

ok

E

Basic ingredients of a game:

P E
(90,90) | (86,92)
(92,86) | (88,88)

Table shows the actions for A and B.

The payoff value (x, y) means that A’s
(average) score is x and B's
(average) score is y.

Note: A's payoff depends on B's
actions as well.

m A set of players (Focus: 2-person games).

m A set of options (strategies) for each player.

m A payoff matrix that specifies the payoff values for the players for
each combination of strategies.

Note: The game is completely captured by the payoff matrix.
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Standard Assumptions

m One-shot games: Each player chooses an action (strategy)
without knowing what the other player will choose.

m Everything players care about is specified in the payoff matrix.

m Each player knows all the possible strategies and the full payoff
matrix. (If not, we have games of incomplete information.)

m Players behave rationally.

m Each player wants to maximize his/her payoff.
m Each player succeeds in selecting an optimal strategy.

lllustration — Reasoning in the Exam-Presentation Game:

m Consider the reasoning from A's point of view. (B's point of view is
similar because of symmetry.)
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Reasoning in the Exam-Presentation Game

P E
@ P | (90,90) | (86,92)
E |(92,86) | (88,88)

Case 1: Suppose B chooses E.
m If A chooses P, payoff = 86.
m If A chooses E, payoff = 88.

m Due to rationality, A must choose
E in this case.

Case 2: Suppose B chooses P.

m If A chooses P, payoff = 90.

m If A chooses E, payoff = 92.

m Due to rationality, A must choose E in this case also.

Conclusion: No matter what B does, A must choose E to get

maximum payoff.
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Exam-Presentation Game (continued)

m Here, A has a strategy (namely, E)

that is strictly better than all of A's
other strategies, no matter what B

P E chooses.
@ P | (90.90) | (86,92) m This is an example of a dominant
E | (92,86) | (88,88) strategy.
m By symmetry, B also has the same

dominant strategy.

Consequence: Both players choose E and each gets a payoff of 88.
(Rationality dictates this outcome.)
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Exam-Presentation Game (continued)

m Rational play (i.e., both players choose
E) leads to a payoff of 88 for each.

m If they both choose P, note that each
P E of them can get a better payoff
P | (90,90) | (86,92) (namely, 90).
@ e o286 | (888 m Based on the rationality assumption,
(92:86) | (88.88) that choice cannot happen. (If A

agrees to choose P, B will choose E
to get a better payoff of 92.)

Prisoner’s Dilemma:

m |dea developed by Merrill Flood and Melvin Dresher in 1950;
formalized by Albert Tucker.

m Two prisoners P1 and P2, interrogated in two separate rooms.

m Actions for each: Confess (C) or Not Confess (NC).
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Prisoner’s Dilemma (continued)

Payoff Matrix for Prisoner’s Dilemma

m Payoff value "—4" means a 4 year

C NC .
jail term.
C | (-4-4)| (010 o o
( gk ) m Maximizing payoff implies less
NC | (-10,0) | (-1,-1) jail time.

Analysis by Prisoner P1:
Case 1: Suppose P2 chooses C.

m If P1 chooses C, then payoff = —4.
m If P1 chooses NC, then payoff = —10.

m So, the rational choice is C.
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Prisoner’s Dilemma (continued)

Analysis by Prisoner P1 (continued):

Case 2: Suppose P2 chooses NC.
C NC

m If P1 chooses C, then payoff = 0.
(-4,-4) | (0,-10)

C
m If P1 chooses NC, then payoff = —1.
NC | (=10,0) | (=1,-1)

m So, the rational choice is again C.

Consequences:

m So, the dominant strategy for both is C.
m Each gets a payoff of —4.

m Even though there is a better alternative (namely, the action NC for
both), it can't be achieved through rational play.
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Prisoner’s Dilemma (continued)

m Canonical example of situations where cooperation is difficult to
establish because of individual self-interest.

m Has been used as a framework to study many real-world situations
(generally referred to as arms races).

Example: Use of performance enhancing drugs in professional sports.

m Strategies: Use drugs (U) and

Don't use drugs (DU).

v
:l; T m Dominant strategy for both players is
o I A U with (2,2) as the payoft.
I B m The alternative with better payoff

(namely, (3,3)) won't be reached.
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Prisoner’s Dilemma (continued)

m For situations like Prisoner's Dilemma to arise, payoffs must be
chosen in a certain way.

m Even small changes to the payoff matrix can change the situation
significantly.

Example: A modified payoff table for the Exam-Presentation game.

m Now, the dominant strategy for both

P E
b | ©8.98) | (04.96) players is P.
@ m The corresponding payoff is (98, 98).
E | 96.94) | (92,92)
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Some Formal Definitions

Best Response:

m Represents the best choice for a player, given the other player's
choice.

P E

@ p | (98,98) | (94,96)

E | (96,94) | (92,92)

m If B chooses E, A's best response is P.

Notation:

m Pi(x,y): Represents payoff to Player 1 when Player 1 uses strategy
x and Player 2 uses strategy y.

m Py(x,y): Similar but represents payoff to Player 2.
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Some Formal Definitions (continued)

Definition: A strategy s for Player P1 is a best response to strategy t
for Player 2 if Py(s,t) > Py(s',t) for all other strategies s’ of P1.

Note: Best response strategy for P2 is defined similarly.

Additional Definitions:

m In general, there may be more than one best response.
m If there is a unique best response, it is a strict best response.

m A strategy s for P1 is a strict best response for strategy t by P2 if
Pi(s,t) > Pi(s',t) for all other strategies s’ of P1.
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Some Formal Definitions (continued)

Additional Definitions (continued):

m A dominant strategy for P1 is a strategy that is a best response
to every strategy of P2.

m A strictly dominant strategy for P1 is a strategy that is a strict
best response to every strategy of P2.

Example:
P E . . .
m Here, P is a strictly dominant
@ P | (98.98) | (94.96) strategy for both players.
E | (96,94) | (92,92)

Note: When a player has a strictly dominant strategy, the player should
be expected to use it (due to rationality).
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Strict Dominant Strategies

So far: Games in which both players had strict dominant strategies.

Now: Games in which only one player has a strictly dominant
strategy.

setting: (Manufacturing/Marketing)

There are two versions, namely low cost (L) and upscale (U), of a
product X. (Strategies: L and U.)

There are two firms F1 and F2 (the players).

Market segment: 60% of the population will buy L
and 40% will buy U.

F1 and F2 capture 80% and 20% of the market respectively.
If only one firm manufactures L (or U), it will capture 100%

of the corresponding market.
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Market /Manufacturing Game (continued)

Computing Payoff Matrix:

m Both F1 and F2 manufacture L.

m Market segment is 60%.

m F1 captures 80% of the market (i.e., 48% overall) and
F2 captures 12%.

m So, the payoff for this case is (48,12).

m Other combinations can be computed similarly.

Resulting Payoff Matrix:

=)

L u

L | (48,12) | (60,40)

D,

U |(40,60) | (32,8)
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Market /Manufacturing Game (continued)

Analysis by F1:

@ m Case 1: F2 chooses L. Here, F1's
= v strict best response is L.
L | (48,12) | (60,40)
@ m Case 2: F2 chooses U. Again, Fl's
U | (40,60) | (32,8) strict best response is L.

Conclusion: L is the strictly dominant strategy for F1.

Analysis by F2:
m Case 1: F1 chooses L. F2's strict best response is U.

m Case 2: F1 chooses U. F2's strict best response is L.

Conclusion: F2 does not have a strictly dominant strategy.
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Market /Manufacturing Game (continued)

What is the outcome of the game?

@ Reasoning used by F2:
L u m Due to rationality, F1 will choose
L | (48,12) | (60,40) L, its strictly dominant strategy.
: U |(40,60) | (328) m So, F2's best response is U and the

resulting payoff is (60, 40).

Note: F2’'s reasoning relies on common knowledge:
m Both players know the complete payoff matrix.

m Both players know that each player knows all the rules
and will act rationally.
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The Concept of Equilibrium

Motivation:

m Suppose we have a game where neither player has a strictly
dominant strategy.

m John Nash proposed the concept of equilibrium to predict the

outcomes of such games.

Example: Consider the following game.

®

A B c
(4.4) (0,2) 0,2)
(0,0) (1.1 0.2)
(0,0) 02 | @1

m In this game, no player has a
strictly dominant strategy.

m Reason: If F2 chooses A, F1's
best response is A; however, if F2
chooses B, F1's best response is B.
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The Concept of Equilibrium (continued)

Definition: A pair of strategies (x, y) is a pure Nash equilibrium
(pure NE) if x is a best response to y and vice versa.

Example:
A B C
Al @y | 02 | 02 m Consider the strategy pair (A, A).
@ B (0,0) 1,1 0,2) | The payofF is (4, 4)
c (0,0) (0,2) (1,1)

m If F1 plays A, F2's best response is A and vice versa.
m So, (A, A) is a pure NE for this game.

m Once the players choose (A, A), there is no incentive for either
player to switch to another strategy unilaterally.
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The Concept of Equilibrium

Example (continued)

A

() e

(¢}

Notes:

A B [¢]
(4.4) 02 | (02
00 | (1) | (02
00 | (02 | (1,1

(continued)

Consider the strategy pair (B, B).
The payoff is (1,1).

If F1 plays B, F2's best response is
C (with payoff = 2).

So, F2 has an incentive to switch
and (B, B) is not a pure NE.

m Similarly, (B, C) is not a pure NE. (F1 has an incentive to
switch to C.)

m In fact, the only pure NE for the game is (A, A).
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Remarks on the Equilibrium Concept

m At an equilibrium, there is no force pushing it to a different
outcome. (It is bad for a player to switch unilaterally to a different
strategy.)

m If a pair of strategies (x, y) is not a pure NE, players cannot believe
that this pair would actually be used (since one of the players has
an incentive to switch).

m The equilibrium concept is not based on rationality alone.

m It is based on beliefs. (If each player believes that the other player

will use a strategy which is part of an NE, then the other player has
an incentive to use his/her part of the NE.)
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Coordination Games

Example:

m Players A and B are preparing slides for a presentation.

m They can use Power Point (PP) or Keynote (KN).

Payoff matrix:

PP KN m This is a “coordination game” since the
pe | 1) | (00 goal is to choose a common strategy by
both players.
KN (0,0) (2,2) play

m For this game, both (PP, PP) and (KN, KN) are pure NEs.

m An unbalanced coordination game — payoffs for the two pure NEs
are different.

9-27 /76



Coordination Games (continued)

Contexts for coordination games — Some examples:

m Manufacturing companies work together to decide the unit of
measurement (English or Metric) for their machinery.

m Units of an army must decide on a strategy to attack the enemy.

m People trying to meet each other in a shopping mall must decide
where to meet.

Which Nash Equilibrium?
m A coordination game may have several pure NEs.
m Which will the players choose?

m Thomas Schelling introduced the idea of a focal point to study this.

Basic idea: There may be natural reasons (possibly external to the
payoff matrix) that allow people to choose an appropriate NE.
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Coordination Games — Focal Point

Example 1: Power Point vs Keynote game.

m The payoff is higher for the (KN, KN)
UL equilibrium.
PP | (1.1) (0,0)
m So, if the focal point is “higher payoff”,
KN | (00) | 22 players will prefer (KN, KN).

Example 2: Cars on a (dark) undivided road.

O>
[}

Strategies: L or R.
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Coordination Games — Focal Point (continued)

Example 2 (continued):

m Note: “Inf’ denotes co.
£ R m Value —oo denotes “disaster”.
L | (inf, Inf) | (=Inf, -Inf)
@ m Value oo denotes “ok” (nobody gets
R | (=Inf, =Inf)l (Inf, Inf)
hurt).

m Both (L, L) and (R, R) are pure NEs.

m The choice is based on social convention.

m In USA, each driver uses R.
m In UK, each driver uses L.
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Coordination Games — Focal Point (continued)

Example 3 (Battle of the Sexes):

m Two people want to watch a movie together.

m Strategies: Action movie (A) or Romantic comedy (R).

m They want to coordinate on their choice.

R

A

R

A

(1,2

(0,0

(0,0)

@1

m (R, R) and (A, A) are both pure NE.

m (R, R) is better for P2 while (A, A) is
better for P1.

Consequence: Additional information (e.g. a convention that exists

between the players) is needed to predict which equilibrium will be

chosen.
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Anti-Coordination Games

Hawk-Dove Game:

m Dividing a piece of food (weight: 6 Ibs) among two animals
(players).

m Strategies: Hawk (aggressive behavior) or Dove
(passive behavior).

m If both choose H, they “destroy” each
other and nobody gets anything.

b H m (H, D) and (D, H) are both pure NE;
these correspond to “anti-coordination”.

D | B3 | (1,9

H | 61 | 00 m We can't predict which of these equilibria
will be chosen without additional
information about the players.
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Anti-Coordination Games (continued)

A context for the Hawk-Dove game:

m Two neighboring countries (the players).
m Hawk and Dove represent strategies with respect to foreign policy.

m If both countries are aggressive, they may go to war (which may be
disastrous to both).

m If both are passive, then each country has an incentive to switch.

Equilibrium: One country is aggressive and the other is passive.
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Games Without Pure Nash Equilibria

m When games have one or more pure NE, we have some information
about the outcome (i.e., the players are likely to choose the
strategies corresponding to one of the equilibria).

m There are games where is there is no pure NE.
(Example: Matching Pennies game — to be discussed next.)

m The notion of equilibrium for such games is based on randomized
strategies (mixed strategies).
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A Game Without any Pure Nash Equilibrium

Matching Pennies:

Two players (P1 and P2), each holding a penny.
Strategies: Head (H) or Tail (T).

m If coins match, P1 loses the penny to P2.

m Otherwise, P2 loses the penny to P1.

H T m An example of a zero sum game.

Ho| (1o 1,-1) m In every outcome, what one player wins is

exactly what the other player loses.

T (+1,=1) | (-1, +1)
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A Game Without any Pure Nash Equilibrium

Matching Pennies (continued):

H T m There is no dominant strategy for
either player.
Ho| (1,41 ] (1, -1) play
m There is no pure NE in this game.
T | (1, =1) | (=1, +1)

Reason:

m For each pair of strategies, there is a player with a payoff of —1.

m That player has an incentive to switch.

What should the players do?
m If P1 knows what P2 is going to do, then P1 can always get a
payoff of +1.

m So, P2 should make it difficult for P1 to guess what P2 will do;

that is, employ randomization.
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Mixed Strategies & Expected Payoff

Basic ldeas:

m Each player chooses a probability for playing H.

m So, each strategy is a real number in [0, 1].

m If probability of H is p, then probability of T = 1 — p.

m Players are “mixing” the options H and T (mixed strategies).
m When p =0 or p =1, we get the corresponding pure strategy.
m Expected payoffs must be considered.

m Rationality: Players want to maximize their expected payoffs.
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Mixed Strategies & Expected Payoff (continued)

Notation:

m P1 and P2 play H with probabilities p and g respectively.

m Each mixed strategy is a probability value (i.e., the probability of
playing H).

Definition: If P1's mixed strategy is p, then the best response of P2 is
a probability value g that maximizes P2's expected payoff.

Definition: A mixed Nash equilibrium (mixed NE) is a pair (p, q) of

probability values for P1 and P2 such that p is the best response for g
and vice versa.

Note: In a mixed equilibrium, no player has an incentive to change
his/her mixed strategy (i.e.,probability value) unilaterally.
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A Mixed Nash Equilibrium for Matching Pennies

Lemma 1: No pure strategy can be part of a mixed NE for the
Matching Pennies game.

Proof sketch:

m We already know that there is no pure NE for the game; that is,
both P1 and P2 cannot use pure strategies in an equilibrium.

m Suppose P1 uses pure strategy H while P2 uses mixed strategy g,
where 0 < g < 1.

m Now, P2 has the incentive to change the strategy to g =1
(i.e., play H all the time) to ensure a win every time.

m Other cases are handled similarly.

Consequence: In any mixed NE for the Matching Pennies game, the
probability values can’t be either 0 or 1.
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Mixed Strategies & Expected Payoff (continued)

Computing expected payoff (P2’s Analysis):

H

T

Ho| 1+

(+1,-1)

T (+1,-1)

(-1, +1)

m P2 plays H with probability g
(and T with probability 1 — q).

Case 1: Suppose P1 plays the pure strategy H.

m P1 loses 1 cent each time P2 plays H, that is, with probability q.

m P1 gains 1 cent each time P2 plays T, that is, with probability 1 —q.

m So, expected payoff for PL = —g+ (1 —gq) = 1 — 2q.
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Mixed Strategies & Expected Payoff (continued)

Computing expected payoff (continued):

H T

m P2 plays H with probability g

O] ED ] - (and T with probability 1 — g).

Case 2: Suppose P1 plays the pure strategy T.

T (+1,=1) | (=1, +1)

m P1 gains 1 cent each time P2 plays H, that is, with probability g.
m P1 loses 1 cent each time P2 plays T, that is, with probability 1 — g.
m So, expected payoff for P1L = g — (1 —¢q) =29 — 1.

Summary:

m P1's expected payoff when using pure strategy H = 1 — 2q.
m P1’s expected payoff when using pure strategy T = 2q — 1.
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Mixed Strategies & Expected Payoff (continued)

Lemma 2 (Generalization): Suppose P1 and P2 use strategies p and g
respectively. Then

m The expected payoff for P1 = (2p — 1)(1 — 2q).
m The expected payoff for P2 = (1 — 2p)(1 — 2q).

Lemma 3: If 1 —2q # 2qg — 1, then a pure strategy maximizes P1's
expected payoff.

Proof sketch: Suppose 1 —2q # 2q — 1. Then either 1 —2q > 2g—1
orl—2qg < 2g—1.

Case 1: 1—-2qg > 2g—1.

m Here, 1 —29g > 0.

In this case, the expected payoff for P1 = (2p — 1)(1 — 2q).
m This function increases as p increases; it is maximized when p = 1.

m Thus, using pure strategy H maximizes P1's expected payoff.
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Mixed Strategies & Expected Payoff (continued)

Proof sketch for Lemma 3 (continued)

Case 2: 1—-2q < 2g-—1.

m Pure strategy T maximizes P1's expected payoff. (The argument is
similar to that of Case 1.)

Lemma 4: If 1 —2q # 2q — 1, then there is no mixed NE for the game.
Reason:

m When 1 —2q # 2g — 1, Lemma 3 shows that P1’s best response is a
pure strategy.

m However, Lemma 1 points out that no pure strategy can be part of
a mixed NE for the game.

9-43/76



Mixed Strategies & Expected Payoff (continued)

Consequences of Lemma 4:

m P2 must choose g so that 1 —2g =2q — 1, thatis, g = 1/2
to get a mixed NE.

m Similarly, P1 must choose p = 1/2 for a mixed NE.
m Thus, the only mixed NE for the game is (1/2,1/2).

Additional Remarks:

m If P2 chooses g < 1/2 (i.e., plays T more often than H), then P1
will use the pure strategy H to gain advantage.

m If P2 chooses g > 1/2 (i.e., plays H more often than T), then P1
will use the pure strategy T to gain advantage.
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Mixed Strategies & Expected Payoff (continued)

Additional Remarks (continued)
m When P2 chooses g = 1/2, both the pure strategies (H and T) give
the same expected payoff to P1.

m The choice g = 1/2 by ensures that neither of the pure strategies
offers any advantage to P1 (i.e., makes P1 indifferent between
choosing H or T).

Theorem: [Nash 1950]
Every game with a finite number of players has at least one mixed
equilibrium.
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Mixed Strategies & Expected Payoff (continued)

Another example for Mixed NE Computation: Consider the
following game.

A

B

(90, 10)

(20, 80)

A

B | (30,70)

(60, 40)

m Exercise: Does this game have one or
more pure NE?

P2’s Analysis: Suppose P2 plays A with probability g (and B with
probability 1 — q).

Case 1: P1 chooses pure strategy A.

| Outcome | Probability | Payoff to P1 |

(AA)

q 90

(A.B)

1—gqg 20

P1's expected payoff in Case 1 = 90 x g+ 20 x (1 —gq) = 70q + 20.
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Mixed Strategies & Expected Payoff (continued)

Example for Mixed NE Computation (continued):

A B
A | (90,10) | (20, 80) m Case 2: P1 chooses pure strategy B.

B | (30,70) | (60, 40)

| Outcome | Probability | Payoff to P1 |

(B.A) q 30
(B,B) 1-g 60
P1's expected payoff in Case 2 = 30 x g+60x (1—gq) = —30q+ 60.

To make P1 indifferent with respect to pure strategy, we must have

70g+20 = —30g+60 or q=0.4.
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Mixed Strategies & Expected Payoff (continued)

Example for Mixed NE Computation (continued):

A

B

A

B

(90, 10)

(20, 80)

(30, 70)

(60, 40)

m A similar calculation shows that P1 must
choose p = 0.3.

m So (0.3,0.4) is a mixed NE for this game.

Power Point vs Keynote coordination game:

PP

KN

PP KN
(1.1 (0,0)
(00 | (22

m This game has two pure Nash equilibria,
namely (PP, PP) and (KN, KN).

m It also has a mixed NE.
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Games with Pure and Mixed NE

P2’s Analysis: Suppose P2 plays PP with probability g (and KN with
probability 1 — q).

Case 1: P1 chooses the pure strategy PP.

| Outcome | Probability | Payoff to P1 |
(PP,PP) q 1
(PP.KN) 1_g 0

P1's expected payoff in Case 1 = q.

Case 2: P1 chooses the pure strategy KN. P1's expected payoff in this
case = 2(1—q).

To obtain a mixed NE, we have g = 2(1 — g) or g = 2/3.
By symmetry, p = 2/3. So, (2/3, 2/3) is a mixed NE for this game.
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Complexity of Finding Nash Equilibria

m For the form of games we have considered (called normal form),
determining whether a game has a pure NE is efficiently solvable.

m In general, with many players and more complex specifications of
strategies, determining whether a game has a pure NE is
NP-complete.

m Finding a mixed NE for a game is complete for another complexity
class called PPAD.

m The class PPAD contains problems for which we know at least one
solution exists but finding a solution is difficult (“needle in a
haystack™).

m It is believed that the class PPAD is different from the class NP.
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Pareto and Social Optimality

Presentation-Exam Game (discussed earlier):

P E
@ P | (90,90) | (86,92)
E | (92,86) | (88,88)

Additional Notes:

m E is a dominant strategy for
both A and B.

m (E, E) is also a pure NE.
m The payoff for (E, E) is (88, 88).

m (P, P) is not a pure NE; A has an
incentive to switch to E.

m Outcome (P, P) can’t be reached under rational behavior
(i.e., when players optimize individually).

m Other mechanisms are needed to allow such outcomes.

Exercise: Show that there is no mixed NE for the above game when the
probability values are required to be strictly between 0 and 1.
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Pareto Optimality

m Vilfredo Pareto (1848-1923)

m Ph.D. (Civil Engineering), University of Turin,
Italy.

m Pareto Principle (or “80-20 rule") is named
after him.

m Made many important contributions to
Microeconomics.
Towards a definition of Pareto Optimality:

m The four payoff vectors in the Presentation-Exam game are:
(90, 90), (86, 92), (92, 86), (88, 88)

m The vector (90,90) is strictly better than (88,88) (since it allows
both players to do better).
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Pareto Optimality (continued)

m Suppose we add one more vector (88,90) to the set to get:
(90, 90), (86, 92), (92, 86), (88, 88), (88, 90)

m The vector (88,90) is at least as good as (88,88) since

m no player is worse off choosing (88, 90) over (88,88) and

m at least one player’s payoff is better off in (88,90) compared to
that in (88, 88).

m Terminology: Payoff vector (88,90) dominates the payoff vector
(88,88). (Alternatively, (88,88) is dominated by (88,90).)
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Pareto Optimality (continued)

Definition: A payoff vector (x;, y1) dominates another payoff vector
(x2, y2) if all the following conditions hold:

Hx > x,

y1 > y2 and

at least one of these inequalities is strict (i.e., *>" instead of ‘>').

Examples:
m The vector (88, 90) dominates (88, 88).
m The vector (86, 92) does not dominate (88, 88).

m A vector (x, y) does not dominate itself.

Representation:

x1,y1)

m (x1, y1) dominates (xp, y»).

(x2, y2)
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Pareto Optimality (continued)

m Consider the following set X of vectors
X = {(90,90), (86,92), (92,86), (88,88), (88,90)}.

m The domination relationship among these vectors is as follows:

[ (90,90) —=| (88,90) | | (86.92) | [ (92, 86) |

A
(88, 88)

m Vectors which don’t have an incoming edge are “non-dominated”.

m They represent Pareto optimal payoffs.

Definition: A pair of strategies is Pareto optimal if the payoff vector
for the pair is not dominated by the payoff vector for any other pair of

strategies.
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Pareto Optimality (continued)

Example:
P E
@ P | (90,90) | (86,92)
E |(92,86) | (88,88)

m Here, the Pareto optimal strategy
pairs are (P, P), (P, E) and (E, P).

m The only pure Nash equilibrium (E, E)
is not Pareto optimal. (Interestingly,
that is the only strategy pair that is
not Pareto optimall)

How can players reach a Pareto optimal outcome?

m They must sign a binding contract before the game.

m If there is no such contract, some player may have an incentive to
switch to another strategy (since a Pareto optimal strategy need not
be a pure NE).
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Social Optimality

m Some Pareto optimal strategies provide outcomes that are good for
both players (“good for society” ).

Example: In the Presentation-Exam game, the strategy pair
(P, P) (with payoff = (90, 90)) is better for both players than the
strategy pair (E, E) (with payoff = (88, 88)).

m There are other ways to define social optimality.

Definition: A pair of strategies («, /3) is a social optimum (or a
social welfare maximizer) if it maximizes the sum of the payoffs to
the two players.

Example: In the Presentation-Exam game, the strategy pair (P, P)
(with payoff = (90, 90)) is the unique social optimum with a

total value of 180.

9-57/76



Pareto Optimality vs Social Optimality

Lemma: (1) Every social optimum is also Pareto optimal.
(2) A Pareto optimal solution need not be a social optimum.

Proof:

Part 1: Suppose a payoff vector (x, y) is a social optimum but not
Pareto optimal.

m Then, there must be another payoff vector (x’, y’) which
dominates (x, y).

m Thus, X’ > x, y' > y, and at least one inequality is strict.
m Therefore, X’ +y’ > x+y, and this contradicts the assumption

that (x, y) is a social optimum.

Part 2: In the Presentation-Exam game, (86, 92) is Pareto optimal.
However, it is not a social optimum (which is (90, 90)).
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Nash Equilibrium vs Social Welfare Maximizer

Note: We consider pure Nash equilibria.

m A pure Nash Equilibrium need not be Pareto optimal.

Example: In the Presentation-Exam game, (88, 88) is a pure NE
but not Pareto optimal (it is dominated by (90, 90)).

m A pure Nash Equilibrium need not be a social optimum.

Example: In the Presentation-Exam game, (88, 88) is a pure NE
but not the social optimum (which is (90, 90)).

Note: We will consider two contexts where we can quantify how the
total value of a pure NE compares with the social optimum.

m Traffic in transportation networks.

m Cost-sharing in computer networks.
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Applying Game Theory to Network Problems

Example — Traffic in transportation networks:

m Cars want to go from A to B.

m The value on each edge is the travel
time.

m On the edges (A, C) and (D, B),
travel time is a linear function of the
number of cars x. (These edges are
sensitive to congestion.)

m Number of cars = 4000.

m If all cars use the route A-C-B, travel time for
each car = (4000/100) + 45 = 85.

m If all cars use the route A-D-B, travel time for each car is again 85.

m Suppose cars divide evenly between the two routes. Then travel
time for each car = (2000/100) + 45 = 65.
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Applying Game Theory ... (continued)

The underlying game:

m 4000 players (Drivers)
m Strategies: {A-C-B, A-D-B}

m Payoff for each player: Travel time

Notes:
m We will minimize payoffs.

m There is no dominant strategy for any player; the travel time for a
route depends on the number of players using that route.

m There are many pure Nash equilibria for this game.
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Applying Game Theory ... (continued)

Theorem:

Every combination of strategies that divides the 4000 cars evenly
between the two routes is a pure NE.

A In every pure NE, each route has the same number of cars.
Proof sketch for Part 1: Consider any combination of strategies that
has 2000 cars along each route. (Travel time for each player = 65.)

Question: Does any single player have an incentive to switch to the
other route?

m Suppose one player switches from A-C-B to A-D-B.
m After the switch, there will be 2001 cars along A-D-B.

m New travel time along A-D-B = 45 + (2001/100) > 65;
that is, the payoff is worse.

So, no player has an incentive to switch (unilaterally).
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Applying Game Theory ... (continued)

Proof sketch for Part 2: Suppose there a pure NE with t cars on
A-C-B and 4000 — t cars on A-D-B.

To prove: t =4000—t (which implies that t = 2000).
Case 1: t > 4000 —t.

Here, it is easy to verify that 4000 — ¢t < t— 2.
Current travel time for player along A-C-B = 45 + (¢/100).
Switch one player from A-C-B to A-D-B.

New travel time for the player is

45+-[(4000 — t) +1]/100 < 454 [(t—2)+1]/100 < 45+ (t/100)

Thus, the player has an incentive to switch and we don't have a
pure NE.

Case 2: t < 4000 —t : The proof is similar.
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Braess's Paradox

/100 m In any pure NE, each of the two routes
is used by 2000 players.
B
.%' m Travel time for each player = 65.
D

After adding the edge (C, D):

m Strategies: {A-C-B, A-C-D-B,
A-D-B}.

(]

x/100 45
m Surprise: There is a unique pure NE

Al B where every player uses the route
x/100 A—C—D—B

m Travel time for each player = 80.
Verifying that A-C-D-B a pure NE:
m Suppose a player wants to switch to A-D-B.
m New travel time = 45+ (4000/100) = 85.

m So, no player has an incentive to switch.
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Braess's Paradox (continued)

Why A-C-D-B is a unique pure NE — A brief explanation:

m Consider the flow pattern with 2000
players using A-C-B and 2000 using
A-D-B.

m Travel time for each player = 65.

m Suppose a player X switches from A-C-B to A-C-D-B.
m Travel time for X = (2000/100) + (2001/100) = 40.01.
m So, X has an incentive to switch.
m So, the above flow pattern is not a pure NE.

Note: A similar argument applies to other flow patterns.

Remark: Removing the red edge (C, D) creates a better pure NE.
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Braess's Paradox (continued)

Braess’s Paradox:

m Travel time in a pure NE increases even though resources were
added to the system.

m Named after Dietrich Braess (1938-), a Mathematician from
Germany.

m Result published in 1969.

Empirical observations supporting Braess’s Paradox:

m In Seoul (South Korea), the destruction of a 6-lane highway (as part
of a project called “"Cheonggyecheon Restoration”) actually reduced
the commute time for many drivers.

m In Stuttgart (Germany), closing a major road actually decreased
traffic congestion.

m In 1990, the closing of 42nd Street in New York City significantly
reduced traffic congestion.
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Braess's Paradox (continued)

Additional Remarks:

m Braess's paradox shows a situation where introducing a new choice
(strategy) makes the payoff worse for everyone.

m Other such situations also exist.

Prisoner’s dilemma.

Example:
NG c
NC | (-1.-1) | (-10,0)
. C | (0-10) | (-4-4)

m If each player is given only one
strategy, namely NC, things would be
better for both.

m Adding a second strategy (C)
introduces difficulties.

m For each player, C is the strictly
dominant strategy. So, the outcome is
(C, C), which is worse for both
compared to (NC, NC).
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Social Cost of Traffic at Equilibrium

m No. of players = 4000.

m Pure NE: All 4000 players use the
route A-C-D-B.

m Social optimum: 2000 players use
A-C-B and 2000 use A-D-B.

For the pure NE, travel time for each player = 80.

So, total time (cost) for this pure NE = 4000 x 80 = 320, 000.

m For the social optimum, travel time for each player = 65.

So, cost of social optimum = 4000 x 65 = 260, 000.

m This example shows that cost of pure NE can be larger than that of
social optimum.
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A General Model for the Problem

Ref: [Roughgarden & Tardos, 2002]

m Road network represented by a directed graph with predefined origin
and destination.
m For each edge e, a linear travel time function given by
Te(x) = aex+ be
where a. and b, are constants and x is the number of cars on the
edge e.

m A traffic pattern specifies a path for each car. (Paths are assumed
to be simple.)

m Social cost of a traffic pattern Z is the sum of the travel times for
all the drivers.

Research Question 1: Under this model, is there always a (pure) Nash
equilibrium?

Answer: Yes.
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eneral Model ... (continued)

Outline of algorithm for producing an equilibrium:

Start with any traffic pattern Z.
while (Z is not an equilibrium) do

m Move one driver (chosen arbitrarily) to a better path.
m Let Z denote the new traffic pattern.

Notes:
m The above algorithm always terminates.

m The traffic pattern produced when the algorithm terminates is a
Nash equilibrium.

Proof idea: (Potential Function Argument)
m Define a suitable function (called a potential function).
m Argue that every time a driver is moved to a better path, the value

of the function decreases.

m Also argue that the value of the function cannot decrease below a
lower limit (at which point no switches can occur).
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A General Model ... (continued)

Research Question 2: How does the total travel time at an equilibrium
compare with the social optimum?

Theorem: [Roughgarden & Tardos, 2002]

There is always an equilibrium travel pattern Z such that the travel time
of Z is at most twice the social optimum.

Further improvement: [Anshlevich et al., 2004]

There is always an equilibrium travel pattern W such that the travel time
of W is at most 4/3 times the social optimum.
Notes:

m For some non-linear travel cost functions, the cost of an equilibrium
can be much larger than that of social optimum.

m For networks with more complicated travel cost functions, an
equilibrium may not exist.
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A Model for Multicast in Computer Networks

Ref: [Anshlevich et al. 2004]

m A directed graph with a cost c(e) > 0 for each edge, a designated
source node s and k distinct terminal nodes t;, t, ..., tx (one for
each player).

m Each player P; wants to set up a directed path from s to
terminal t; (1 < i< k).

m Paths chosen by different players may share edges.

m If an edge e is shared by g players, then the cost for each player is
c(e)/q. (So, there is an incentive to share edges.)

m Each player wants to minimize the cost of their path.

m Social cost of any solution is the sum of the costs of all the players.
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A Model for Multicast ... (continued)

m Two players P; and P;.
m Choices for Pi: s >t or s — v — t7.
m Choices for P>: s — th or s = v — to.

m Initial choice: P; uses the edge
s — t; and P, uses the edge s — t;.

Moves:

m P; notices that switching to s — v — t; does not decrease the cost.

m P> notices that switching to s — v — t, does decrease the cost
(from 8 to 6), and does the switch.

m Now, P; notices that switching to s — v — t; does decrease the
cost (4 to 3.5) because of the shared cost for s — v.
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A Model for Multicast ... (continued)

S Equilibrium:
5 m P;usess — v —t; and
4 8
v m Py uses s — v — b
1 . . .
./\ m Now, neither player has an incentive to
t1 t2 switch.
Example with multiple equilibria:

m Equilibrium 1: P; uses s - x = v — t; and
P, uses s — x = v — tp. (Cost for each player

Xe > =1.1/2 = 0.55.
(\ /) / )
v m Equilibrium 2: P; uses s -y — v — t; and
0 0
[ ]
t

P, uses s = y — v — t5. (Cost for each player
=2/2=1.0)
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A Model for Multicast ... (continued)

Example — Social optimum need not be an equilibrium:

m Social optimum: P; usess — v — t; and
P> uses s = v — t.

m Total cost = 7. (Cost for each player = 3.5.)

m This is not an equilibrium.

Moves:

m P; has an incentive to switch to s — t; (since the cost decreases
from 3.5 to 3).
m Once P; switches, P, has an incentive to switch to s — t (since
the cost decreases from 6 to 5).
m The situation where
m P; uses s — t; and
m P, uses s — t, is an equilibrium.

m Social cost at this equilibrium = 8.
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A Model for Multicast ... (continued)

Ref: [Anshlevich et al. 2004], [Kleinberg & Tardos, 2006]

Research Question 1: Does every multicast problem have a
Nash equilibrium?

Answer: Yes. (Proof uses the potential function technique.)

Research Question 2: How does the cost of a best equilibrium
compare with the social optimum?

Answer: For any k > 2 players, the cost of a best equilibrium is
at most Hj times the social optimum, where

He=1+(1/2) + (1/3) ...+ (1/k)
is the k*® Harmonic Number.
Note: Ink < H, < Ink+1.
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