CSI 445/660 - Part 9

(Introduction to Game Theory)

Ref: Chapters 6 and 8 of [EK] text.

Game Theory Pioneers

■ John von Neumann (1903-1957)
■ Ph.D. (Mathematics), Budapest, 1925
■ Contributed to many fields including Mathematics, Economics, Physics and Computer Science.

- Taught at the Institute for Advanced Study in Princeton.

■ A key participant in the Manhattan Project.

Note: The book "Theory of Games and Economic Behavior" by von Neumann and Morgenstern (which marks the beginning of Game Theory) was first published in 1944.

Game Theory Pioneers

- Oskar Morgenstern (1902-1977)

- Ph.D. (Political Science), University of Vienna, 1925.
- Taught at Princeton University and the Institute for Advanced Study at Princeton.
- Many contributions to Economics and Mathematics.
- John Nash (1928-2015)
- Ph.D. (Mathematics), Princeton, 1950.
- Many deep contributions to Mathematics.
- Taught at MIT.
- Nobel Prize in Economics in 1994 and the Abel Prize in Mathematics in 2015.

Game Theory - Introduction

Game Theory: Useful in analyzing situations where outcomes depend on a person's decisions as well as the choices made by others interacting with the person.

Some Applications:

- Pricing a product (when other companies have a similar product).
- Auctions.
- Choosing routes in transportation networks.
- International relations.

An example of a 2-person game:

- Two students ("players") A and B.
- They have an exam and a joint presentation the next day.
- Each can only prepare for one and not both.

Game Example (continued)

- Score for the exam:
- If the student studies, then score $=92$.
- If the student doesn't study, then score $=80$.
- Score for the presentation:
- If both \mathbf{A} and \mathbf{B} prepare, then score $=100$.
- If only one student prepares, then score $=92$.
- If neither \mathbf{A} nor \mathbf{B} prepares, then score $=84$.
- A and B cannot contact each other; however, they must make a decision.

Analysis:

1 Both \mathbf{A} and \mathbf{B} prepare for the presentation.

- Each gets 100 for the presentation.
- Each gets 80 for the exam.
- Average score for each $=90$.

Game Example (continued)

Analysis: (continued)

2 Both \mathbf{A} and \mathbf{B} study for the exam.

- Each gets 92 for the exam.
- Each gets 84 for the presentation.
- Average score for each $=88$.

3 A studies for the exam and \mathbf{B} prepares for the presentation.
■ A gets 92 for the exam and 92 for the presentation. So, average score for $\mathbf{A}=92$.
■ B gets 80 for the exam and 92 for the presentation. So, average score for $\mathbf{B}=86$.
$4 \mathbf{A}$ prepares for the presentation and \mathbf{B} studies for the exam.
■ A gets 80 for the exam and 92 for the presentation. So, average score for $\mathbf{A}=86$.
■ B gets 92 for the exam and 92 for the presentation. So, average score for $\mathbf{B}=92$.

Game Example (continued)

Summary of the Analysis - Payoff matrix:

- Table shows the actions for \mathbf{A} and \mathbf{B}.
- The payoff value (x, y) means that A's (average) score is x and B's (average) score is y.
- Note: A's payoff depends on B's actions as well.

Basic ingredients of a game:

- A set of players (Focus: 2-person games).
- A set of options (strategies) for each player.
- A payoff matrix that specifies the payoff values for the players for each combination of strategies.

Note: The game is completely captured by the payoff matrix.

Standard Assumptions

■ One-shot games: Each player chooses an action (strategy) without knowing what the other player will choose.

- Everything players care about is specified in the payoff matrix.
- Each player knows all the possible strategies and the full payoff matrix. (If not, we have games of incomplete information.)
- Players behave rationally.
- Each player wants to maximize his/her payoff.
- Each player succeeds in selecting an optimal strategy.

Illustration - Reasoning in the Exam-Presentation Game:

- Consider the reasoning from A's point of view. (B's point of view is similar because of symmetry.)

Reasoning in the Exam-Presentation Game

Case 1: Suppose B chooses E.

- If \mathbf{A} chooses P , payoff $=86$.
- If \mathbf{A} chooses E , payoff $=88$.
- Due to rationality, A must choose E in this case.

Case 2: Suppose B chooses P.

- If A chooses P, payoff $=90$.
- If \mathbf{A} chooses E , payoff $=92$.
- Due to rationality, A must choose E in this case also.

Conclusion: No matter what B does, A must choose E to get maximum payoff.

Exam-Presentation Game (continued)

- Here, A has a strategy (namely, E)
 that is strictly better than all of A's other strategies, no matter what \mathbf{B} chooses.
- This is an example of a dominant strategy.
- By symmetry, B also has the same dominant strategy.

Consequence: Both players choose E and each gets a payoff of 88 . (Rationality dictates this outcome.)

Exam-Presentation Game (continued)

- Rational play (i.e., both players choose E) leads to a payoff of 88 for each.
- If they both choose P, note that each of them can get a better payoff (namely, 90).
- Based on the rationality assumption, that choice cannot happen. (If \mathbf{A} agrees to choose P, B will choose E to get a better payoff of 92 .)

Prisoner's Dilemma:

■ Idea developed by Merrill Flood and Melvin Dresher in 1950; formalized by Albert Tucker.

- Two prisoners P1 and P2, interrogated in two separate rooms.
- Actions for each: Confess (C) or Not Confess (NC).

Prisoner's Dilemma (continued)

Payoff Matrix for Prisoner's Dilemma

- Payoff value " -4 " means a 4 year jail term.
- Maximizing payoff implies less jail time.

Analysis by Prisoner P1:

Case 1: Suppose P2 chooses C.

- If $\mathbf{P 1}$ chooses C , then payoff $=-4$.
- If $\mathbf{P 1}$ chooses NC, then payoff $=-10$.
- So, the rational choice is C .

Prisoner's Dilemma (continued)

Analysis by Prisoner P1 (continued):

Case 2: Suppose P2 chooses NC.

- If P1 chooses C , then payoff $=0$.
- If $\mathbf{P 1}$ chooses NC , then payoff $=-1$.
- So, the rational choice is again C .

Consequences:

- So, the dominant strategy for both is C.
- Each gets a payoff of -4 .
- Even though there is a better alternative (namely, the action NC for both), it can't be achieved through rational play.

Prisoner's Dilemma (continued)

- Canonical example of situations where cooperation is difficult to establish because of individual self-interest.
- Has been used as a framework to study many real-world situations (generally referred to as arms races).

Example: Use of performance enhancing drugs in professional sports.

- Strategies: Use drugs (U) and
 Don't use drugs (DU).
- Dominant strategy for both players is U with $(2,2)$ as the payoff.
- The alternative with better payoff (namely, $(3,3)$) won't be reached.

Prisoner's Dilemma (continued)

- For situations like Prisoner's Dilemma to arise, payoffs must be chosen in a certain way.
- Even small changes to the payoff matrix can change the situation significantly.

Example: A modified payoff table for the Exam-Presentation game.

- Now, the dominant strategy for both players is P .
- The corresponding payoff is $(98,98)$.

Some Formal Definitions

Best Response:

■ Represents the best choice for a player, given the other player's choice.

Notation:

- $P_{1}(x, y)$: Represents payoff to Player 1 when Player 1 uses strategy x and Player 2 uses strategy y.
- $P_{2}(x, y)$: Similar but represents payoff to Player 2.

Some Formal Definitions (continued)

Definition: A strategy s for Player P1 is a best response to strategy t for Player 2 if $P_{1}(s, t) \geq P_{1}\left(s^{\prime}, t\right)$ for all other strategies s^{\prime} of $P 1$.

Note: Best response strategy for P2 is defined similarly.

Additional Definitions:

- In general, there may be more than one best response.
- If there is a unique best response, it is a strict best response.
- A strategy s for P1 is a strict best response for strategy t by P2 if $P_{1}(s, t)>P_{1}\left(s^{\prime}, t\right)$ for all other strategies s^{\prime} of P 1 .

Some Formal Definitions (continued)

Additional Definitions (continued):

- A dominant strategy for P1 is a strategy that is a best response to every strategy of P2.
- A strictly dominant strategy for P1 is a strategy that is a strict best response to every strategy of P2.

Example:

- Here, P is a strictly dominant strategy for both players.

Note: When a player has a strictly dominant strategy, the player should be expected to use it (due to rationality).

Strict Dominant Strategies

- So far: Games in which both players had strict dominant strategies.
- Now: Games in which only one player has a strictly dominant strategy.

The setting: (Manufacturing/Marketing)
■ There are two versions, namely low cost (L) and upscale (U), of a product X . (Strategies: L and U.)

- There are two firms F1 and F2 (the players).
- Market segment: 60% of the population will buy L and 40% will buy U .
- F1 and F2 capture 80% and 20% of the market respectively.
- If only one firm manufactures L (or U), it will capture 100% of the corresponding market.

Market/Manufacturing Game (continued)

Computing Payoff Matrix:

- Both F1 and F2 manufacture L.
- Market segment is 60%.

■ F1 captures 80% of the market (i.e., 48% overall) and F2 captures 12%.

- So, the payoff for this case is $(48,12)$.

■ Other combinations can be computed similarly.

Resulting Payoff Matrix:

Market/Manufacturing Game (continued)

Analysis by F1:

- Case 1: F2 chooses L. Here, F1's strict best response is L .

■ Case 2: F2 chooses U. Again, F1's strict best response is L .

Conclusion: L is the strictly dominant strategy for F1.
Analysis by F2:

- Case 1: F1 chooses L. F2's strict best response is U.
- Case 2: F1 chooses U. F2's strict best response is L.

Conclusion: F2 does not have a strictly dominant strategy.

Market/Manufacturing Game (continued)

What is the outcome of the game?

Reasoning used by F2:

- Due to rationality, F1 will choose L, its strictly dominant strategy.
- So, F2's best response is U and the resulting payoff is $(60,40)$.

Note: F2's reasoning relies on common knowledge:

- Both players know the complete payoff matrix.
- Both players know that each player knows all the rules and will act rationally.

The Concept of Equilibrium

Motivation:

- Suppose we have a game where neither player has a strictly dominant strategy.
- John Nash proposed the concept of equilibrium to predict the outcomes of such games.

Example: Consider the following game.

- In this game, no player has a strictly dominant strategy.
- Reason: If F2 chooses A, F1's best response is A; however, if F2 chooses B, F1's best response is B.

The Concept of Equilibrium (continued)

Definition: A pair of strategies (x, y) is a pure Nash equilibrium (pure NE) if x is a best response to y and vice versa.

Example:

- Consider the strategy pair (A, A).
- The payoff is $(4,4)$.
- If F1 plays A, F2's best response is A and vice versa.
- So, (A, A) is a pure NE for this game.
- Once the players choose (A, A), there is no incentive for either player to switch to another strategy unilaterally.

The Concept of Equilibrium (continued)

Example (continued)

- Consider the strategy pair (B, B).
- The payoff is $(1,1)$.
- If F1 plays B, F2's best response is C (with payoff $=2$).
- So, F2 has an incentive to switch and (B, B) is not a pure NE.

Notes:

- Similarly, (B, C) is not a pure NE. (F1 has an incentive to switch to C.)
- In fact, the only pure NE for the game is (A, A).

Remarks on the Equilibrium Concept

- At an equilibrium, there is no force pushing it to a different outcome. (It is bad for a player to switch unilaterally to a different strategy.)
- If a pair of strategies (x, y) is not a pure NE, players cannot believe that this pair would actually be used (since one of the players has an incentive to switch).
- The equilibrium concept is not based on rationality alone.
- It is based on beliefs. (If each player believes that the other player will use a strategy which is part of an NE, then the other player has an incentive to use his/her part of the NE.)

Coordination Games

Example:

- Players A and B are preparing slides for a presentation.
- They can use Power Point (PP) or Keynote (KN).

Payoff matrix:

- This is a "coordination game" since the goal is to choose a common strategy by both players.
- For this game, both (PP, PP) and (KN, KN) are pure NEs.
- An unbalanced coordination game - payoffs for the two pure NEs are different.

Coordination Games (continued)

Contexts for coordination games - Some examples:

- Manufacturing companies work together to decide the unit of measurement (English or Metric) for their machinery.
- Units of an army must decide on a strategy to attack the enemy.
- People trying to meet each other in a shopping mall must decide where to meet.

Which Nash Equilibrium?

- A coordination game may have several pure NEs.
- Which will the players choose?
- Thomas Schelling introduced the idea of a focal point to study this.
- Basic idea: There may be natural reasons (possibly external to the payoff matrix) that allow people to choose an appropriate NE.

Coordination Games - Focal Point

Example 1: Power Point vs Keynote game.

Example 2: Cars on a (dark) undivided road.

> Strategies: L or R.

Coordination Games - Focal Point (continued)

Example 2 (continued):

■ Note: "Inf" denotes ∞.

- Value $-\infty$ denotes "disaster".
- Value ∞ denotes "ok" (nobody gets hurt).
- Both (L, L) and (R, R) are pure NEs.
- The choice is based on social convention.
- In USA, each driver uses R.
- In UK, each driver uses L.

Coordination Games - Focal Point (continued)

Example 3 (Battle of the Sexes):

- Two people want to watch a movie together.
- Strategies: Action movie (A) or Romantic comedy (R).
- They want to coordinate on their choice.

Consequence: Additional information (e.g. a convention that exists between the players) is needed to predict which equilibrium will be chosen.

Anti-Coordination Games

Hawk-Dove Game:

- Dividing a piece of food (weight: 6 lbs) among two animals (players).
- Strategies: Hawk (aggressive behavior) or Dove (passive behavior).
- If both choose H , they "destroy" each
 other and nobody gets anything.
- (H, D) and (D, H) are both pure NE; these correspond to "anti-coordination".
- We can't predict which of these equilibria will be chosen without additional information about the players.

Anti-Coordination Games (continued)

A context for the Hawk-Dove game:

- Two neighboring countries (the players).

■ Hawk and Dove represent strategies with respect to foreign policy.

- If both countries are aggressive, they may go to war (which may be disastrous to both).
- If both are passive, then each country has an incentive to switch.
- Equilibrium: One country is aggressive and the other is passive.

Games Without Pure Nash Equilibria

- When games have one or more pure NE, we have some information about the outcome (i.e., the players are likely to choose the strategies corresponding to one of the equilibria).
- There are games where is there is no pure NE. (Example: Matching Pennies game - to be discussed next.)
- The notion of equilibrium for such games is based on randomized strategies (mixed strategies).

A Game Without any Pure Nash Equilibrium

Matching Pennies:

- Two players (P1 and P2), each holding a penny.
- Strategies: Head (H) or Tail (T).
- If coins match, P1 loses the penny to P2.
- Otherwise, P2 loses the penny to P1.

- An example of a zero sum game.
- In every outcome, what one player wins is exactly what the other player loses.

A Game Without any Pure Nash Equilibrium

Matching Pennies (continued):

- There is no dominant strategy for either player.
- There is no pure NE in this game.

Reason:

- For each pair of strategies, there is a player with a payoff of -1 .
- That player has an incentive to switch.

What should the players do?
■ If P1 knows what P2 is going to do, then P1 can always get a payoff of +1 .

- So, P2 should make it difficult for P1 to guess what P2 will do; that is, employ randomization.

Mixed Strategies \& Expected Payoff

Basic Ideas:

- Each player chooses a probability for playing H .
- So, each strategy is a real number in [0, 1].
- If probability of H is p, then probability of $\mathrm{T}=1-p$.
- Players are "mixing" the options H and T (mixed strategies).
- When $p=0$ or $p=1$, we get the corresponding pure strategy.
- Expected payoffs must be considered.
- Rationality: Players want to maximize their expected payoffs.

Mixed Strategies \& Expected Payoff (continued)

Notation:

- P 1 and P 2 play H with probabilities p and q respectively.
- Each mixed strategy is a probability value (i.e., the probability of playing H).

Definition: If P1's mixed strategy is p, then the best response of P2 is a probability value q that maximizes P2's expected payoff.

Definition: A mixed Nash equilibrium (mixed NE) is a pair (p, q) of probability values for P1 and P2 such that p is the best response for q and vice versa.

Note: In a mixed equilibrium, no player has an incentive to change his/her mixed strategy (i.e.,probability value) unilaterally.

A Mixed Nash Equilibrium for Matching Pennies

Lemma 1: No pure strategy can be part of a mixed NE for the Matching Pennies game.

Proof sketch:

- We already know that there is no pure NE for the game; that is, both P1 and P2 cannot use pure strategies in an equilibrium.
- Suppose P 1 uses pure strategy H while P 2 uses mixed strategy q, where $0<q<1$.
- Now, P2 has the incentive to change the strategy to $q=1$ (i.e., play H all the time) to ensure a win every time.
- Other cases are handled similarly.

Consequence: In any mixed NE for the Matching Pennies game, the probability values can't be either 0 or 1 .

Mixed Strategies \& Expected Payoff (continued)

Computing expected payoff (P2's Analysis):

Case 1: Suppose P1 plays the pure strategy H.

- P1 loses 1 cent each time P 2 plays H, that is, with probability q.
- P1 gains 1 cent each time $P 2$ plays T, that is, with probability $1-q$.
- So, expected payoff for $\mathrm{P} 1=-q+(1-q)=1-2 q$.

Mixed Strategies \& Expected Payoff (continued)

Computing expected payoff (continued):

- P 2 plays H with probability q (and T with probability $1-q$).

Case 2: Suppose P1 plays the pure strategy T.

- P1 gains 1 cent each time $P 2$ plays H, that is, with probability q.
- P1 loses 1 cent each time P 2 plays T , that is, with probability $1-q$.

■ So, expected payoff for $\mathrm{P} 1=q-(1-q)=2 q-1$.

Summary:

- P1's expected payoff when using pure strategy $\mathrm{H}=1-2 q$.
- P1's expected payoff when using pure strategy $\mathrm{T}=2 q-1$.

Mixed Strategies \& Expected Payoff (continued)

Lemma 2 (Generalization): Suppose P 1 and P 2 use strategies p and q respectively. Then

- The expected payoff for $\mathrm{P} 1=(2 p-1)(1-2 q)$.
- The expected payoff for $\mathrm{P} 2=(1-2 p)(1-2 q)$.

Lemma 3: If $1-2 q \neq 2 q-1$, then a pure strategy maximizes P1's expected payoff.

Proof sketch: Suppose $1-2 q \neq 2 q-1$. Then either $1-2 q>2 q-1$ or $1-2 q<2 q-1$.

Case 1: $1-2 q>2 q-1$.

- Here, $1-2 q>0$.
- In this case, the expected payoff for $\mathrm{P} 1=(2 p-1)(1-2 q)$.
- This function increases as p increases; it is maximized when $p=1$.

■ Thus, using pure strategy H maximizes P1's expected payoff.

Mixed Strategies \& Expected Payoff (continued)

Proof sketch for Lemma 3 (continued)

Case 2: $1-2 q<2 q-1$.
■ Pure strategy T maximizes P1's expected payoff. (The argument is similar to that of Case 1.)

Lemma 4: If $1-2 q \neq 2 q-1$, then there is no mixed NE for the game.

Reason:

- When $1-2 q \neq 2 q-1$, Lemma 3 shows that P1's best response is a pure strategy.

■ However, Lemma 1 points out that no pure strategy can be part of a mixed NE for the game.

Mixed Strategies \& Expected Payoff (continued)

Consequences of Lemma 4:

- P2 must choose q so that $1-2 q=2 q-1$, that is, $q=1 / 2$ to get a mixed NE.
- Similarly, P1 must choose $p=1 / 2$ for a mixed NE.
- Thus, the only mixed NE for the game is $(1 / 2,1 / 2)$.

Additional Remarks:

- If P2 chooses $q<1 / 2$ (i.e., plays T more often than H), then P1 will use the pure strategy H to gain advantage.
- If P 2 chooses $q>1 / 2$ (i.e., plays H more often than T), then P 1 will use the pure strategy T to gain advantage.

Mixed Strategies \& Expected Payoff (continued)

Additional Remarks (continued)

- When P2 chooses $q=1 / 2$, both the pure strategies (H and T) give the same expected payoff to P1.
- The choice $q=1 / 2$ by ensures that neither of the pure strategies offers any advantage to P1 (i.e., makes P1 indifferent between choosing H or T).

Theorem: [Nash 1950]
Every game with a finite number of players has at least one mixed equilibrium.

Mixed Strategies \& Expected Payoff (continued)

Another example for Mixed NE Computation: Consider the following game.
(P2)

- Exercise: Does this game have one or more pure NE?

P2's Analysis: Suppose P2 plays A with probability q (and B with probability $1-q$).

Case 1: P1 chooses pure strategy A.

Outcome	Probability	Payoff to P1
(A, A)	q	90
$(\mathrm{~A}, \mathrm{~B})$	$1-q$	20

P1's expected payoff in Case $1=90 \times q+20 \times(1-q)=70 q+20$.

Mixed Strategies \& Expected Payoff (continued)

Example for Mixed NE Computation (continued):

(P2)

- Case 2: P1 chooses pure strategy B.

Outcome	Probability	Payoff to P1
(B, A)	q	30
(B, B)	$1-q$	60

P1's expected payoff in Case $2=30 \times q+60 \times(1-q)=-30 q+60$.
To make P1 indifferent with respect to pure strategy, we must have

$$
70 q+20=-30 q+60 \text { or } q=0.4
$$

Mixed Strategies \& Expected Payoff (continued)

Example for Mixed NE Computation (continued):

- A similar calculation shows that P1 must choose $p=0.3$.
- So $(0.3,0.4)$ is a mixed NE for this game.

Power Point vs Keynote coordination game:

- This game has two pure Nash equilibria, namely (PP, PP) and (KN, KN).
- It also has a mixed NE.

Games with Pure and Mixed NE

P2's Analysis: Suppose P2 plays PP with probability q (and KN with probability $1-q$).

Case 1: P1 chooses the pure strategy PP.

Outcome	Probability	Payoff to P1
$(\mathrm{PP}, \mathrm{PP})$	q	1
$(\mathrm{PP}, \mathrm{KN})$	$1-q$	0

P1's expected payoff in Case $1=q$.
Case 2: P1 chooses the pure strategy KN. P1's expected payoff in this case $=2(1-q)$.

To obtain a mixed NE, we have $q=2(1-q)$ or $q=2 / 3$.
By symmetry, $p=2 / 3$. So, $(2 / 3,2 / 3)$ is a mixed NE for this game.

Complexity of Finding Nash Equilibria

- For the form of games we have considered (called normal form), determining whether a game has a pure NE is efficiently solvable.
- In general, with many players and more complex specifications of strategies, determining whether a game has a pure NE is NP-complete.
- Finding a mixed NE for a game is complete for another complexity class called PPAD.
- The class PPAD contains problems for which we know at least one solution exists but finding a solution is difficult ("needle in a haystack").
- It is believed that the class PPAD is different from the class NP.

Pareto and Social Optimality

Presentation-Exam Game (discussed earlier):

■ E is a dominant strategy for both \mathbf{A} and \mathbf{B}.

- (E, E) is also a pure NE.
- The payoff for (E, E) is $(88,88)$.
- (P, P) is not a pure NE; \mathbf{A} has an incentive to switch to E.

Additional Notes:

- Outcome (P, P) can't be reached under rational behavior (i.e., when players optimize individually).

■ Other mechanisms are needed to allow such outcomes.
Exercise: Show that there is no mixed NE for the above game when the probability values are required to be strictly between 0 and 1 .

Pareto Optimality

- Vilfredo Pareto (1848-1923)
- Ph.D. (Civil Engineering), University of Turin, Italy.
- Pareto Principle (or " $80-20$ rule") is named after him.
- Made many important contributions to Microeconomics.

Towards a definition of Pareto Optimality:

- The four payoff vectors in the Presentation-Exam game are:

$$
(90,90), \quad(86,92), \quad(92,86), \quad(88,88)
$$

- The vector $(90,90)$ is strictly better than $(88,88)$ (since it allows both players to do better).

Pareto Optimality (continued)

- Suppose we add one more vector $(88,90)$ to the set to get: $(90,90),(86,92),(92,86),(88,88),(88,90)$
- The vector $(88,90)$ is at least as good as $(88,88)$ since
- no player is worse off choosing $(88,90)$ over $(88,88)$ and
- at least one player's payoff is better off in $(88,90)$ compared to that in $(88,88)$.
- Terminology: Payoff vector $(88,90)$ dominates the payoff vector $(88,88)$. (Alternatively, $(88,88)$ is dominated by $(88,90)$.)

Pareto Optimality (continued)

Definition: A payoff vector $\left(x_{1}, y_{1}\right)$ dominates another payoff vector $\left(x_{2}, y_{2}\right)$ if all the following conditions hold:
(1) $x_{1} \geq x_{2}$,
$2 y_{1} \geq y_{2}$ and
3 at least one of these inequalities is strict (i.e., ' $>$ ' instead of ' \geq ').

Examples:

- The vector $(88,90)$ dominates $(88,88)$.

■ The vector $(86,92)$ does not dominate $(88,88)$.

- A vector (x, y) does not dominate itself.

Representation:

$$
(\mathrm{x} 2, \mathrm{y} 2)
$$

- $\left(x_{1}, y_{1}\right)$ dominates $\left(x_{2}, y_{2}\right)$.

Pareto Optimality (continued)

- Consider the following set X of vectors

$$
X=\{(90,90),(86,92),(92,86),(88,88),(88,90)\}
$$

- The domination relationship among these vectors is as follows:

- Vectors which don't have an incoming edge are "non-dominated".
- They represent Pareto optimal payoffs.

Definition: A pair of strategies is Pareto optimal if the payoff vector for the pair is not dominated by the payoff vector for any other pair of strategies.

Pareto Optimality (continued)

Example:

- Here, the Pareto optimal strategy pairs are (P, P), (P, E) and (E, P).
- The only pure Nash equilibrium (E, E) is not Pareto optimal. (Interestingly, that is the only strategy pair that is not Pareto optimal!)

How can players reach a Pareto optimal outcome?

- They must sign a binding contract before the game.
- If there is no such contract, some player may have an incentive to switch to another strategy (since a Pareto optimal strategy need not be a pure NE).

Social Optimality

- Some Pareto optimal strategies provide outcomes that are good for both players ("good for society").

Example: In the Presentation-Exam game, the strategy pair (P, P) (with payoff $=(90,90))$ is better for both players than the strategy pair (E, E) (with payoff $=(88,88))$.

- There are other ways to define social optimality.

Definition: A pair of strategies (α, β) is a social optimum (or a social welfare maximizer) if it maximizes the sum of the payoffs to the two players.

Example: In the Presentation-Exam game, the strategy pair (P, P) (with payoff $=(90,90)$) is the unique social optimum with a total value of 180 .

Pareto Optimality vs Social Optimality

Lemma: (1) Every social optimum is also Pareto optimal.
(2) A Pareto optimal solution need not be a social optimum.

Proof:

Part 1: Suppose a payoff vector (x, y) is a social optimum but not Pareto optimal.

- Then, there must be another payoff vector (x^{\prime}, y^{\prime}) which dominates (x, y).
- Thus, $x^{\prime} \geq x, y^{\prime} \geq y$, and at least one inequality is strict.
- Therefore, $x^{\prime}+y^{\prime}>x+y$, and this contradicts the assumption that (x, y) is a social optimum.

Part 2: In the Presentation-Exam game, (86, 92) is Pareto optimal. However, it is not a social optimum (which is $(90,90)$).

Nash Equilibrium vs Social Welfare Maximizer

Note: We consider pure Nash equilibria.

- A pure Nash Equilibrium need not be Pareto optimal.

Example: In the Presentation-Exam game, $(88,88)$ is a pure NE but not Pareto optimal (it is dominated by $(90,90)$).

- A pure Nash Equilibrium need not be a social optimum.

Example: In the Presentation-Exam game, $(88,88)$ is a pure NE but not the social optimum (which is $(90,90)$).

Note: We will consider two contexts where we can quantify how the total value of a pure NE compares with the social optimum.

- Traffic in transportation networks.
- Cost-sharing in computer networks.

Applying Game Theory to Network Problems

Example - Traffic in transportation networks:

- Cars want to go from A to B.
- The value on each edge is the travel time.
- On the edges (A, C) and (D, B), travel time is a linear function of the number of cars x. (These edges are sensitive to congestion.)
- Number of cars $=4000$.
- If all cars use the route $\mathrm{A}-\mathrm{C}-\mathrm{B}$, travel time for each car $=(4000 / 100)+45=85$.
- If all cars use the route A-D-B, travel time for each car is again 85.
- Suppose cars divide evenly between the two routes. Then travel time for each car $=(2000 / 100)+45=65$.

Applying Game Theory ... (continued)

The underlying game:

- 4000 players (Drivers)
- Strategies: $\{A-C-B, A-D-B\}$
- Payoff for each player: Travel time

Notes:

- We will minimize payoffs.
- There is no dominant strategy for any player; the travel time for a route depends on the number of players using that route.
- There are many pure Nash equilibria for this game.

Applying Game Theory ... (continued)

Theorem:

1 Every combination of strategies that divides the 4000 cars evenly between the two routes is a pure NE.

2 In every pure NE, each route has the same number of cars.

Proof sketch for Part 1: Consider any combination of strategies that has 2000 cars along each route. (Travel time for each player $=65$.)

Question: Does any single player have an incentive to switch to the other route?

- Suppose one player switches from $A-C-B$ to $A-D-B$.
- After the switch, there will be 2001 cars along A-D-B.

■ New travel time along A-D-B $=45+(2001 / 100)>65$; that is, the payoff is worse.

■ So, no player has an incentive to switch (unilaterally).

Applying Game Theory ... (continued)

Proof sketch for Part 2: Suppose there a pure NE with t cars on A-C-B and $4000-t$ cars on A-D-B.

To prove: $t=4000-t$ (which implies that $t=2000$).
Case 1: $t>4000-t$.

- Here, it is easy to verify that $4000-t \leq t-2$.
- Current travel time for player along $\mathrm{A}-\mathrm{C}-\mathrm{B}=45+(t / 100)$.
- Switch one player from A-C-B to A-D-B.
- New travel time for the player is

$$
45+[(4000-t)+1] / 100 \leq 45+[(t-2)+1] / 100<45+(t / 100)
$$

- Thus, the player has an incentive to switch and we don't have a pure NE.

Case 2: $t<4000-t$: The proof is similar.

Braess's Paradox

- In any pure NE, each of the two routes is used by 2000 players.
- Travel time for each player $=65$.

After adding the edge (C, D):

- Strategies: $\{\mathrm{A}-\mathrm{C}-\mathrm{B}, \mathrm{A}-\mathrm{C}-\mathrm{D}-\mathrm{B}$,
 A-D-B $\}$.
- Surprise: There is a unique pure NE where every player uses the route A-C-D-B.
- Travel time for each player $=80$.

Verifying that A-C-D-B a pure NE:

- Suppose a player wants to switch to A-D-B.
- New travel time $=45+(4000 / 100)=85$.
- So, no player has an incentive to switch.

Braess's Paradox (continued)

Why A-C-D-B is a unique pure NE - A brief explanation:

- Consider the flow pattern with 2000 players using A-C-B and 2000 using A-D-B.
- Travel time for each player $=65$.
- Suppose a player X switches from A-C-B to A-C-D-B.
- Travel time for $X=(2000 / 100)+(2001 / 100)=40.01$.
- So, X has an incentive to switch.
- So, the above flow pattern is not a pure NE.

Note: A similar argument applies to other flow patterns.
Remark: Removing the red edge (C, D) creates a better pure NE.

Braess's Paradox (continued)

Braess's Paradox:

- Travel time in a pure NE increases even though resources were added to the system.

■ Named after Dietrich Braess (1938-), a Mathematician from Germany.

- Result published in 1969.

Empirical observations supporting Braess's Paradox:

- In Seoul (South Korea), the destruction of a 6-lane highway (as part of a project called "Cheonggyecheon Restoration") actually reduced the commute time for many drivers.
- In Stuttgart (Germany), closing a major road actually decreased traffic congestion.
- In 1990, the closing of 42nd Street in New York City significantly reduced traffic congestion.

Braess's Paradox (continued)

Additional Remarks:

- Braess's paradox shows a situation where introducing a new choice (strategy) makes the payoff worse for everyone.
- Other such situations also exist.

Example: Prisoner's dilemma.

- If each player is given only one strategy, namely NC, things would be
 better for both.
- Adding a second strategy (C) introduces difficulties.
- For each player, C is the strictly dominant strategy. So, the outcome is (C, C), which is worse for both compared to (NC, NC).

Social Cost of Traffic at Equilibrium

- No. of players $=4000$.
- Pure NE: All 4000 players use the route A-C-D-B.
- Social optimum: 2000 players use A-C-B and 2000 use A-D-B.
- For the pure NE, travel time for each player $=80$.

■ So, total time (cost) for this pure NE $=4000 \times 80=320,000$.

- For the social optimum, travel time for each player $=65$.
- So, cost of social optimum $=4000 \times 65=260,000$.
- This example shows that cost of pure NE can be larger than that of social optimum.

A General Model for the Problem

Ref: [Roughgarden \& Tardos, 2002]

- Road network represented by a directed graph with predefined origin and destination.
- For each edge e, a linear travel time function given by

$$
T_{e}(x)=a_{e} x+b_{e}
$$

where a_{e} and b_{e} are constants and x is the number of cars on the edge e.

- A traffic pattern specifies a path for each car. (Paths are assumed to be simple.)
- Social cost of a traffic pattern Z is the sum of the travel times for all the drivers.

Research Question 1: Under this model, is there always a (pure) Nash equilibrium?

Answer: Yes.

A General Model ... (continued)

Outline of algorithm for producing an equilibrium:
1 Start with any traffic pattern Z.
2 while (Z is not an equilibrium) do

- Move one driver (chosen arbitrarily) to a better path.
- Let Z denote the new traffic pattern.

Notes:

- The above algorithm always terminates.
- The traffic pattern produced when the algorithm terminates is a Nash equilibrium.

Proof idea: (Potential Function Argument)

- Define a suitable function (called a potential function).
- Argue that every time a driver is moved to a better path, the value of the function decreases.
- Also argue that the value of the function cannot decrease below a lower limit (at which point no switches can occur).

A General Model ... (continued)

Research Question 2: How does the total travel time at an equilibrium compare with the social optimum?

Theorem: [Roughgarden \& Tardos, 2002]
There is always an equilibrium travel pattern Z such that the travel time of Z is at most twice the social optimum.

Further improvement: [Anshlevich et al., 2004]

There is always an equilibrium travel pattern W such that the travel time of W is at most $4 / 3$ times the social optimum.

Notes:

- For some non-linear travel cost functions, the cost of an equilibrium can be much larger than that of social optimum.
- For networks with more complicated travel cost functions, an equilibrium may not exist.

A Model for Multicast in Computer Networks

Ref: [Anshlevich et al. 2004]

- A directed graph with a cost $c(e) \geq 0$ for each edge, a designated source node s and k distinct terminal nodes $t_{1}, t_{2}, \ldots, t_{k}$ (one for each player).
- Each player P_{i} wants to set up a directed path from s to terminal $t_{i}(1 \leq i \leq k)$.
- Paths chosen by different players may share edges.
- If an edge e is shared by q players, then the cost for each player is $c(e) / q$. (So, there is an incentive to share edges.)
- Each player wants to minimize the cost of their path.
- Social cost of any solution is the sum of the costs of all the players.

A Model for Multicast ... (continued)

Example:

- Two players P_{1} and P_{2}.
- Choices for $P_{1}: s \rightarrow t_{1}$ or $s \rightarrow v \rightarrow t_{1}$.
- Choices for $P_{2}: s \rightarrow t_{2}$ or $s \rightarrow v \rightarrow t_{2}$.
- Initial choice: P_{1} uses the edge $s \rightarrow t_{1}$ and P_{2} uses the edge $s \rightarrow t_{1}$.

Moves:

- P_{1} notices that switching to $s \rightarrow v \rightarrow t_{1}$ does not decrease the cost.
- P_{2} notices that switching to $s \rightarrow v \rightarrow t_{2}$ does decrease the cost (from 8 to 6), and does the switch.
- Now, P_{1} notices that switching to $s \rightarrow v \rightarrow t_{1}$ does decrease the cost (4 to 3.5) because of the shared cost for $s \rightarrow v$.

A Model for Multicast ... (continued)

Equilibrium:

- P_{1} uses $s \rightarrow v \rightarrow t_{1}$ and
- P_{2} uses $s \rightarrow v \rightarrow t_{2}$.
- Now, neither player has an incentive to switch.

Example with multiple equilibria:

■ Equilibrium 1: P_{1} uses $s \rightarrow x \rightarrow v \rightarrow t_{1}$ and P_{2} uses $s \rightarrow x \rightarrow v \rightarrow t_{2}$. (Cost for each player $=1.1 / 2=0.55$.)

- Equilibrium 2: P_{1} uses $s \rightarrow y \rightarrow v \rightarrow t_{1}$ and P_{2} uses $s \rightarrow y \rightarrow v \rightarrow t_{2}$. (Cost for each player $=2 / 2=1.0$.)

A Model for Multicast ... (continued)

Example - Social optimum need not be an equilibrium:

- Social optimum: P_{1} uses $s \rightarrow v \rightarrow t_{1}$ and P_{2} uses $s \rightarrow v \rightarrow t_{2}$.
- Total cost $=7$. (Cost for each player $=3.5$.)
- This is not an equilibrium.

Moves:

- P_{1} has an incentive to switch to $s \rightarrow t_{1}$ (since the cost decreases from 3.5 to 3).
- Once P_{1} switches, P_{2} has an incentive to switch to $s \rightarrow t_{2}$ (since the cost decreases from 6 to 5).
- The situation where
- P_{1} uses $s \rightarrow t_{1}$ and
- P_{2} uses $s \rightarrow t_{2}$ is an equilibrium.
- Social cost at this equilibrium $=8$.

A Model for Multicast ... (continued)

Ref: [Anshlevich et al. 2004], [Kleinberg \& Tardos, 2006]
Research Question 1: Does every multicast problem have a Nash equilibrium?

Answer: Yes. (Proof uses the potential function technique.)
Research Question 2: How does the cost of a best equilibrium compare with the social optimum?

Answer: For any $k \geq 2$ players, the cost of a best equilibrium is at most H_{k} times the social optimum, where

$$
H_{k}=1+(1 / 2)+(1 / 3)+\ldots+(1 / k)
$$

is the $k^{\text {th }}$ Harmonic Number.

Note: $\ln k<H_{k}<\ln k+1$.

