
CSI 445/660 – Part 8

(Diffusion in Networks)

Ref: Chapter [19] of [EK] text.
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Diffusion in Networks

Diffusion:

Process by which a contagion (e.g. information, disease, fads)
spreads through a social network.

Also called network dynamics.

Everett Rogers (1931–2004)

Ph.D. (Sociology & Statistics), Iowa State
University, 1957.

Authored the book “Diffusion of Innovations”
in 1962.

Introduced the phrase “early adopter”.

Taught at Ohio State University and the
University of New Mexico.
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Diffusion: Early Empirical Work

Cultivation of Hybrid Seed Corn:

Study by Bruce Ryan and Neal Gross in the 1920’s at Iowa State
University.

Goal: To understand how the practice of cultivating hybrid seed
corn spread among farmers in Iowa.

This form of corn had a higher yield and was disease resistant.

Yet, there was resistance to its use (“inertia”).

The practice didn’t take off until 1934 when some elite farmers
started cultivating it.

Ryan/Gross analyzed surveys; they didn’t construct social networks.
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Diffusion: Early Empirical Work (continued)

Use of Tetracycline (an antibiotic):

Study by James Coleman, Herbert Menzel and Elihu Katz in the
1960’s at Columbia University.

Tetracycline was a new drug marketed by Pfizer.

Analyzed data from doctors who prescribed the medicine and
pharmacists that filled the prescriptions.

Constructed a social network of doctors and pharmacists.

Summary:

A large fraction of the initial prescriptions were by a small
number of doctors in large cities.

Doctors who had many physician friends started prescribing
the medicine more quickly.
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Diffusion: Early Empirical Work (continued)

Other studies:

Use of telephones (Claude Fischer).

Use of email (Lynne Markus).

Modeling diffusion through a network:

Consider diffusion of new behavior.

Assumptions:

People makes decisions about adopting a new behavior based
on their friends.

Benefits of adopting a new behavior increase as more friends
adopt that behavior.

Example: It may be easier to collaborate with colleagues if
compatible technologies are used.

This “direct benefit” model is due to Stephen Morris (Princeton
University).
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A Coordination Game

Rules of the game:

A social network (an undirected graph) is given.

Each node has a choice between behaviors A and B.

For each edge {x , y}, there is an incentive for the behaviors of
nodes x and y to match, as given by the following payoff matrix.

BA

A

B b, b

a, a

0, 0

0, 0

y

x

If x and y both adopt A, they both get a
benefit of a.

If x and y both adopt B, they both get a
benefit of b.

If x and y don’t adopt the same behavior,
their benefit is zero.
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A Coordination Game (continued)

Rules of the game (continued):

Each node v plays this game with each of its neighbors.

The payoff for a node v is the sum of the payoffs over all the edge
incident on v .

Example:

v

B

B

BA

A

A

A

Let a = 5 and b = 7.

If v adopts A, payoff = 4× 5 = 20.

If v adopts B, payoff = 3× 7 = 21.

So, v should adopt B (rational behavior).

Note: The example points out that v ’s choice depends on the choices

made by all its neighbors and the parameters a and b.
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A Coordination Game (continued)

Question: In general, how should a node v choose its behavior, given
the choices of its neighbors?

Analysis:

Suppose the degree of v is d .

Suppose a fraction p of v ’s neighbors have chosen A and the
remaining fraction (1− p) have chosen B.

So, pd neighbors have chosen A and (1− p)d neighbors have
chosen B.

v

pd neighbors

(1−p)d neighbors

B

B

B

BA

A

A

If v chooses A, its payoff = pda.

If v chooses B, its payoff = (1− p)db.

So, A is the better choice if

pda ≥ (1− p)db

that is, p ≥ b/(a + b).
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A Coordination Game (continued)

Analysis (continued):

Leads to a simple rule:

If a fraction of at least b/(a + b) neighbors of v use A,
then v must also use A.

Otherwise, v must use B.

The rule is intuitive:

1 If b/(a + b) is small (say, 1/100):

Then b is small and A is the “more profitable” behavior.

So, a small fraction of neighbors adopting A is enough for v
to change to A.

2 If b/(a + b) is large (say, 99/100):

Then b is large and B is the “more profitable” behavior.

So, a large fraction of neighbors adopting A is necessary
for v to change to A.
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A Coordination Game (continued)

Note: The quantity b/(a + b) is called the threshold for a node to
change from B to A.

Cascading behavior:

The model has two situations that correspond to equilibria.

Every node uses A.

Every node uses B.

In these situation no single node has an incentive to change to the
other behavior.

Note: These situations are called pure Nash equilibria for the game.

What happens if some subset of nodes (“early adopters”) decide to
change their behavior (for reasons outside the definition of the
game)?
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Cascading Behavior (continued)

Assumptions:

At the starting point, all nodes use B.

Some nodes change to A.

Other nodes evaluate their payoffs and switch to A if it is more
profitable.

For simplicity, the system is assumed to be progressive; that is,
once a node switches to A, it won’t switch back to B.

Equilibrium configuration:

u

tr

v

s

w

Payoffs: a = 3 and b = 2.

Threshold for switching from B to
A = b/(a + b) = 2/5.

Notation: Blue represents B and
red represents A.

At some time point (t = 0), suppose nodes v and w switch to A.
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Cascading Behavior (continued)

Configuration at t = 0:

u

tr

s

v w
Note: Threshold for switching from B to
A = 2/5.

Analysis:

Node r has 2/3 of its neighbors using A. Since 2/3 > 2/5,
r will switch to A.

Node s also has 2/3 of its neighbors using A. So, s will also
switch to A.

Node t has 1/3 of its neighbors using A. Since 1/3 < 2/5,
t won’t switch to A.

Node u also has 1/3 of its neighbors using A. So, u won’t
switch to A.
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Cascading Behavior (continued)

Configuration at t = 1:

u

tr

s

v w
Note: Threshold for switching from B to
A = 2/5.

Analysis:

Now, node t has 2/3 of its neighbors using A. Since 2/3 > 2/5,
t will switch to A.

Node u also has 2/3 of its neighbors using A. So, u will also
switch to A.

Configuration at t = 2:

u

tr

s

v w
The system has reached the other
equilibrium.
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Cascading Behavior (continued)

Notes:

In the example, there was a cascade of switches that resulted in all
nodes switching to A.

The example shows complete cascade.

Cascades may also be partial as shown by the following example.

Equilibrium configuration:

r

s

y

x

w

z p

q

Payoffs: a = 3, b = 2.

Threshold for switching
from B to A = 2/5.

At some time point (t = 0), suppose nodes x , y and w switch to A.

8–14 / 94



Cascading Behavior (continued)

Configuration at t = 0:

r

s

y

x

w

z p

q

Note: Threshold for switching
from B to A = 2/5.

Analysis:

Node z has 2/3 of its neighbors using A. Since 2/3 > 2/5,
z will switch to A.

Nodes p, q, r and s have zero neighbors using A. So, none of
them will switch to A.
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Cascading Behavior (continued)

Configuration at t = 1:

r

s

y

x

w

z p

q

Note: Threshold for switching
from B to A = 2/5.

Analysis:

Node p has 1/3 of its neighbors using A. Since 1/3 < 2/5,
p won’t switch to A.

Nodes q, r and s have zero neighbors using A. So, none of them
will switch to A.

Thus, the configuration shown above is another equilibrium for the
system.

Here, the cascade is partial.
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Cascading Behavior (continued)

Brief digression – A non-progressive system:

A node may switch from A to B or vice versa.

Example – Equilibrium configuration:

r s

u v

p q

Payoffs: a = 3 and b = 2.

Threshold for switching from B to A
= 2/5.

At some time point (t = 0), suppose nodes u and v switch to A.
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A Non-progressive System (continued)

Configuration at t = 0:

r s

u v

p q

Nodes p and q have zero neighbors using A. So,
they won’t switch to A.

Nodes r and s have only 1/4 of their neighbors
using A. So, they won’t switch to A.

The only neighbor of node u uses B. So, it is more profitable for u
to switch back to B.

For the same reason, it is more profitable for v to switch back to B.

r s

u v

p q

So, the system switches back to the previous
equilibrium configuration.

There is no cascade here.
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Obstacles to Cascades (Progressive Systems)

Example: The cascade stopped in the following network.

r

s

y

x

w

z p

q

Threshold for switching from B to
A = 2/5.

The cascade didn’t spread to nodes p, q, r and s.

The situation can be explained formally.

Definition: Given an undirected graph G (V ,E ), a subset V1 ⊆ V of

nodes forms a cluster of density α if for every node v ∈ V1, at least a

fraction α of the neighbors of v in G are in V1.
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Obstacles to Cascades (continued)

Example: (Density of a cluster)

r

s

y

x

z p

q

w

Cluster

Let V1 = {x , y , z ,w}.

For x , y and w , all their neighbors are in V1. (So, fraction of
neighbors in V1 = 1.)

For z , a fraction 2/3 of its neighbors are in V1.

So, density of the cluster formed by V1 = 2/3.

Note: Density of a cluster is determined by the smallest fractional

value among the nodes in the cluster.
8–20 / 94



Obstacles to Cascades (continued)

Brief discussion on clusters and their densities:

The notion of clusters suggests some level of internal “cohesion”;
that is, for all the nodes in the cluster, a specified fraction of their
neighbors are also in the cluster.

However, high cluster density doesn’t mean that two nodes in the
same cluster have much in common.

Reason: If we consider the whole graph, it forms a cluster of
density 1. (This holds even when the graph is disconnected.)

A formal relationship between cluster density and diffusion was
established in [Morris, 2000].
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Obstacles to Cascades (continued)

Theorem: [due to Stephen Morris]

Suppose G (V ,E ) is a network where each node is using behavior B. Let
V ′ ⊆ V be a subset of “early adopters” of behavior A. Further, let α be
threshold for the other nodes to switch from B to A.

1 If the subnetwork of G formed on the remaining nodes
(i.e., V − V ′) has a cluster of density > (1− α), then V ′ won’t
cause a complete cascade.

2 If V ′ does not cause a complete cascade, then the subnetwork on
the remaining nodes must contain a cluster of density > (1− α).

Interpretation:

Part 1: Clusters of density > (1− α) act as “obstacles” to a
complete cascade.

Part 2: Clusters of density > (1− α) are the only “obstacles” to a
complete cascade.
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An Example for Morris’s Theorem

ry

x

z p

q

w s

Cluster

Recall: Threshold α for B to A
switch = 2/5.

Let V ′ = {x , y , z} be the “early
adopters”.

Consider V1 = {p, q, r , s}.

For q, r and s, all their neighbors are in V1. (So, fraction of
neighbors in V1 = 1.)

For p, a fraction 2/3 of its neighbors are in V1.

So, density of the cluster formed by V1 = 2/3.

Note that 1− (2/5) = 3/5 and 2/3 > 3/5.

So, the cascade cannot be complete.
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Diffusion and Weak Ties

Recall:

A local bridge is an edge {x , y} such that x and y don’t have any
neighbor in common.

Local bridges are weak ties but enable nodes to get information
from other parts of the network (“strength of weak ties”).

Do local bridges help in the diffusion of behavior?

x z

wy

p

q

r

d

f

e

Edges {z , p} and {w , d} are local
bridges.

Let threshold for switching be 2/5.

Let z and w be the “early
adopters”.
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Diffusion and Weak Ties (continued)

x z

wy

p

q

r

d

f

e

Nodes x and y will switch to A.

However, none of the other nodes
will switch.

Local bridges are “too weak” to propagate behaviors that require
higher thresholds.

If threshold for each node v is set to 1/degree(v), then there will be
a complete cascade (low threshold).

The concept of thresholds provides one way to explain why
information (e.g. jokes, link to videos, news) spreads to a much
larger population compared to behaviors such as political
mobilization.
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Homogeneous and Heterogeneous Thresholds

In the coordination game, all the nodes had the same threshold
value (homogeneous thresholds).

In the context of weak ties, using a different threshold for each node
can cause a complete cascade (heterogeneous thresholds).

Heterogeneous thresholds can also arise in the coordination
game: choose a different payoff for each node.

BA

A

B 0, 0

0, 0

y

x

ax ,a y

bx ,b y

If x and y both adopt A, x gets ax and y
gets ay .

If x and y both adopt B, x gets bx and y
gets by .

If x and y don’t adopt the same behavior,
their benefit is zero.
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Homogeneous and Heterogeneous Thresholds (continued)

The threshold for any node v (to switch from B to A)
is bv/(av + bv ). (Thus, each node may have a different threshold.)

Morris’s Theorem can be generalized to the case of heterogeneous
thresholds.

Definition: (Blocking Cluster)

Consider a network G (V ,E ) where each node v has a threshold αv . A
subset V1 ⊆ V of nodes is a blocking cluster if for every node v ∈ V1,
more than 1− αv fraction of the neighbors of v are in V1.

Note: This generalizes the notion of a cluster defined in the

homogeneous case.
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Homogeneous and Heterogeneous Thresholds (continued)

Example 1: (Blocking Cluster)

ry

x

z p

q

w s

Cluster

Let αp = 1/2 and αq = αr = αs

= 2/5.

Consider the cluster V1 = {p, q, r , s}.

For p, 1− αp = 1/2, the fraction of neighbors in V1 = 2/3
and 2/3 > 1/2.

For the nodes q, r and s, all their neighbors are in V1.

So, V1 is a blocking cluster.

8–28 / 94



Homogeneous and Heterogeneous Thresholds (continued)

Example: (continued)

ry

x

z p

q

w s

Cluster

Let αp = 1/6 and αq = αr = αs

= 2/5.

The only change is that αp = 1/6 (instead of 1/2).

For p, 1− αp = 5/6 and the fraction of neighbors in V1 =
2/3. However, 2/3 < 5/6.

So, V1 is not a blocking cluster with the new threshold
value for p.

Easy to verify that V2 = {q, r , s} is still a blocking cluster.
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Homogeneous and Heterogeneous Thresholds (continued)

Generalization of Morris’s Theorem:

Suppose G (V ,E ) is a network where each node v has a threshold αv .
Let V ′ ⊆ V be the “early adopters”.

1 If the subnetwork of G formed on the remaining nodes
(i.e., V − V ′) has a blocking cluster, then V ′ won’t cause a
complete cascade.

2 If V ′ does not cause a complete cascade, then the subnetwork on
the remaining nodes must contain a blocking cluster.

Note: The idea of using thresholds to study diffusion in social networks

is due to Mark Granovetter in 1978.
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Cascades and Viral Marketing

Note: Think of A and B as competing products.

Example with a partial cascade:

r

s

y

x

w

z p

q

Threshold for switching from B to
A = 2/5.

A didn’t propagate to the cluster {p, q, r , s} at the threshold value
of 2/5.

What can the marketing agency for A do?

1 Try to decrease the threshold.

2 Try to choose the early adopters carefully.
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Cascades and Viral Marketing (continued)

1 Decreasing the threshold:

Formula for threshold = b/(a + b).

With a = 3 and b = 2, threshold = 2/5.

The threshold can be decreased by increasing a; that is, by
improving the quality of A.

Example: Let a = 4 while b remains at 2.

New threshold = 2/(4 + 2) = 1/3.

This threshold causes a complete cascade.
(See the next two slides).
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Cascades and Viral Marketing (continued)

Configuration at t = 0:

r

s

y

x

w

z p

q

Threshold for switching from
B to A = 1/3.

Configuration at t = 1:

r

s

y

x

w

z p

q

Node p switched from B to A.
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Cascades and Viral Marketing (continued)

Configuration at t = 2:

r

s

y

x

w

z p

q

Nodes q and s switched from
B to A.

Configuration at t = 3:

r

s

y

x

w

z p

q

Node r switched from B to A.

The cascade is complete.

8–34 / 94



Cascades and Viral Marketing (continued)

2 Choose early adopters carefully.

With {x , y , z} as the early adopters, the cascade is partial.

Suppose the early adopters are {x , y , p, q}.

Configuration at t = 0:

r

s

y

x

w

z p

q

Threshold for switching from
B to A = 2/5.

This set of early adopters will
cause a complete cascade. (See
the next slide.)
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Cascades and Viral Marketing (continued)

Configuration at t = 1:

r

s

y

x

w

z p

q

Nodes w and s switched from
B to A.

Configuration at t = 2:

r

s

y

x

w

z p

q

Nodes z and t switched from
B to A.

The cascade is complete.
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Cascades and Viral Marketing (continued)

Notes on Viral Marketing:

Marketing units can only choose a limited number of early adopters
due to budget constraints.

Influence Maximization Problem:

Given: A social network G (V ,E ), a threshold value α and a
budget on the number of early adopters N.

Required: Find a subset of V with at most N nodes (the
early adopters) so that a maximum number of nodes
change to A.

The problem is known to be computationally difficult (NP-hard).

The problem has also been studied under other models
(e.g. probabilistic switches).
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Towards a More General Model for Diffusion

Features of the current model:

1 A social network where the interaction is between a node and
its neighbors (local interactions).

2 The current configuration of the system (i.e., the current
behavior of each node).

3 A threshold value. (This was chosen based on the
coordination game.)

4 A scheme for nodes to evaluate their payoffs and decide
whether or not to switch behaviors (synchronous evaluation
and update).
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Towards a More General Model for Diffusion

Why generalization is useful:

There are several diffusion phenomena (e.g. disease
propagation) where there is no underlying game with payoffs.

The decision to switch may involve more complex
computations.

Example: Most disease propagation models are probabilistic.

The generalization also allows precise formulations of several
other problems related to diffusion.

Note: The generalized model is called a Synchronous
Dynamical System (or SyDS).
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Components of a Synchronous Dynamical System

1 An undirected graph G (V ,E ). (In most applications, this graph
represents a social contact network.)

2 Each node v has state value, denoted by s(v).

The state value is from a specified set (domain).

A typical example is the Boolean domain {0, 1}.

In some disease models, the domain is larger.

The interpretation of the state value depends on the
application.
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Components of a SyDS (continued)

Interpretation of state values in some applications:

(a) Coordination game: Values 0 and 1 represent behaviors
A and B respectively.

(b) Simple disease models: Value 0 ⇒ node is uninfected and
1 ⇒ node is infected.

(c) Information propagation: Value 0 ⇒ node does not have the
information and 1 ⇒ node has the information.

(d) Complex disease models: State values represent different levels

of infection.
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Components of a SyDS (continued)

3 A local function fv for each node v of the graph. (This function
captures the local interactions between a node and its neighbors.)

v

wrw2w1

s(v)

s(w1)

s(w2)

s(wr)

Next state of v
vf

Function 

Notes:

The inputs to the function fv are the current state of node v and
those of its neighbors.

The value computed by the function fv gives the state value of v for
the next time instant.
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Components of a SyDS (continued)

Example of a local function: Assume that the domain is {0, 1}.

v

w2w1

s(v) s(w1) s(w2) fv

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Notes:

The above specification is a truth table for fv .

When a node has degree r , the truth table specifying fv will have
2r+1 rows. (This is exponential in the degree of node v .)

This is not practical for nodes of large degree.
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Components of a SyDS (continued)

A more common local function: The domain is {0, 1}.

For each node v , an integer threshold value τ is specified. (The
value of τ may vary from node to node.)

The function fv has the value 1 if the number of 1’s in the input is
at least τ ; it is 0 otherwise.

This function is called the τ -threshold function.

If v has degree d , then the τ -threshold function can be represented
using a table with d + 2 rows.

v

w2w1

No. of 1’s Value of fv

0 0
1 0
2 1
3 1

A 2-threshold function
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Absolute and Relative Thresholds

In the definition of τ -threshold functions, the value τ specifies an
absolute threshold.

The threshold value specified in the coordination game is called a
relative threshold; this is a fraction relative to the degree of the
node.

Any relative threshold can be converted into a corresponding
absolute threshold and vice versa.

Example: Suppose a node v has a degree of 9. (So, the number of
inputs to the function fv = 10.)

If fv is specified by the absolute threshold value 3, then the relative
threshold value is 3/10 = 0.3.

If fv is specified using the relative threshold value 1/3, the absolute
threshold value is d10× (1/3)e = 4.
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Other Definitions and Conventions in SyDSs

A SyDS uses synchronous computation and update.

All nodes compute the values of their local functions
synchronously (i.e., in parallel).

After all the computations are finished, all the nodes update
their state values synchronously.

The synchronous computation and update proceeds until the system
reaches an equilibrium, where no further state changes occur.

In a progressive SyDS over the Boolean domain, states of nodes
may be change from 0 to 1; however, the states cannot change
from 1 to 0.

Consequence: In a progressive SyDS, once the state of node
becomes 1, it remains at 1 for ever.

In the discussion on SyDSs, local functions will be specified using
absolute thresholds.
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An Example of a SyDS

Example 1:

v5 v6

v1 v2

v3 v4

Domain = {0, 1}.

Each local function is the 1-threshold
function (simple contagion).

Note that the state of a node can’t change
from 1 to 0; the system is progressive.

Configuration at t = 0:

v5 v6

v1 v2

v3 v4

Green indicates state value 0.

Red indicates state value 1.

The configuration at t = 0 can also be
represented as (0, 1, 0, 0, 0, 0).
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An Example of a SyDS (continued)

Configuration at t = 1:

v5 v6

v1 v2

v3 v4

Nodes v3 and v4 switched from 0 to 1.

The configuration at t = 1:
(0, 1, 1, 1, 0, 0).

Configuration at t = 2:

v5 v6

v1 v2

v3 v4

Nodes v1, v5 and v6 switched from 0 to 1.

The configuration at t = 2:
(1, 1, 1, 1, 1, 1).

The cascade is complete.
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Why did we get a complete cascade?

Explanation 1:

v5 v6

v1 v2

v3 v4

v2

v3 v4

v1 v5 v6

t = 1

t = 2

Since the graph is connected, there is a path from node v2 (the
“early adopter”) to every other node.

So, if the interaction graph is connected, a simple contagion always
results in a complete cascade.

Note: The order in which nodes change to state 1 is given by

breadth-first search (BFS) starting from the set of early adopters.
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Why did we get a complete cascade? (continued)

Explanation 2: Morris’s theorem.

When a cascade stops, the remaining nodes (which have not
switched) must form a blocking cluster.

For each node v in the blocking cluster, more than (1− αv )
fraction of the neighbors must in the cluster, where αv is the
relative threshold of v .

When the graph is connected and the relative threshold for each
node v is 1/degree(v), there is at least one node for which the
above condition is not satisfied.

So, the cascade can’t be partial.
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Another Example of a SyDS

Example 2:

v5 v6

v1 v2

v3 v4

Domain = {0, 1}.

Each local function is the 2-threshold
function.

We will assume that the system is
progressive (i.e., the state of a node
can’t change from 1 to 0).

Note: If at least one of the thresholds is > 1, the system models a
complex contagion.

Configuration at t = 0:

v5 v6

v1 v2

v3 v4
The configuration at t = 0 is
(1, 1, 0, 0, 0, 0).

8–51 / 94



A Second Example of a SyDS (continued)

Configuration at t = 1:

v5 v6

v1 v2

v3 v4

Node v3 switched from 0 to 1.

The configuration at t = 1:
(1, 1, 1, 0, 0, 0).

Configuration at t = 2:

v5 v6

v1 v2

v3 v4

Node v4 switched from 0 to 1.

The configuration at t = 2:
(1, 1, 1, 1, 0, 0).

No further state changes can occur; the
system has reached an equilibrium
(fixed point).

The cascade is partial.
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Phase Space of a SyDS

Sequences of configurations:

Example 1

(0, 1, 0, 0, 0, 0)

(0, 1, 1, 1, 0, 0)

(1, 1, 1, 1, 1, 1)t = 2

t = 1

t = 0

Example 2

t = 2

t = 1

t = 0 (1, 1, 0, 0, 0, 0)

(1, 1, 1, 0, 0, 0)

(1, 1, 1, 1, 0, 0)

For any SyDS, we can construct these sequences starting from any
initial configuration.

The collection of all such sequences forms the phase space of a
SyDS.
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Phase Space of a SyDS (continued)

Definition: The phase space of a SyDS is a directed graph where

each node represents a configuration and

for any two nodes x and y , there is a directed edge (x , y) if the
configuration represented by x changes to that represented by y in
one time step.

Comment: The phase space may have self-loops.

How Large is the Phase Space? (Assume that the Domain is {0, 1}.)

If the underlying network of the SyDS has n nodes, then the
number of nodes in the phase space = 2n; that is, the size of the
phase space is exponential in the number of nodes.

For the SyDSs considered so far (deterministic SyDSs), each node
in the phase space has an outdegree of 1. (So, the number of edges
in the phase space is also 2n.)
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Phase Space of a SyDS (continued)

Example – A SyDS and its Phase Space: The domain is {0, 1} and
each node has a 1-threshold function.

v2 v3

v1

(0, 0, 0)

(1, 0, 1)

(0, 0, 1) (0, 1, 0)

(1, 1, 0)

(1, 1, 1)(0, 1, 1)

(1, 0, 0)

Notes:

Fixed points: (0, 0, 0) and (1, 1, 1).

The configuration (1, 1, 0) is the successor of (0, 1, 0). (Each
configuration has a unique successor.)
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Phase Space of a SyDS (continued)

v2 v3

v1

(0, 0, 0)

(1, 0, 1)

(0, 0, 1) (0, 1, 0)

(1, 1, 0)

(1, 1, 1)(0, 1, 1)

(1, 0, 0)

Notes (continued):

The configuration (1, 1, 0) is a predecessor of (1, 1, 1).
(A configuration may have zero or more predecessors.)

The configuration (1, 0, 0) doesn’t have a predecessor. It is a
Garden of Eden configuration.
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Some Known Results Regarding SyDSs

Every progressive SyDS has a fixed point. (If the underlying network
has n nodes, the system reaches a fixed point in at most n time
steps.)

In general, the following problems for SyDSs are computationally
intractable:

(Fixed Point Existence) Given a SyDS S, does S have a
fixed point?

(Predecessor Existence) Given a SyDS S and a
configuration C, does C have a predecessor?

(Garden of Eden Existence) Given a SyDS S, does S have
a Garden of Eden configuration?

(Reachability) Given a SyDS S and two configurations C1
and C2, does S starting from C1 reach C2?

Note: A SyDS with suitable local functions is computationally as

powerful as a Turing Machine.
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Zero and Infinite Threshold Values

Assumption: The domain is {0, 1}.
Zero Threshold:

A node with zero threshold changes from 0 to 1 at the first possible
opportunity; it won’t change back to 0.

Useful in modeling early adopters.

Infinite Threshold:

A node with infinite threshold will stay at 0.

For a node of degree d , setting its threshold to d + 2 will ensure
that property.

Useful in several applications.

Opinion propagation: Nodes with infinite thresholds model
“stubborn” people.
Disease propagation: Nodes with infinite thresholds model
nodes which have been vaccinated (so that they will never get
infected).
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Some Applications of the Model

Blocking Disease Propagation:

Given: A social network, local functions that model disease
propagation, the set of initially infected nodes and a budget β on
the number of people who can be vaccinated.

Goal: Vaccinate at most β nodes of the network so that the
number of new infections is minimized.

Example:

v4v3v2

v1 Assume that threshold for each
node is 1.

If the vaccination budget is 2, then
nodes v2 and v3 should be chosen.
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Some Applications of the Model (continued)

Some Results on Blocking Disease Propagation:

Ref: [Kuhlman et al. 2015]

For simple contagions (or when the graph has some special
properties), the blocking problem can be solved efficiently.

For complex contagions, the blocking problem is computationally
intractable. (Even obtaining near-optimal solutions is
computationally intractable.)

Many algorithms that work well on large networks are available.
(The above reference also presents experimental results obtained
from these algorithms.)

The problem has also been investigated under probabilistic disease
transmission models.
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Some Applications of the Model

Viral Marketing:

Given: A social network, local functions that model propagation of
behavior and a budget β on the number of initial adopters.

Goal: Choose a subset of at most β initial adopters so that the
number of nodes to which the behavior propagates is maximized.

Example:

v1 v2 v3

Suppose β = 2.

If the threshold for each node is 1,
the solution is {v1, v3}.

If the threshold for each node is 2,
the solution is {v1, v2}.
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Some Applications of the Model (continued)

Some Results on Viral Marketing:

Ref: [Kempe et al. 2005] and [Zhang et al. 2014].

For simple contagions (or when the graph has some special
properties), the viral marketing problem can be solved efficiently.

For complex contagions, the problem is computationally
intractable. (However, near-optimal solutions can be obtained
efficiently.)

The problem has been studied extensively under various propagation
models (including probabilistic models).
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A Bi-threshold Model

Ref: [Kuhlman et al. 2011]

Models for some social phenomena require “back and forth” state
changes (i.e., changes from 0 to 1 as well as 1 to 0).

Examples: Smoking, Drinking, Dieting.

The bi-threshold model was proposed to address such behaviors.

Each node v has two threshold values, denoted by T 1
v (the up

threshold) and T 0
v (the down threshold).

If the current state of v is 0 and at least T 1
v neighbors of v are

in state 1, then the next state of v is 1; otherwise, the next
state of v is 0.

If the current state of v is 1 and at least T 0
v neighbors of v are

in state 0, then the next state of v is 0. otherwise, the next
state of v is 1.
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A Bi-threshold Model (continued)

Examples: Assume that T 1
v (the up threshold) is 2 and T 0

v (the down
threshold) is 1. (Also, green and red represent states 0 and 1
respectively.)

v

The state of v will change to 1.

v

The next state of v is also 0.

v

The state of v will change to 0.
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A Bi-threshold Model (continued)

Example – A bi-threshold SyDS:

v1 v2 v3 v4 For each node, the up and down
threshold values are 1.

Configuration at t = 0:

v1 v2 v3 v4 States of v1 and v2 will change.

Configuration at t = 1:

v1 v2 v3 v4 States of v1, v2 and v3 will change.

8–65 / 94



A Bi-threshold Model (continued)

Configuration at t = 2:

v1 v2 v3 v4 States of v1, v2 and v3 will change.

Configuration at t = 3:

v1 v2 v3 v4 States of all the nodes will change.

Configuration at t = 4:

v1 v2 v3 v4 States of all the nodes will change.

Note: From this point on, the system goes back and forth between the

two configurations for t = 2 and t = 3.
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Bi-threshold System: Partial Phase Space

(1, 0, 0, 0)

(0, 1, 0, 0)

(1, 0, 1, 0)

(0, 1, 0, 1)

t = 0:

t = 1:

t = 2:

t = 3:

Note: The phase space contains a (directed) cycle of length 2.

8–67 / 94



SyDSs with Probabilistic Threshold Functions

In general, diffusion is a probabilistic phenomenon.

Even if the threshold is met, a person may decide not to change
his/her behavior.

Probabilistic threshold functions provide a way to model this
uncertainty.

Probabilistic Thresholds: [Barrett et al. 2011]

Domain = {0, 1}.

For each node v , a threshold τv and a probability pv are given.

If the number of 1’s in the input to fv is < τv ,
the next state of v = 0.

If the number of 1’s in the input to fv is ≥ τv :

The next state of v is 1 with probability pv and 0 with
probability 1− pv .

This generalizes the deterministic case (where pv = 1).
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SyDSs with Probabilistic ... (continued)

Assumption: Nodes make independent choices.

Example:

v2 v3

v1

Assume that each node has a threshold of 1
and probability of 3/4.

Table specifying local function f1 (for v1):

No. of 1’s in the input Pr{s(v1) = 1}
0 0
1 3/4
2 3/4
3 3/4
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SyDSs with Probabilistic ... (continued)

Computing the transition probability – Example 1:

v2 v3

v1

Each node has a threshold of 1 and
probability of 3/4.

Let the current configuration C1 be (1, 0, 0).

Goal: To compute the probability that the
next configuration is C2 = (1, 0, 1).

Steps: Note that in C1, the thresholds for all three nodes are satisfied.

The probability that v1 remains 1 is 3/4.

The probability that v2 remains 0 is 1/4.

The probability that v3 changes to 1 is 3/4.

So, the probability of transition from C1 to C2 is

(3/4)× (1/4)× (3/4) = 9/64.
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SyDSs with Probabilistic ... (continued)

Computing the transition probability – Example 2:

v2 v3

v1

Each node has a threshold of 1 and
probability of 3/4.

Let the current configuration C1 be (0, 0, 1).

Goal: To compute the probability that the
next configuration is C2 = (0, 1, 1).

Steps:

In C1, the thresholds are satisfied for v1 and v3 but not for v2.

Thus, the probability that v2 changes to 1 is 0.

So, the probability of transition from C1 to C2 is = 0.
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SyDSs with Probabilistic ... (continued)

Phase Space with Probabilistic Transitions:

There is a node for each configuration.

The is a directed edge from node x to node y if the probability of
transition from x to y (in one step) is positive.

The probability value is indicated on the edge.

The outdegree of each node may be (much) larger than 1.

This represents the Markov Chain for the diffusion process.
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SyDSs with Probabilistic ... (continued)

Example – A Part of the Phase Space:

v2 v3

v1

Note: For each node,

threshold = 1 and

probability = 3/4.

(1, 0, 0)

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

3/64
3/64

9/64

3/64

1/64

9/64

9/64

27/64

Note: For each node, the sum of the probability values on the outgoing

edges must be 1.
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Some Known Results Regarding Probabilistic SyDSs

The following problems for probabilistic SyDSs are computationally
intractable [Barrett et al. 2011].

(Fixed Point Existence) Given a probabilistic SyDS S and a
probability value p, is there a configuration C such that C is its own
successor with probability ≥ p?

(Predecessor Existence) Given a SyDS S, a configuration C1 and
a probability p, is there a configuration C0 such that the probability
of transition from C0 to C1 is ≥ p?

(Reachability) Given a SyDS S, two configurations C1 and C2 and
a probability value p, does S starting from C1 reach C2 with
probability ≥ p?
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The SIR Epidemic Model

Basics of the SIR Model:

Proposed by William Kermack and Anderson McKendrick in 1927.

Effective in the study of several diseases that affect humans.

Each individual may be in one of the following three states:

Susceptible (denoted by S),

Infected (denoted by I) or

Recovered (denoted by R).

For any individual, the sequence of states is as follows:

S −→ I −→ R

So, the system is progressive.
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The SIR Epidemic Model (continued)

Basics of the SIR Model (continued):

An individual remains in state I for a certain period
(usually assumed to be 1) and changes to R.

Each edge of the network has a probability value
(transmission probability).

Nodes in state R play no further role in transmitting the disease.

Example:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4
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The SIR Epidemic Model (continued)

Notation:

For any edge e = {u, v}, the transmission probability of e is
denoted by pe (or p{u,v}).

For each node vi , the set of neighbors of vi is denoted by Ni .

For any node vi , Xi (t) ⊆ Ni denotes the set of neighbors of vi
whose state at time t is I.

Definition of the local function fi at node vi :

If the state of vi at time t is R, then the state of vi at
time t + 1 is also R.

If the state of vi at time t is I, then the state of vi at
time t + 1 is R.
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The SIR Epidemic Model (continued)

Definition of the local function (continued):

If the state of vi at time t is S, then the the state of vi at time t + 1
is either S or I as determined by the following stochastic process.

Define π(i , t) as follows:

π(i , t) = 0 if Xi (t) = ∅

= 1−
∏

u∈Xi (t)

(
1− p{u,vi}

)
otherwise.

The state of vi is I with probability π(i , t) and S with
probability 1− π(i , t).
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The SIR Epidemic Model (continued)

Example 1:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4

At t = 0, let v0 be the node in state I.
(All other nodes are in state S.)

Goal: To compute the probability that node
v1 gets infected.

For v1, the only infected neighbor at t = 0 is v0.

So, Pr{v1 gets infected} = 1/2.

Similarly, Pr{v2 gets infected} = 1/2 and

Pr{v3 gets infected} = 1/2.
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The SIR Epidemic Model (continued)

Example 2: System configuration at t = 1.

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4

Notation: Blue, Red and Black circles
indicate states S, I and R respectively.

Goal: To compute the probability that node
v4 gets infected.

For v4, the infected neighbors are v1 and v2.

Pr{v4 doesn’t get infected by v1} = 1− (3/4) = 1/4.

Pr{v4 doesn’t get infected by v2} = 1− (1/2) = 1/2.

Thus, Pr{v4 doesn’t get infected} = (1/4)× (1/2) = 1/8.

So, Pr{v4 gets infected} = 1− (1/8) = 7/8.
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A Possible Sequence of Configurations

Note: Blue, Red and Black circles indicate states S, I and R
respectively.

Configuration at t = 0:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4

Configuration at t = 1:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4
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A Possible Sequence of Configurations (continued)

Note: Blue, Red and Black circles indicate states S, I and R
respectively.

Configuration at t = 2:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4

Configuration at t = 3:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4
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A Possible Sequence of Configurations (continued)

Note: Blue, Red and Black circles indicate states S, I and R
respectively.

Configuration at t = 4:

v2

v5 v6v4

1/2
1/2

1/2

1/2

3/4

1/2

1

v0

v3v1

3/4

Node v5 is in state S while
all others are in state R.

This configuration is a fixed
point.
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SIR Model – Some Known Results

Ref: [Shapiro et al. 2012] and [Peyrard et al. 2012].

Every SIR system has a fixed point. (If the underlying network has n
nodes, the system reaches a fixed point in at most n time steps.)

The following problems for the SIR model are computationally
intractable:

(Expected Number of Infections) Given an SIR system and
the set of initially infected nodes, compute the expected
number of nodes that get infected.

(Node Vulnerability) Given an SIR system, the set of
initially infected nodes and a node v , compute the probability
that v gets infected.
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SIR Model – Examples of Other Research Problems

Model Calibration: [Eubank et al. 2005]

Given: Graph G (V ,E ), the initially infected set of nodes and a
sequence σ of numbers representing new infections for some
successive time steps.

Goal: Find the transmission probabilities so that the sequence of
expected number of new infections of the resulting system matches
σ as closely as possible.

Forecasting: [Marathe et al. 2015]

Given: An SIR system, the initially infected set of nodes, a time
value t ≥ 1 and an integer γ.

Goal: Compute the probability that the number of new infections
at t is at least γ.

Note: The above forecasting problem can be solved efficiently for t = 1.

It is computationally intractable for all t ≥ 2.
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A Model for Collective Action

Motivating example:

Organizing a protest/revolt against a repressive regime.

If a lot of people participate, then the regime would be weakened
and the protesters can win.

If only a few people participate, then all protesters may be arrested
(strong negative payoff).

Also a threshold phenomenon.

The social network conveys information regarding people’s
willingness to participate.
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A Model for Collective Action (continued)

Some difficulties:

One can discuss participation on protests only with a few close
friends.

It is hard to know how many others are willing to participate.
(Repressive regimes want to keep it that way!)

Pluralistic Ignorance:

Many people may be opposed to the regime but they may believe
that they are in a small minority.

People have highly erroneous estimates regarding prevailing
opinions.

8–87 / 94



A Model for Collective Action (continued)

Examples of pluralistic ignorance:

The illusory popular support for the communist regime in the Soviet
Union.

Surveys conducted in USA during the late 1960’s showed the
following.

A big majority of people believed that much of the country
was in favor of racial segregation.

However, it was preferred only by a small minority of people.
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A Model for Collective Action (continued)

Setting: A small number of Senior Vice Presidents must confront
an unpopular CEO at a Board Meeting.

There is a social network where nodes represent senior VPs and
edges represent strong ties (i.e., trusted relationships).

Each node v has a threshold τv .

Node v will be part of the group confronting the CEO if the group
has at least τv people (including v).

All nodes know the nodes and edges of the network.

Each node knows the thresholds of its neighbors but doesn’t know
the thresholds of other nodes.

Careful analysis is needed to determine whether or not collective
action (confrontation) occurs.
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A Model for Collective Action (continued)

Example 1: (Simple case)

u v

w

2

4

3 Each integer is the threshold for the
corresponding node.

Goal: To determine whether or not
the collective action (protest) occurs.

Reasoning by node w :

My threshold is 4 but there are only 3 nodes in the network.

So, I won’t join the protest.

Reasoning by node v :

Node w ’s threshold is 4 and so w won’t join. Thus my threshold of
3 won’t be met.

So, I won’t join the protest.
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A Model for Collective Action (continued)

Example 1: (continued)

u v

w

2

4

3 Reasoning used by node u: Similar
to that of v .

Result: None of the nodes will join
the protest.

Example 2: (More subtle)

u v

w

3

x

3

3 3

Each node “sees” that there are 3
nodes each with threshold 3.

Is this enough for collective action to
occur?
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A Model for Collective Action (continued)

Example 2: (continued)

u v

w

3

x

3

3 3

Each nodes must consider what other
nodes know.

Reasoning by node u:

Nodes v and w have a threshold value of 3.

I don’t know the threshold of node x ; it may be a high value
(such as 5).

If x ’s threshold is indeed high, then neither w nor v will join the
protest.

So, it is not safe for me to join the protest.
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A Model for Collective Action (continued)

Example 2: (continued)

u v

w

3

x

3

3 3

Because of symmetry, the reasoning
used by the other node will be similar
to that of u.

Result: None of the nodes joins the
protest.

Even though each node “sees” a group of three nodes each with a
threshold of 3, collective action doesn’t occur.

Reason: Each node is not sure whether its two neighbors will
participate.
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A Model for Collective Action (continued)

Example 3:

u v

w

3

x

3

3 3

Note: This example is obtained by replacing
the edge {v , x} in Example 2 by the edge
{v ,w}.

Now, nodes u, v and w all “know” that there is a group of 3 nodes,
each with a threshold of 3.

The above fact is common knowledge; each node knows for sure
that the other two nodes have all the information that enables them
to participate.

Result: Collective action occurs in this case.
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