CSI 445/660 - Part 8 (Diffusion in Networks)

Ref: Chapter [19] of [EK] text.

Diffusion in Networks

Diffusion:

- Process by which a contagion (e.g. information, disease, fads) spreads through a social network.
- Also called network dynamics.
- Everett Rogers (1931-2004)
- Ph.D. (Sociology \& Statistics), lowa State University, 1957.
- Authored the book "Diffusion of Innovations" in 1962.
- Introduced the phrase "early adopter".
- Taught at Ohio State University and the University of New Mexico.

Diffusion: Early Empirical Work

Cultivation of Hybrid Seed Corn:

- Study by Bruce Ryan and Neal Gross in the 1920's at lowa State University.
- Goal: To understand how the practice of cultivating hybrid seed corn spread among farmers in lowa.
- This form of corn had a higher yield and was disease resistant.
- Yet, there was resistance to its use ("inertia").
- The practice didn't take off until 1934 when some elite farmers started cultivating it.

■ Ryan/Gross analyzed surveys; they didn't construct social networks.

Diffusion: Early Empirical Work (continued)

Use of Tetracycline (an antibiotic):

■ Study by James Coleman, Herbert Menzel and Elihu Katz in the 1960's at Columbia University.

- Tetracycline was a new drug marketed by Pfizer.
- Analyzed data from doctors who prescribed the medicine and pharmacists that filled the prescriptions.
- Constructed a social network of doctors and pharmacists.

■ Summary:

- A large fraction of the initial prescriptions were by a small number of doctors in large cities.
- Doctors who had many physician friends started prescribing the medicine more quickly.

Diffusion: Early Empirical Work (continued)

Other studies:

- Use of telephones (Claude Fischer).

■ Use of email (Lynne Markus).

Modeling diffusion through a network:

- Consider diffusion of new behavior.
- Assumptions:
- People makes decisions about adopting a new behavior based on their friends.
- Benefits of adopting a new behavior increase as more friends adopt that behavior.
Example: It may be easier to collaborate with colleagues if compatible technologies are used.
- This "direct benefit" model is due to Stephen Morris (Princeton University).

A Coordination Game

Rules of the game:

- A social network (an undirected graph) is given.
- Each node has a choice between behaviors \mathbf{A} and \mathbf{B}.
- For each edge $\{x, y\}$, there is an incentive for the behaviors of nodes x and y to match, as given by the following payoff matrix.

	y	
	A	B
A	a, a	0, 0
B	0, 0	b, b

■ If x and y both adopt \mathbf{A}, they both get a benefit of a.

- If x and y both adopt \mathbf{B}, they both get a benefit of b.
- If x and y don't adopt the same behavior, their benefit is zero.

A Coordination Game (continued)

Rules of the game (continued):

- Each node v plays this game with each of its neighbors.
- The payoff for a node v is the sum of the payoffs over all the edge incident on v.

Example:

- Let $a=5$ and $b=7$.

■ If v adopts \mathbf{A}, payoff $=4 \times 5=20$.

- If v adopts \mathbf{B}, payoff $=3 \times 7=21$.
- So, v should adopt B (rational behavior).

Note: The example points out that v 's choice depends on the choices made by all its neighbors and the parameters a and b.

A Coordination Game (continued)

Question: In general, how should a node v choose its behavior, given the choices of its neighbors?

Analysis:

- Suppose the degree of v is d.
- Suppose a fraction p of v 's neighbors have chosen \mathbf{A} and the remaining fraction $(1-p)$ have chosen \mathbf{B}.
- So, pd neighbors have chosen \mathbf{A} and $(1-p) d$ neighbors have chosen B.

■ If v chooses \mathbf{A}, its payoff $=p d a$.

- If v chooses \mathbf{B}, its payoff $=(1-p) d b$.
- So, \mathbf{A} is the better choice if

$$
p d a \geq(1-p) d b
$$

that is, $\quad p \geq b /(a+b)$.

A Coordination Game (continued)

Analysis (continued):

- Leads to a simple rule:
- If a fraction of at least $b /(a+b)$ neighbors of v use \mathbf{A}, then v must also use \mathbf{A}.
- Otherwise, v must use B.
- The rule is intuitive:

1 If $b /(a+b)$ is small (say, $1 / 100$):

- Then b is small and \mathbf{A} is the "more profitable" behavior.
- So, a small fraction of neighbors adopting \mathbf{A} is enough for v to change to \mathbf{A}.
2 If $b /(a+b)$ is large (say, 99/100):
- Then b is large and \mathbf{B} is the "more profitable" behavior.
- So, a large fraction of neighbors adopting \mathbf{A} is necessary for v to change to \mathbf{A}.

A Coordination Game (continued)

Note: The quantity $b /(a+b)$ is called the threshold for a node to change from \mathbf{B} to \mathbf{A}.

Cascading behavior:

- The model has two situations that correspond to equilibria.
- Every node uses A.
- Every node uses B.

In these situation no single node has an incentive to change to the other behavior.

Note: These situations are called pure Nash equilibria for the game.

- What happens if some subset of nodes ("early adopters") decide to change their behavior (for reasons outside the definition of the game)?

Cascading Behavior (continued)

Assumptions:

- At the starting point, all nodes use B.
- Some nodes change to \mathbf{A}.
- Other nodes evaluate their payoffs and switch to \mathbf{A} if it is more profitable.
- For simplicity, the system is assumed to be progressive; that is, once a node switches to \mathbf{A}, it won't switch back to B.

Equilibrium configuration:

- Payoffs: $a=3$ and $b=2$.
- Threshold for switching from B to $\mathbf{A}=b /(a+b)=2 / 5$.
- Notation: Blue represents B and red represents \mathbf{A}.
- At some time point $(t=0)$, suppose nodes v and w switch to \mathbf{A}.

Cascading Behavior (continued)

Configuration at $t=0$:

- Note: Threshold for switching from B to $\mathbf{A}=2 / 5$.

Analysis:

- Node r has $2 / 3$ of its neighbors using A. Since $2 / 3>2 / 5$, r will switch to \mathbf{A}.
- Node s also has $2 / 3$ of its neighbors using A. So, s will also switch to A.
- Node t has $1 / 3$ of its neighbors using A. Since $1 / 3<2 / 5$, t won't switch to A.
- Node u also has $1 / 3$ of its neighbors using A. So, u won't switch to A.

Cascading Behavior (continued)

Configuration at $t=1$:

- Note: Threshold for switching from B to $\mathbf{A}=2 / 5$.

Analysis:

- Now, node t has $2 / 3$ of its neighbors using A. Since $2 / 3>2 / 5$, t will switch to \mathbf{A}.
- Node u also has $2 / 3$ of its neighbors using A. So, u will also switch to A.

Configuration at $t=2$:

- The system has reached the other equilibrium.

Cascading Behavior (continued)

Notes:

■ In the example, there was a cascade of switches that resulted in all nodes switching to \mathbf{A}.

■ The example shows complete cascade.

- Cascades may also be partial as shown by the following example.

Equilibrium configuration:

- At some time point $(t=0)$, suppose nodes x, y and w switch to \mathbf{A}.

Cascading Behavior (continued)

Configuration at $t=0$:

■ Note: Threshold for switching from \mathbf{B} to $\mathbf{A}=2 / 5$.

Analysis:

- Node z has $2 / 3$ of its neighbors using A. Since $2 / 3>2 / 5$, z will switch to \mathbf{A}.
- Nodes p, q, r and s have zero neighbors using A. So, none of them will switch to \mathbf{A}.

Cascading Behavior (continued)

Configuration at $t=1$:

- Note: Threshold for switching from \mathbf{B} to $\mathbf{A}=2 / 5$.

Analysis:

- Node p has $1 / 3$ of its neighbors using A. Since $1 / 3<2 / 5$, p won't switch to \mathbf{A}.
- Nodes q, r and s have zero neighbors using A. So, none of them will switch to A.
- Thus, the configuration shown above is another equilibrium for the system.
- Here, the cascade is partial.

Cascading Behavior (continued)

Brief digression - A non-progressive system:

- A node may switch from \mathbf{A} to \mathbf{B} or vice versa.

Example - Equilibrium configuration:

- Payoffs: $a=3$ and $b=2$.
- Threshold for switching from B to \mathbf{A} $=2 / 5$.
- At some time point $(t=0)$, suppose nodes u and v switch to \mathbf{A}.

A Non-progressive System (continued)

Configuration at $t=0$:

- Nodes p and q have zero neighbors using A. So, they won't switch to A.
- Nodes r and s have only $1 / 4$ of their neighbors using A. So, they won't switch to A.
- The only neighbor of node u uses \mathbf{B}. So, it is more profitable for u to switch back to B.
- For the same reason, it is more profitable for v to switch back to \mathbf{B}.

- So, the system switches back to the previous equilibrium configuration.
- There is no cascade here.

Obstacles to Cascades (Progressive Systems)

Example: The cascade stopped in the following network.

- Threshold for switching from B to $\mathbf{A}=2 / 5$.
- The cascade didn't spread to nodes p, q, r and s.
- The situation can be explained formally.

Definition: Given an undirected graph $G(V, E)$, a subset $V_{1} \subseteq V$ of nodes forms a cluster of density α if for every node $v \in V_{1}$, at least a fraction α of the neighbors of v in G are in V_{1}.

Obstacles to Cascades (continued)

Example: (Density of a cluster)

- Let $V_{1}=\{x, y, z, w\}$.
- For x, y and w, all their neighbors are in V_{1}. (So, fraction of neighbors in $V_{1}=1$.)
- For z, a fraction $2 / 3$ of its neighbors are in V_{1}.
- So, density of the cluster formed by $V_{1}=2 / 3$.

Note: Density of a cluster is determined by the smallest fractional value among the nodes in the cluster.

Obstacles to Cascades (continued)

Brief discussion on clusters and their densities:

- The notion of clusters suggests some level of internal "cohesion"; that is, for all the nodes in the cluster, a specified fraction of their neighbors are also in the cluster.
- However, high cluster density doesn't mean that two nodes in the same cluster have much in common.

Reason: If we consider the whole graph, it forms a cluster of density 1. (This holds even when the graph is disconnected.)

- A formal relationship between cluster density and diffusion was established in [Morris, 2000].

Obstacles to Cascades (continued)

Theorem: [due to Stephen Morris]

Suppose $G(V, E)$ is a network where each node is using behavior B. Let $V^{\prime} \subseteq V$ be a subset of "early adopters" of behavior \mathbf{A}. Further, let α be threshold for the other nodes to switch from \mathbf{B} to \mathbf{A}.

1 If the subnetwork of G formed on the remaining nodes (i.e., $V-V^{\prime}$) has a cluster of density $>(1-\alpha)$, then V^{\prime} won't cause a complete cascade.

2 If V^{\prime} does not cause a complete cascade, then the subnetwork on the remaining nodes must contain a cluster of density $>(1-\alpha)$.

Interpretation:

- Part 1: Clusters of density $>(1-\alpha)$ act as "obstacles" to a complete cascade.
- Part 2: Clusters of density $>(1-\alpha)$ are the only "obstacles" to a complete cascade.

An Example for Morris's Theorem

- Recall: Threshold α for \mathbf{B} to \mathbf{A} switch $=2 / 5$.
- Let $V^{\prime}=\{x, y, z\}$ be the "early adopters".
- Consider $V_{1}=\{p, q, r, s\}$.
- For q, r and s, all their neighbors are in V_{1}. (So, fraction of neighbors in $V_{1}=1$.)
- For p, a fraction $2 / 3$ of its neighbors are in V_{1}.
- So, density of the cluster formed by $V_{1}=2 / 3$.
- Note that $1-(2 / 5)=3 / 5$ and $2 / 3>3 / 5$.
- So, the cascade cannot be complete.

Diffusion and Weak Ties

Recall:

- A local bridge is an edge $\{x, y\}$ such that x and y don't have any neighbor in common.
- Local bridges are weak ties but enable nodes to get information from other parts of the network ("strength of weak ties").

Do local bridges help in the diffusion of behavior?

- Edges $\{z, p\}$ and $\{w, d\}$ are local bridges.
- Let threshold for switching be $2 / 5$.
- Let z and w be the "early adopters".

Diffusion and Weak Ties (continued)

- Nodes x and y will switch to \mathbf{A}.
- However, none of the other nodes will switch.
- Local bridges are "too weak" to propagate behaviors that require higher thresholds.
- If threshold for each node v is set to $1 / \operatorname{degree}(v)$, then there will be a complete cascade (low threshold).
- The concept of thresholds provides one way to explain why information (e.g. jokes, link to videos, news) spreads to a much larger population compared to behaviors such as political mobilization.

Homogeneous and Heterogeneous Thresholds

- In the coordination game, all the nodes had the same threshold value (homogeneous thresholds).
- In the context of weak ties, using a different threshold for each node can cause a complete cascade (heterogeneous thresholds).
- Heterogeneous thresholds can also arise in the coordination game: choose a different payoff for each node.

- If x and y both adopt \mathbf{A}, x gets a_{x} and y gets a_{y}.
- If x and y both adopt \mathbf{B}, x gets b_{x} and y gets b_{y}.
- If x and y don't adopt the same behavior, their benefit is zero.

Homogeneous and Heterogeneous Thresholds (continued)

- The threshold for any node v (to switch from \mathbf{B} to \mathbf{A}) is $b_{v} /\left(a_{v}+b_{v}\right)$. (Thus, each node may have a different threshold.)
- Morris's Theorem can be generalized to the case of heterogeneous thresholds.

Definition: (Blocking Cluster)

Consider a network $G(V, E)$ where each node v has a threshold α_{v}. A subset $V_{1} \subseteq V$ of nodes is a blocking cluster if for every node $v \in V_{1}$, more than $1-\alpha_{v}$ fraction of the neighbors of v are in V_{1}.

Note: This generalizes the notion of a cluster defined in the homogeneous case.

Homogeneous and Heterogeneous Thresholds (continued)

Example 1: (Blocking Cluster)

- Consider the cluster $V_{1}=\{p, q, r, s\}$.
- For $p, 1-\alpha_{p}=1 / 2$, the fraction of neighbors in $V_{1}=2 / 3$ and $2 / 3>1 / 2$.
- For the nodes q, r and s, all their neighbors are in V_{1}.
- So, V_{1} is a blocking cluster.

Homogeneous and Heterogeneous Thresholds (continued)

Example: (continued)

- Let $\alpha_{p}=1 / 6$ and $\alpha_{q}=\alpha_{r}=\alpha_{s}$ $=2 / 5$.
- The only change is that $\alpha_{p}=1 / 6$ (instead of $1 / 2$).
- For $p, 1-\alpha_{p}=5 / 6$ and the fraction of neighbors in $V_{1}=$ $2 / 3$. However, $2 / 3<5 / 6$.
- So, V_{1} is not a blocking cluster with the new threshold value for p.
- Easy to verify that $V_{2}=\{q, r, s\}$ is still a blocking cluster.

Homogeneous and Heterogeneous Thresholds (continued)

Generalization of Morris's Theorem:

Suppose $G(V, E)$ is a network where each node v has a threshold α_{v}.
Let $V^{\prime} \subseteq V$ be the "early adopters".
1 If the subnetwork of G formed on the remaining nodes (i.e., $V-V^{\prime}$) has a blocking cluster, then V^{\prime} won't cause a complete cascade.

2 If V^{\prime} does not cause a complete cascade, then the subnetwork on the remaining nodes must contain a blocking cluster.

Note: The idea of using thresholds to study diffusion in social networks is due to Mark Granovetter in 1978.

Cascades and Viral Marketing

Note: Think of \mathbf{A} and \mathbf{B} as competing products.

Example with a partial cascade:

- Threshold for switching from B to $\mathbf{A}=2 / 5$.
- A didn't propagate to the cluster $\{p, q, r, s\}$ at the threshold value of $2 / 5$.
- What can the marketing agency for \mathbf{A} do?

1 Try to decrease the threshold.
2 Try to choose the early adopters carefully.

Cascades and Viral Marketing (continued)

1 Decreasing the threshold:
■ Formula for threshold $=b /(a+b)$.

- With $a=3$ and $b=2$, threshold $=2 / 5$.
- The threshold can be decreased by increasing a; that is, by improving the quality of \mathbf{A}.

■ Example: Let $a=4$ while b remains at 2 .
■ New threshold $=2 /(4+2)=1 / 3$.

- This threshold causes a complete cascade. (See the next two slides).

Cascades and Viral Marketing (continued)

Configuration at $t=0$:

- Threshold for switching from \mathbf{B} to $\mathbf{A}=1 / 3$.

Configuration at $t=1$:

- Node p switched from B to \mathbf{A}.

Cascades and Viral Marketing (continued)

Configuration at $t=2$:

- Nodes q and s switched from B to \mathbf{A}.

Configuration at $t=3$:

- Node r switched from B to \mathbf{A}.
- The cascade is complete.

Cascades and Viral Marketing (continued)

2 Choose early adopters carefully.

- With $\{x, y, z\}$ as the early adopters, the cascade is partial.
- Suppose the early adopters are $\{x, y, p, q\}$.

Configuration at $t=0$:

- Threshold for switching from
 \mathbf{B} to $\mathbf{A}=2 / 5$.
- This set of early adopters will cause a complete cascade. (See the next slide.)

Cascades and Viral Marketing (continued)

Configuration at $t=1$:

- Nodes w and s switched from B to A.

Configuration at $t=2$:

- Nodes z and t switched from B to A.
- The cascade is complete.

Cascades and Viral Marketing (continued)

Notes on Viral Marketing:

- Marketing units can only choose a limited number of early adopters due to budget constraints.
- Influence Maximization Problem:
- Given: A social network $G(V, E)$, a threshold value α and a budget on the number of early adopters N.
- Required: Find a subset of V with at most N nodes (the early adopters) so that a maximum number of nodes change to \mathbf{A}.
- The problem is known to be computationally difficult (NP-hard).
- The problem has also been studied under other models (e.g. probabilistic switches).

Towards a More General Model for Diffusion

Features of the current model:
1 A social network where the interaction is between a node and its neighbors (local interactions).

2 The current configuration of the system (i.e., the current behavior of each node).

3 A threshold value. (This was chosen based on the coordination game.)

4 A scheme for nodes to evaluate their payoffs and decide whether or not to switch behaviors (synchronous evaluation and update).

Towards a More General Model for Diffusion

Why generalization is useful:

- There are several diffusion phenomena (e.g. disease propagation) where there is no underlying game with payoffs.
- The decision to switch may involve more complex computations.

Example: Most disease propagation models are probabilistic.

- The generalization also allows precise formulations of several other problems related to diffusion.

Note: The generalized model is called a Synchronous Dynamical System (or SyDS).

Components of a Synchronous Dynamical System

1 An undirected graph $G(V, E)$. (In most applications, this graph represents a social contact network.)

2 Each node v has state value, denoted by $s(v)$.

- The state value is from a specified set (domain).
- A typical example is the Boolean domain $\{0,1\}$.
- In some disease models, the domain is larger.
- The interpretation of the state value depends on the application.

Components of a SyDS (continued)

Interpretation of state values in some applications:
(a) Coordination game: Values 0 and 1 represent behaviors \mathbf{A} and \mathbf{B} respectively.
(b) Simple disease models: Value $0 \Rightarrow$ node is uninfected and $1 \Rightarrow$ node is infected.
(c) Information propagation: Value $0 \Rightarrow$ node does not have the information and $1 \Rightarrow$ node has the information.
(d) Complex disease models: State values represent different levels of infection.

Components of a SyDS (continued)

3 A local function f_{v} for each node v of the graph. (This function captures the local interactions between a node and its neighbors.)

Notes:

- The inputs to the function f_{v} are the current state of node v and those of its neighbors.
- The value computed by the function f_{v} gives the state value of v for the next time instant.

Components of a SyDS (continued)

Example of a local function: Assume that the domain is $\{0,1\}$.

$s(v)$	$s\left(w_{1}\right)$	$s\left(w_{2}\right)$	f_{v}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Notes:

- The above specification is a truth table for f_{v}.
- When a node has degree r, the truth table specifying f_{v} will have 2^{r+1} rows. (This is exponential in the degree of node v.)
- This is not practical for nodes of large degree.

Components of a SyDS (continued)

A more common local function: The domain is $\{0,1\}$.

- For each node v, an integer threshold value τ is specified. (The value of τ may vary from node to node.)
- The function f_{v} has the value 1 if the number of 1 's in the input is at least τ; it is 0 otherwise.
- This function is called the τ-threshold function.
- If v has degree d, then the τ-threshold function can be represented using a table with $d+2$ rows.

No. of 1's	Value of f_{v}
0	0
1	0
2	1
3	1

A 2-threshold function

Absolute and Relative Thresholds

- In the definition of τ-threshold functions, the value τ specifies an absolute threshold.
- The threshold value specified in the coordination game is called a relative threshold; this is a fraction relative to the degree of the node.
- Any relative threshold can be converted into a corresponding absolute threshold and vice versa.

Example: Suppose a node v has a degree of 9. (So, the number of inputs to the function $f_{v}=10$.)

- If f_{v} is specified by the absolute threshold value 3, then the relative threshold value is $3 / 10=0.3$.
- If f_{v} is specified using the relative threshold value $1 / 3$, the absolute threshold value is $\lceil 10 \times(1 / 3)\rceil=4$.

Other Definitions and Conventions in SyDSs

- A SyDS uses synchronous computation and update.
- All nodes compute the values of their local functions synchronously (i.e., in parallel).
- After all the computations are finished, all the nodes update their state values synchronously.
- The synchronous computation and update proceeds until the system reaches an equilibrium, where no further state changes occur.
- In a progressive SyDS over the Boolean domain, states of nodes may be change from 0 to 1 ; however, the states cannot change from 1 to 0 .

Consequence: In a progressive SyDS, once the state of node becomes 1 , it remains at 1 for ever.

- In the discussion on SyDSs, local functions will be specified using absolute thresholds.

An Example of a SyDS

Example 1:

- Domain $=\{0,1\}$.
- Each local function is the 1 -threshold function (simple contagion).
- Note that the state of a node can't change from 1 to 0 ; the system is progressive.

Configuration at $t=0$:

- Green indicates state value 0 .
- Red indicates state value 1 .
- The configuration at $t=0$ can also be represented as $(0,1,0,0,0,0)$.

An Example of a SyDS (continued)

Configuration at $t=1$:

■ Nodes v_{3} and v_{4} switched from 0 to 1 .

- The configuration at $t=1$: (0, 1, 1, 1, 0, 0).

Configuration at $t=2$:

- Nodes v_{1}, v_{5} and v_{6} switched from 0 to 1 .
- The configuration at $t=2$: ($1,1,1,1,1,1$).
- The cascade is complete.

Why did we get a complete cascade?

Explanation 1:

- Since the graph is connected, there is a path from node v_{2} (the "early adopter") to every other node.
- So, if the interaction graph is connected, a simple contagion always results in a complete cascade.

Note: The order in which nodes change to state 1 is given by breadth-first search (BFS) starting from the set of early adopters.

Why did we get a complete cascade? (continued)

Explanation 2: Morris's theorem.

- When a cascade stops, the remaining nodes (which have not switched) must form a blocking cluster.
- For each node v in the blocking cluster, more than $\left(1-\alpha_{v}\right)$ fraction of the neighbors must in the cluster, where α_{v} is the relative threshold of v.
- When the graph is connected and the relative threshold for each node v is $1 /$ degree (v), there is at least one node for which the above condition is not satisfied.
- So, the cascade can't be partial.

Another Example of a SyDS

Example 2:

- Domain $=\{0,1\}$.
- Each local function is the 2-threshold function.
- We will assume that the system is progressive (i.e., the state of a node can't change from 1 to 0).
Note: If at least one of the thresholds is >1, the system models a complex contagion.

Configuration at $t=0$:

- The configuration at $t=0$ is
($1,1,0,0,0,0$).

A Second Example of a SyDS (continued)

Configuration at $t=1$:

■ Node v_{3} switched from 0 to 1 .

- The configuration at $t=1$: (1, 1, 1, 0, 0, 0).

Configuration at $t=2$:
■ Node v_{4} switched from 0 to 1.

- The configuration at $t=2$: ($1,1,1,1,0,0$).
- No further state changes can occur; the system has reached an equilibrium (fixed point).
- The cascade is partial.

Phase Space of a SyDS

Sequences of configurations:

Example 1

Example 2

- For any SyDS, we can construct these sequences starting from any initial configuration.
- The collection of all such sequences forms the phase space of a SyDS.

Phase Space of a SyDS (continued)

Definition: The phase space of a SyDS is a directed graph where

- each node represents a configuration and
- for any two nodes x and y, there is a directed edge (x, y) if the configuration represented by x changes to that represented by y in one time step.

Comment: The phase space may have self-loops.
How Large is the Phase Space? (Assume that the Domain is $\{0,1\}$.)

- If the underlying network of the SyDS has n nodes, then the number of nodes in the phase space $=2^{n}$; that is, the size of the phase space is exponential in the number of nodes.

■ For the SyDSs considered so far (deterministic SyDSs), each node in the phase space has an outdegree of 1 . (So, the number of edges in the phase space is also 2^{n}.)

Phase Space of a SyDS (continued)

Example - A SyDS and its Phase Space: The domain is $\{0,1\}$ and each node has a 1-threshold function.

Notes:
■ Fixed points: $(0,0,0)$ and (1, 1, 1).

- The configuration $(1,1,0)$ is the successor of $(0,1,0)$. (Each configuration has a unique successor.)

Phase Space of a SyDS (continued)

Notes (continued):

- The configuration $(1,1,0)$ is a predecessor of $(1,1,1)$. (A configuration may have zero or more predecessors.)
- The configuration ($1,0,0$) doesn't have a predecessor. It is a Garden of Eden configuration.

Some Known Results Regarding SyDSs

- Every progressive SyDS has a fixed point. (If the underlying network has n nodes, the system reaches a fixed point in at most n time steps.)
- In general, the following problems for SyDSs are computationally intractable:
- (Fixed Point Existence) Given a SyDS \mathcal{S}, does \mathcal{S} have a fixed point?
- (Predecessor Existence) Given a SyDS \mathcal{S} and a configuration \mathcal{C}, does \mathcal{C} have a predecessor?
- (Garden of Eden Existence) Given a $\operatorname{SyDS} \mathcal{S}$, does \mathcal{S} have a Garden of Eden configuration?
- (Reachability) Given a SyDS \mathcal{S} and two configurations \mathcal{C}_{1} and \mathcal{C}_{2}, does \mathcal{S} starting from \mathcal{C}_{1} reach \mathcal{C}_{2} ?

Note: A SyDS with suitable local functions is computationally as powerful as a Turing Machine.

Zero and Infinite Threshold Values

Assumption: The domain is $\{0,1\}$.

Zero Threshold:

- A node with zero threshold changes from 0 to 1 at the first possible opportunity; it won't change back to 0 .
- Useful in modeling early adopters.

Infinite Threshold:

- A node with infinite threshold will stay at 0 .
- For a node of degree d, setting its threshold to $d+2$ will ensure that property.
- Useful in several applications.
- Opinion propagation: Nodes with infinite thresholds model "stubborn" people.
- Disease propagation: Nodes with infinite thresholds model nodes which have been vaccinated (so that they will never get infected).

Some Applications of the Model

Blocking Disease Propagation:

■ Given: A social network, local functions that model disease propagation, the set of initially infected nodes and a budget β on the number of people who can be vaccinated.

■ Goal: Vaccinate at most β nodes of the network so that the number of new infections is minimized.

Example:

■ Assume that threshold for each node is 1 .

- If the vaccination budget is 2 , then nodes v_{2} and v_{3} should be chosen.

Some Applications of the Model (continued)

Some Results on Blocking Disease Propagation:

Ref: [Kuhlman et al. 2015]

- For simple contagions (or when the graph has some special properties), the blocking problem can be solved efficiently.
- For complex contagions, the blocking problem is computationally intractable. (Even obtaining near-optimal solutions is computationally intractable.)
- Many algorithms that work well on large networks are available. (The above reference also presents experimental results obtained from these algorithms.)
- The problem has also been investigated under probabilistic disease transmission models.

Some Applications of the Model

Viral Marketing:

- Given: A social network, local functions that model propagation of behavior and a budget β on the number of initial adopters.
- Goal: Choose a subset of at most β initial adopters so that the number of nodes to which the behavior propagates is maximized.

Example:

- Suppose $\beta=2$.

- If the threshold for each node is 1 , the solution is $\left\{v_{1}, v_{3}\right\}$.
- If the threshold for each node is 2 , the solution is $\left\{v_{1}, v_{2}\right\}$.

Some Applications of the Model (continued)

Some Results on Viral Marketing:
Ref: [Kempe et al. 2005] and [Zhang et al. 2014].

- For simple contagions (or when the graph has some special properties), the viral marketing problem can be solved efficiently.
- For complex contagions, the problem is computationally intractable. (However, near-optimal solutions can be obtained efficiently.)
- The problem has been studied extensively under various propagation models (including probabilistic models).

A Bi-threshold Model

Ref: [Kuhlman et al. 2011]

■ Models for some social phenomena require "back and forth" state changes (i.e., changes from 0 to 1 as well as 1 to 0).

- Examples: Smoking, Drinking, Dieting.
- The bi-threshold model was proposed to address such behaviors.
- Each node v has two threshold values, denoted by T_{v}^{1} (the up threshold) and T_{v}^{0} (the down threshold).

■ If the current state of v is 0 and at least T_{v}^{1} neighbors of v are in state 1 , then the next state of v is 1 ; otherwise, the next state of v is 0 .

- If the current state of v is 1 and at least T_{v}^{0} neighbors of v are in state 0 , then the next state of v is 0 . otherwise, the next state of v is 1 .

A Bi-threshold Model (continued)

Examples: Assume that T_{v}^{1} (the up threshold) is 2 and T_{v}^{0} (the down threshold) is 1 . (Also, green and red represent states 0 and 1 respectively.)

- The state of v will change to 1 .

- The next state of v is also 0 .

- The state of v will change to 0 .

A Bi-threshold Model (continued)

Example - A bi-threshold SyDS:

Configuration at $t=0$:
$v_{0}^{v 2} \quad v_{0}^{v} \quad$ States of v_{1} and v_{2} will change.

Configuration at $t=1$:
$v_{0}^{v 2} v_{0}^{v 4}$. States of v_{1}, v_{2} and v_{3} will change.

A Bi-threshold Model (continued)

Configuration at $t=2$:
$v_{0} v_{2}^{v} v_{0} \quad$ States of v_{1}, v_{2} and v_{3} will change.

Configuration at $t=3$:
$\mathrm{v} 1 \quad \mathrm{v} 2 \quad \mathrm{v} 3 \quad$ States of all the nodes will change.

Configuration at $t=4$:
$v 1 \quad \mathrm{v} 2 \quad \mathrm{v} 4 \quad$ States of all the nodes will change.
Note: From this point on, the system goes back and forth between the two configurations for $t=2$ and $t=3$.

Bi-threshold System: Partial Phase Space

Note: The phase space contains a (directed) cycle of length 2 .

SyDSs with Probabilistic Threshold Functions

- In general, diffusion is a probabilistic phenomenon.

■ Even if the threshold is met, a person may decide not to change his/her behavior.

- Probabilistic threshold functions provide a way to model this uncertainty.

Probabilistic Thresholds: [Barrett et al. 2011]

- Domain $=\{0,1\}$.

■ For each node v, a threshold τ_{v} and a probability p_{v} are given.

- If the number of 1 's in the input to f_{v} is $<\tau_{v}$, the next state of $v=0$.
- If the number of 1 's in the input to f_{v} is $\geq \tau_{v}$:
- The next state of v is 1 with probability p_{v} and 0 with probability $1-p_{v}$.
- This generalizes the deterministic case (where $p_{v}=1$).

SyDSs with Probabilistic ... (continued)

Assumption: Nodes make independent choices.

Example:

- Assume that each node has a threshold of 1 and probability of $3 / 4$.

Table specifying local function $f_{1}\left(\right.$ for $\left.v_{1}\right)$:

No. of 1's in the input	$\operatorname{Pr}\left\{s\left(v_{1}\right)=1\right\}$
0	0
1	$3 / 4$
2	$3 / 4$
3	$3 / 4$

SyDSs with Probabilistic ... (continued)

Computing the transition probability - Example 1:

- Each node has a threshold of 1 and
 probability of $3 / 4$.
- Let the current configuration \mathcal{C}_{1} be $(1,0,0)$.
- Goal: To compute the probability that the next configuration is $\mathcal{C}_{2}=(1,0,1)$.

Steps: Note that in \mathcal{C}_{1}, the thresholds for all three nodes are satisfied.

- The probability that v_{1} remains 1 is $3 / 4$.
- The probability that v_{2} remains 0 is $1 / 4$.
- The probability that v_{3} changes to 1 is $3 / 4$.
- So, the probability of transition from \mathcal{C}_{1} to \mathcal{C}_{2} is

$$
(3 / 4) \times(1 / 4) \times(3 / 4)=9 / 64
$$

SyDSs with Probabilistic ... (continued)

Computing the transition probability - Example 2:

■ Each node has a threshold of 1 and
 probability of $3 / 4$.

■ Let the current configuration \mathcal{C}_{1} be $(0,0,1)$.
■ Goal: To compute the probability that the next configuration is $\mathcal{C}_{2}=(0,1,1)$.

Steps:

■ In \mathcal{C}_{1}, the thresholds are satisfied for v_{1} and v_{3} but not for v_{2}.
■ Thus, the probability that v_{2} changes to 1 is 0 .
■ So, the probability of transition from \mathcal{C}_{1} to \mathcal{C}_{2} is $=0$.

SyDSs with Probabilistic ... (continued)

Phase Space with Probabilistic Transitions:

- There is a node for each configuration.
- The is a directed edge from node x to node y if the probability of transition from x to y (in one step) is positive.
- The probability value is indicated on the edge.
- The outdegree of each node may be (much) larger than 1.
- This represents the Markov Chain for the diffusion process.

SyDSs with Probabilistic ... (continued)

Example - A Part of the Phase Space:

Note: For each node, the sum of the probability values on the outgoing edges must be 1 .

Some Known Results Regarding Probabilistic SyDSs

The following problems for probabilistic SyDSs are computationally intractable [Barrett et al. 2011].

- (Fixed Point Existence) Given a probabilistic SyDS \mathcal{S} and a probability value p, is there a configuration \mathcal{C} such that \mathcal{C} is its own successor with probability $\geq p$?
- (Predecessor Existence) Given a $\operatorname{SyDS} \mathcal{S}$, a configuration \mathcal{C}_{1} and a probability p, is there a configuration \mathcal{C}_{0} such that the probability of transition from \mathcal{C}_{0} to \mathcal{C}_{1} is $\geq p$?
- (Reachability) Given a $\operatorname{SyDS} \mathcal{S}$, two configurations \mathcal{C}_{1} and \mathcal{C}_{2} and a probability value p, does \mathcal{S} starting from \mathcal{C}_{1} reach \mathcal{C}_{2} with probability $\geq p$?

The SIR Epidemic Model

Basics of the SIR Model:

- Proposed by William Kermack and Anderson McKendrick in 1927.

■ Effective in the study of several diseases that affect humans.

- Each individual may be in one of the following three states:

■ Susceptible (denoted by \mathbb{S}),

- Infected (denoted by \mathbb{I}) or

■ Recovered (denoted by \mathbb{R}).

- For any individual, the sequence of states is as follows:

$$
\mathbb{S} \longrightarrow \mathbb{I} \longrightarrow \mathbb{R}
$$

So, the system is progressive.

The SIR Epidemic Model (continued)

Basics of the SIR Model (continued):

■ An individual remains in state \mathbb{I} for a certain period (usually assumed to be 1) and changes to \mathbb{R}.

■ Each edge of the network has a probability value (transmission probability).

■ Nodes in state \mathbb{R} play no further role in transmitting the disease.

Example:

The SIR Epidemic Model (continued)

Notation:

- For any edge $e=\{u, v\}$, the transmission probability of e is denoted by p_{e} (or $p_{\{u, v\}}$).

■ For each node v_{i}, the set of neighbors of v_{i} is denoted by N_{i}.
■ For any node $v_{i}, X_{i}(t) \subseteq N_{i}$ denotes the set of neighbors of v_{i} whose state at time t is \mathbb{I}.

Definition of the local function f_{i} at node v_{i} :

- If the state of v_{i} at time t is \mathbb{R}, then the state of v_{i} at time $t+1$ is also \mathbb{R}.
- If the state of v_{i} at time t is \mathbb{I}, then the state of v_{i} at time $t+1$ is \mathbb{R}.

The SIR Epidemic Model (continued)

Definition of the local function (continued):

- If the state of v_{i} at time t is \mathbb{S}, then the the state of v_{i} at time $t+1$ is either \mathbb{S} or \mathbb{I} as determined by the following stochastic process.
- Define $\pi(i, t)$ as follows:

$$
\begin{aligned}
\pi(i, t) & =0 & & \text { if } X_{i}(t)=\emptyset \\
& =1-\prod_{u \in X_{i}(t)}\left(1-p_{\left\{u, v_{i}\right\}}\right) & & \text { otherwise. }
\end{aligned}
$$

- The state of v_{i} is \mathbb{I} with probability $\pi(i, t)$ and \mathbb{S} with probability $1-\pi(i, t)$.

The SIR Epidemic Model (continued)

Example 1:

- At $t=0$, let v_{0} be the node in state \mathbb{I}. (All other nodes are in state \mathbb{S}.)
- Goal: To compute the probability that node v_{1} gets infected.
- For v_{1}, the only infected neighbor at $t=0$ is v_{0}.
- So, $\operatorname{Pr}\left\{v_{1}\right.$ gets infected $\}=1 / 2$.
- Similarly, $\operatorname{Pr}\left\{v_{2}\right.$ gets infected $\}=1 / 2$ and
- $\operatorname{Pr}\left\{v_{3}\right.$ gets infected $\}=1 / 2$.

The SIR Epidemic Model (continued)

Example 2: System configuration at $t=1$.

- Notation: Blue, Red and Black circles indicate states \mathbb{S}, \mathbb{I} and \mathbb{R} respectively.
- Goal: To compute the probability that node v_{4} gets infected.

■ For v_{4}, the infected neighbors are v_{1} and v_{2}.

- $\operatorname{Pr}\left\{\mathrm{v}_{4}\right.$ doesn't get infected by $\left.\mathrm{v}_{1}\right\}=1-(3 / 4)=1 / 4$.
- $\operatorname{Pr}\left\{v_{4}\right.$ doesn't get infected by $\left.v_{2}\right\}=1-(1 / 2)=1 / 2$.
- Thus, $\operatorname{Pr}\left\{v_{4}\right.$ doesn't get infected $\}=(1 / 4) \times(1 / 2)=1 / 8$.

■ So, $\operatorname{Pr}\left\{v_{4}\right.$ gets infected $\}=1-(1 / 8)=7 / 8$.

A Possible Sequence of Configurations

Note: Blue, Red and Black circles indicate states \mathbb{S}, \mathbb{I} and \mathbb{R} respectively.

Configuration at $t=0$:

Configuration at $t=1$:

A Possible Sequence of Configurations (continued)

Note: Blue, Red and Black circles indicate states \mathbb{S}, \mathbb{I} and \mathbb{R} respectively.

Configuration at $t=2$:

Configuration at $t=3$:

A Possible Sequence of Configurations (continued)

Note: Blue, Red and Black circles indicate states \mathbb{S}, \mathbb{I} and \mathbb{R} respectively.

Configuration at $t=4$:

- Node v_{5} is in state \mathbb{S} while all others are in state \mathbb{R}.
- This configuration is a fixed point.

SIR Model - Some Known Results

Ref: [Shapiro et al. 2012] and [Peyrard et al. 2012].

- Every SIR system has a fixed point. (If the underlying network has n nodes, the system reaches a fixed point in at most n time steps.)
- The following problems for the SIR model are computationally intractable:
- (Expected Number of Infections) Given an SIR system and the set of initially infected nodes, compute the expected number of nodes that get infected.
- (Node Vulnerability) Given an SIR system, the set of initially infected nodes and a node v, compute the probability that v gets infected.

SIR Model - Examples of Other Research Problems

Model Calibration: [Eubank et al. 2005]

- Given: Graph $G(V, E)$, the initially infected set of nodes and a sequence σ of numbers representing new infections for some successive time steps.
- Goal: Find the transmission probabilities so that the sequence of expected number of new infections of the resulting system matches σ as closely as possible.

Forecasting: [Marathe et al. 2015]

- Given: An SIR system, the initially infected set of nodes, a time value $t \geq 1$ and an integer γ.
- Goal: Compute the probability that the number of new infections at t is at least γ.

Note: The above forecasting problem can be solved efficiently for $t=1$. It is computationally intractable for all $t \geq 2$.

A Model for Collective Action

Motivating example:

■ Organizing a protest/revolt against a repressive regime.

- If a lot of people participate, then the regime would be weakened and the protesters can win.
- If only a few people participate, then all protesters may be arrested (strong negative payoff).
- Also a threshold phenomenon.
- The social network conveys information regarding people's willingness to participate.

A Model for Collective Action (continued)

Some difficulties:

■ One can discuss participation on protests only with a few close friends.

■ It is hard to know how many others are willing to participate. (Repressive regimes want to keep it that way!)

Pluralistic Ignorance:

- Many people may be opposed to the regime but they may believe that they are in a small minority.

■ People have highly erroneous estimates regarding prevailing opinions.

A Model for Collective Action (continued)

Examples of pluralistic ignorance:

- The illusory popular support for the communist regime in the Soviet Union.
- Surveys conducted in USA during the late 1960's showed the following.

■ A big majority of people believed that much of the country was in favor of racial segregation.
■ However, it was preferred only by a small minority of people.

A Model for Collective Action (continued)

- Setting: A small number of Senior Vice Presidents must confront an unpopular CEO at a Board Meeting.
- There is a social network where nodes represent senior VPs and edges represent strong ties (i.e., trusted relationships).

■ Each node v has a threshold τ_{v}.

- Node v will be part of the group confronting the CEO if the group has at least τ_{v} people (including v).
- All nodes know the nodes and edges of the network.
- Each node knows the thresholds of its neighbors but doesn't know the thresholds of other nodes.
- Careful analysis is needed to determine whether or not collective action (confrontation) occurs.

A Model for Collective Action (continued)

Example 1: (Simple case)

- Each integer is the threshold for the corresponding node.

■ Goal: To determine whether or not the collective action (protest) occurs.

Reasoning by node w :

- My threshold is 4 but there are only 3 nodes in the network.

■ So, I won't join the protest.

Reasoning by node v :

- Node w's threshold is 4 and so w won't join. Thus my threshold of 3 won't be met.
- So, I won't join the protest.

A Model for Collective Action (continued)

Example 1: (continued)

- Reasoning used by node u : Similar to that of v.
- Result: None of the nodes will join the protest.

Example 2: (More subtle)

- Each node "sees" that there are 3 nodes each with threshold 3.
- Is this enough for collective action to occur?

A Model for Collective Action (continued)

Example 2: (continued)

- Each nodes must consider what other nodes know.

Reasoning by node u :

- Nodes v and w have a threshold value of 3 .
- I don't know the threshold of node x; it may be a high value (such as 5).
- If x 's threshold is indeed high, then neither w nor v will join the protest.
- So, it is not safe for me to join the protest.

A Model for Collective Action (continued)

Example 2: (continued)

■ Because of symmetry, the reasoning used by the other node will be similar to that of u.

■ Result: None of the nodes joins the protest.

■ Even though each node "sees" a group of three nodes each with a threshold of 3, collective action doesn't occur.

■ Reason: Each node is not sure whether its two neighbors will participate.

A Model for Collective Action (continued)

Example 3:

Note: This example is obtained by replacing the edge $\{v, x\}$ in Example 2 by the edge $\{v, w\}$.

- Now, nodes u, v and w all "know" that there is a group of 3 nodes, each with a threshold of 3 .
- The above fact is common knowledge; each node knows for sure that the other two nodes have all the information that enables them to participate.
- Result: Collective action occurs in this case.

