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Models for Random Graphs

References:

1 R. Albert and A. Barabasi, “Statistical Mechanics of Complex
Networks”, Reviews of Modern Physics, Vol. 74, Jan. 2002,
pp. 47–97.

2 Chapter 18 of [EK].

Motivation:

Provide methods for generating large random networks.

Such synthetic networks are useful in

testing applications and

checking whether or not a given social network is
similar to a random network.

Many methods have been proposed; each is useful in certain
applications.
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Erdős-Rényi-Gilbert Model

Paul Erdős (1913–1996)

See slides for Part 1 for additional information.

Alfréd Rényi (1921–1970)

Ph.D., University of Szeged, 1947.

Many contributions to Mathematics.

Edger Gilbert (1923–2013)

Ph.D., MIT, 1948.

Worked on Coding Theory at Bell Labs, NJ.
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Erdős-Rényi-Gilbert Model (continued)

Basic information about the model:

Proposed by Gilbert and developed extensively by
Erdős and Rényi.

Commonly known as the Erdős-Rényi (ER) model.

Uses two parameters:

1 the number of nodes (n) and

2 the probability (p) of an edge between any pair of nodes.

Also called the G (n, p) model.

Usually, p is a function of n (e.g. p = 1/n).

Edges between pairs of nodes are chosen independently.
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Erdős-Rényi-Gilbert Model (continued)

Note: Assume that the nodes are numbered 1 through n.

Algorithm for ER model graph generation:

for i = 1 to n − 1 do {
for j = i + 1 to n do {

Add edge {i , j} with probability p.
}

}

Notes:

The above algorithm generates an undirected graphs.

Can be easily modified to generate directed graphs.

We will restrict our attention to undirected graphs.
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Some Random Graph Generation Facilities in CINET

G (n, p) random graph: This generates a random graph
under the ER model.

G (n, p) component: This generates a random graph under
the ER model and gives the distribution of the sizes of the
connected components (in the form of a table).

G (n,m) random graph: This generates a random graph
with n nodes and m edges.

(n, d)-random regular graph:

A graph is regular if every node has the same degree.

This generator produces a random graph with n nodes where
each node has degree = d .
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Some Random Graph ... CINET (continued)

G (n, r) random graph: This generates a random geometric
graph as follows:

A total of n points are randomly chosen within the unit cube.

Each point is a node of the graph.

An edge is added between a pair of nodes if the distance
between the corresponding pair of points is at most r .

Such graphs arise in the study of wireless (ad hoc) networks.
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Erdős-Rényi-Gilbert Model (continued)

Some simple properties:

1 Expected degree of any node = p(n − 1).

Proof: Consider any node v .

Node v may have up to n − 1 possible edges, say e1, e2, . . ., en−1,
to the other nodes.

Let Xi be a RV associated with edge ei , 1 ≤ i ≤ n − 1: Xi = 1 if
edge ei is present and 0 otherwise. (Xi is called an indicator RV.)

Degree(v) = X1 + X2 + . . .+ Xn−1 is another RV.

Now, Pr{Xi = 1} = p and Pr{Xi = 0} = 1− p.
So, E[Xi ] = p (1 ≤ i ≤ n − 1).

So, by linearity of expectation, E[Degree(v)] = p(n − 1).
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Erdős-Rényi-Gilbert Model (continued)

Some simple properties (continued):

2 Expected number of edges = n(n − 1)p/2.

Proof:

Introduce an indicator RV Yi for each of the N = n(n − 1)/2
possible edges.

Let Y denote the RV for the number of edges. Thus,

Y = Y1 + Y2 + . . .+ YN .

As before, E[Yi ] = p, (1 ≤ i ≤ N).

By linearity of expectation, E[Y ] = pN = pn(n − 1)/2.
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Erdős-Rényi-Gilbert Model (continued)

Some simple properties (continued):

3 Let πk(v) denote the probability that node v has
degree = k (0 ≤ k ≤ n − 1). Then,

πk(v) =

(
n − 1

k

)
pk (1− p)n−1−k .

This called the binomial distribution.

This is the same probability as getting k heads from n − 1 tosses of
a coin, where the probability of heads = p.
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Erdős-Rényi-Gilbert Model (continued)

Some non-trivial properties: The following results due to Erdős and
Rényi are asymptotic (i.e., they hold for large n).

Condition Property of G (n, p)

p < 1/n Almost surely has no connected component of size
larger than c1 log2 n for some constant c1.

p = 1/n Almost surely has a giant component of size at least
c2 n

2/3 for some constant c2.

p > 1/n Almost surely has a giant component of size at least
αn for some constant α (0 < α < 1).
All other components will almost surely have size
≤ β log2n for some constant β.

p = 1/2 With high probability, the size of
the largest clique is ≈ 2 log2 n.
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ER Model and the Web Graph

Is the ER model appropriate for the web graph?

Consider the node degrees as n increases.

Each edge: A random variable (RV), which has the value 1 with
probability p and the value 0 with probability 1− p.

For any node v , degree(v) is the sum of the n − 1 of the edge RVs.

These n− 1 RVs are independent and identically distributed (iid).

Central Limit Theorem (simplified statement):

As n→∞, the sum of n iid RVs approaches the normal

(or Gaussian) distribution.
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ER Model and the Web Graph (continued)

Note: For such a distribution and large
values of k , the fraction of nodes with degree
k can be shown to decrease exponentially
(i.e., something like 2−k).

Experimental evidence: The fraction of nodes with degree k in the
web graph decreases (roughly) as 1/k2.

Comparison: Suppose k = 1000. Then 1/k2 = 10−6. However,

2−k = 1/21000 < 10−250

which is much smaller than 10−6.

So, ER model is not appropriate for the web graph.

A more appropriate model is that of power law (or scale-free)
graphs.
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Definition of Power Law

Definition: A function f (k) exhibits power law behavior if it decreases
with k as k−c for some positive constant c .

Examples from empirical studies: (from Chapter 18 of [EK] text)

The fraction of telephone numbers that receive k calls per day is
roughly proportional to 1/k2.

The fraction of books bought by k people is roughly
proportional to 1/k3.

The fraction of scientific papers that receive k citations is
roughly proportional to 1/k3.

Note: Many measures of popularity seem to exhibit power law behaviors.
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A Characteristic of Power Law Distribution

Note: Power law distribution has a heavy tail.
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How to Check for Power Law

Given: The values of function f (k) for different values of k.

k f (k)

1.0 445.7
1.5 411.3

...
...

31.2 13.9

We want to check whether the data
exhibits a power law behavior.

If so, we want to find the exponent c .

Idea: Suppose the data exhibits power law behavior; that is,

f (k) = a× k−c for some constants a and c .

Then

log10(f (k)) = log10(a)− c log10(k).

Observation: If log10(f (k)) is plotted against log10(k), the graph will

be a straight line.
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How to Check for Power Law (continued)

h

log(f(k))

log(k)

slope = −c

Note:  h =  log(a)

Slope of the line = −c .

y -intercept of the line = log10(a).

Note: Many plotting programs can produce log-log plots.

Computing the exponent:

Consider the function values f (k1) and f (k2) at two values
k1 and k2.

Let x1 = log10(k1) and x2 = log10(k2).

Let y1 = log10(f (k1)) and y2 = log10(f (k2)).

Slope of the line = (y2 − y1)/(x2 − x1) and the power law
exponent c = − slope.
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How to Check for Power Law (continued)

Problem: Check whether the data shown in the following table exhibits
power law behavior; if so, find the power law exponent.

k f (k) k f (k)

10.00 19500.00 113.91 13.19
15.00 5777.78 170.86 3.91
22.50 1711.93 256.29 1.16
33.75 507.24 384.43 0.34
50.62 150.29 576.65 0.10
75.94 44.53

Solution: The log-log plot for this data is shown on the next slide.
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How to Check for Power Law (continued)

Log-Log plot for the data:
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Note: Since the log-log plot is a straight line, the given data exhibits

power law behavior.
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How to Check for Power Law (continued)

Value of the power law exponent:

From the given data set choose k1 = 22.50 and k2 = 33.75.
So, x1 = log10(22.50) and x2 = log10(33.75).

Also from the given data set, f (k1) = 1711.93 and f (k2) = 507.24.
So, y1 = log10(1711.93) and y2 = log10(507.24).

Slope = (y2 − y1)/(x2 − x1) = −2.9999.

So, power law exponent = 2.9999 (which is close to 3.0).
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Power Law Example: Web Graph

An example from [EK]:

From [Broder et al. 2000].

Shows both total indegree (red)
and remote-only indegree (blue).

The corresponding power law
exponents are (approximately) 2.09
and 2.1 respectively.

The power law behavior of the web graph suggests that its evolution
cannot be captured by the ER model.

Question: Which random graph model allows node degrees to
have a power law distribution?

Answer: The preferential attachment (or “rich get richer”)
model.
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Preferential Attachment Model

Herbert A. Simon (1916–2001)

Ph.D. (Political Science), University of Chicago,
1943.

Taught at Carnegie Mellon University.

Contributed to many areas (e.g. Political Science, Economics,
Psychology, Cognitive Science, Computer Science).

Won the Nobel Prize in Economics (for his contributions to
decision-making processes in organizations).

Also won the Turing Award in Computer Science (for his
contributions to AI).
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Preferential Attachment Model (continued)

Simon [Biometrika, 1955] developed a general model to explain
power law behavior in many different situations.

Example: The fraction of cities with with population k was known
to follow a power law.

Simon’s model allowed the derivation of the corresponding power
law using the following assumption:

The rate at which the population of a city grows is
proportional to the current size of the population.

Hence the name “rich get richer” model.

The name “preferential attachment” was coined later
(by Albert & Barabasi).
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Preferential Attachment and the Web Graph

Web graph:

Directed graph.

Nodes are web pages; the directed edge (x , y) means that that web
page x has a link to web page y .

Indegrees exhibit a power law behavior.

Interpretation of “rich get richer” idea:

Popular web pages are likely to get more in-links, further increasing
their popularity.

p

v1

v2

vn

Consequence: Web pages with large
indegrees exist.
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Generating a Directed Graph with Power Law Behavior

Goal: To generate a random directed graph where indegrees have a
power law behavior.

Assumptions:

There are n web pages (numbered 1 through n) and they arrive one
at a time.

A probability value p, 0 < p < 1, which provides an indication of
the likelihood of preferential attachment, is given.

Note: The value of p determines the power law exponent.

Each node has an outdegree of 1.

Note: The graph generation procedure can be generalized to
remove this assumption.

Description of the Algorithm: See Handout 7.1.
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Generating an Undirected Graph with Power Law Behavior

Goal: To generate a random undirected graph where node degrees
have a power law behavior.

Ref: [Albert & Barabasi, 2002]

Assumptions:

Initially, there are m0 ≥ 1 nodes (numbered 1 through m0). (When
the algorithm ends, there are n nodes, numbered 1 through n.)

For each new node, m ≤ m0 edges are added.

In the resulting undirected graph, degrees follow a power law with
exponent c ≈ 3.

Description of the Algorithm: See Handout 7.2.

Note: CINET provides a graph generator for this model.
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Example for Step 1(i) of the Algorithm in Handout 7.2

Note: Step 1(i) of the algorithm implements the “rich get richer” idea.

Example:

Let m = 1; that is, each new node will get one edge.

There are 4 nodes (numbered 1, 2, 3 and 4) and
the new one is node 5.

Let the degrees of nodes 1, 2, 3 and 4 be 3, 3, 2 and 2 respectively.

Current sum of degrees = 3 + 3 + 2 + 2 = 10.

For node 5:

Pr{Edge to node 1} = 3/10.

Pr{Edge to node 2} = 3/10.

Pr{Edge to node 3} = 2/10.

Pr{Edge to node 4} = 2/10.
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A Note on Scale-Free Graphs

The terms “power law graphs” and “scale-free graphs” are treated
as synonyms in the literature.

There are several interpretations of the phrase “scale-free”.

Interpretation 1: (due to Albert & Barabasi)
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There is no person with a height of 9 feet or more; that is, at
“higher scales”, the proportion drops to zero.

For power law graphs, the proportion is positive even for very large
degrees; that is, there are nodes at “all scales”.
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A Note on Scale-Free Graphs (continued)

Interpretation 2: Let P(d) denote the proportion of nodes
with degree d .

When P(d) obeys a power law,

P(d) = α dβ , for some α > 0 and β < 0.

For degree values d1 and d2,

P(d1)

P(d2)
=

(
d1
d2

)β
.

Suppose we “scale” the degrees d1 and d2 by a factor k. Then,

P(k d1)

P(k d2)
=

(
d1
d2

)β
=

P(d1)

P(d2)
.

So, the ratio doesn’t change when degrees are scaled; in this
sense, power law graphs are “scale-free”.
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A Note on Scale-Free Graphs (continued)

Interpretation 3: (due to Fan Chung & Linyuan Lu)

The word “scale” is with respect to time.

Example: Consider the algorithm for generating directed graphs
with power law distribution.

At each time step, one new node and one directed edge
are added.

Instead, consider a time interval of length t: t nodes arrive
during the interval and t edges are added.

The power law exponent is independent of the value of t;
thus, it is free from any scaling with respect to time.
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Chung-Lu Model of Random Graphs

Proposed by Fan Chung (University of California, San Diego) and
Linyuan Lu (University of South Carolina).

Generalizes the ER model.

Inputs:

Integer n, the number of nodes.

A sequence of n non-negative numbers
〈w1,w2, . . . ,wn〉 (called a degree sequence) such that

max
1≤i≤n

{w2
i } <

n∑
i=1

wi .

Output: A random graph with n nodes (numbered 1 through n)
such that the expected degree of node i is wi , 1 ≤ i ≤ n.

The graph may have self loops.

Description of the Algorithm: See Handout 7.3.
7–31 / 44



Chung-Lu Model (continued)

Properties of the Chung-Lu Model:

Generalizes the ER model:

Let wi = np, 1 ≤ i ≤ n, where n and p are the parameters
of the ER model.

Then, the probability of adding any edge {i , j} is exactly p.

Can also generate graphs where degrees satisfy a power law.

For a power law exponent β ≥ 2, the weights are chosen as
follows:

wi = (i/nB)−
1

β−1 , 1 ≤ i ≤ n,

where

B =
1

(β − 1)ξ(β)
and ξ(β) =

∞∑
k=1

k−β .
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Chung-Lu Model (continued)

Properties of the Chung-Lu Model (continued):

For β > 3:

The diameter of the resulting graph is O(log n) with high
probability.

The average distance between any pair of nodes is
O(log n/ log log n) with high probability.

Thus, small-world networks can also be generated using the
Chung-Lu model.

7–33 / 44



Watts-Strogatz Model

Proposed in 1998 by Duncan Watts (Yahoo Research) and Steven
Strogatz (Cornell University).

Predates preferential attachment models.

Addresses two aspects which are not present in the ER model.

ER model does not generate an adequate number of hubs (i.e.,
high degree nodes).

The average clustering coefficient is small under the ER model.

Watts & Strogatz also wanted the graphs to have a small diameter
(i.e., the “small world” property).
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Watts-Strogatz Model (continued)

Rewiring:

c

b

a

d

e c

b

a

d

e

Steps needed to “rewire” edge {c , d} in the graph on the left.

1 Delete edge {c , d}.
2 Add an edge from c to some other node without causing

multi-edges or self-loops.

In the above example, edge {c , d} may get replaced by {c , a} or
{c , e}, each with probability = 1/2.

The graph with edge {c , d} replaced by {c , a} is shown on the right.

Rewiring can decrease the average distance (by adding
“long range” edges).
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Watts-Strogatz Model (continued)

Inputs:

The number of nodes: n.

An even integer K , the average node degree in the resulting graph.

The rewiring probability β.

Assumption: n � K � ln n � 1.

Output: An undirected graph with the following properties.

The graph has n nodes and nK/2 edges. (Thus, the average node
degree is K .)

With high probability, the average distance between any pair of
nodes is ln (n)/ ln (K ).

Description of the Algorithm: See Handout 7.4.
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Watts-Strogatz Model (continued)

Notes:

If β = 0, there is no rewiring and the diameter remains large.

If β = 1, every edge gets rewired; it is known that such graphs are
similar to graphs under the ER model.

If C (0) represents the average clustering coefficient of the initial
graph, empirical evidence suggests that the average clustering
coefficient C (β) after rewiring is given by

C (β) = C (0) (1− β)3 .

If β is small, the clustering coefficient does not decrease much due
to rewriting.
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Watts-Strogatz Model (continued)

Limitations:

Degree distribution does not correspond to that of common social
networks.

The value of n must be known. So, the model is not useful in
generating graphs that evolve over time.

Final Remarks:

Researchers have tried the rewiring approach starting from other
initial graphs (e.g. grids).

Newman-Watts Model: Instead of rewiring, add edges between
randomly chosen pairs of nodes with with probability = β.

This version is easier to implement.

The resulting model has properties similar to the
Watts-Strogatz model.
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Appendix to Part 7

Review of Some Concepts Related to Probability
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Discrete Random Variable

Basic Information:

Abbreviation: RV for “random variable”.

A discrete RV X takes on values from a discrete set S .

For each element a ∈ S , the probability that X takes on
the value a is denoted by Pr{X = a}.

Note that
∑
a∈S

Pr{X = a} = 1.

Example 1: Suppose X is an RV representing the outcome of tossing a
fair coin. Here, S = {T ,H} and Pr{X = T} = Pr{X = H} = 1/2.
(Thus, both the values of X are equally likely.)

Example 2: Suppose Y is an RV representing the outcome of tossing a

fair die. Here, S = {1, 2, 3, 4, 5, 6} and Pr{Y = i} = 1/6, for 1 ≤ i ≤ 6.

(Here, all the six values of Y are equally likely.)
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Expectation of a Discrete RV

Expectation: If X is a discrete RV taking values over a set S of
numbers, then the expectation of X , denoted by E[X ], is defined by

E[X ] =
∑
a∈S

a× Pr{X = a}

Example 1: Suppose Y is an RV representing the outcome of tossing a
fair die. Here, S = {1, 2, 3, 4, 5, 6} and Pr{Y = i} = 1/6, for 1 ≤ i ≤ 6.
Then,

E[Y ] =
6∑

i=1

i/6 = 3.5

Note: When all the values in S are equally likely, the expectation is

equal to average (or mean value).
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Expectation of a Discrete RV

Example 2: Suppose Z is an RV representing the outcome of tossing a
loaded die. Again, S = {1, 2, 3, 4, 5, 6}. Let Pr{Z = 1} = 1/2 and
Pr{Z = i} = 1/10, for 2 ≤ i ≤ 6. Then,

E[Z ] = 1× 1/2 +
6∑

i=2

i/10 = 2.5

Linearity of Expectation: Suppose X1, X1, . . ., Xn are RVs and a new
RV X is defined by

X = X1 + X2 + . . .+ Xn .

Then
E[X ] = E[X1] + E[X2] + . . .+ E[Xn].

Note: The above equation holds even if there are dependencies

among the RVs.
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Expectation of a Discrete RV

Application of Linearity of Expectation:

Problem: Suppose we throw two fair dice. Find the expectation of the
sum of the face values of the two dice.

Solution: Let W denote the RV that represents the sum of the face
values of the two dice.

Method I (somewhat tedious): The possible values for the RV W
are {2, 3, 4, . . . , 12}. We first compute the probability of each these
possible values.

Pr{W = 2} = 1/36
Pr{W = 3} = 2/36

...
Pr{W = 12} = 1/36

Then, we compute E[W ] using the above values.
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Expectation of a Discrete RV (continued)

Application of Linearity of Expectation (continued):

Method II: Let Y1 and Y2 denote the RVs corresponding to the face
values of the two dice. Define a new RV Y = Y1 + Y2. Our goal is to
compute E[Y ].

By linearity of expectation, E[Y ] = E[Y1] + E[Y2]. As shown
previously, E[Y1] = E[Y2] = 3.5. Thus, E[Y ] = 3.5 + 3.5 = 7.

Generalization: For any n ≥ 1, the expectation of the sum of the face
values of n fair dice = 3.5× n.
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