CSI 445/660 – Part 7 (Models for Random Graphs)

Models for Random Graphs

References:

- R. Albert and A. Barabasi, "Statistical Mechanics of Complex Networks", *Reviews of Modern Physics*, Vol. 74, Jan. 2002, pp. 47–97.
- 2 Chapter 18 of [EK].

Motivation:

- Provide methods for generating large random networks.
- Such synthetic networks are useful in
 - testing applications and
 - checking whether or not a given social network is similar to a random network.
- Many methods have been proposed; each is useful in certain applications.

Erdős-Rényi-Gilbert Model

See slides for Part 1 for additional information.

- Alfréd Rényi (1921–1970)
- Ph.D., University of Szeged, 1947.
- Many contributions to Mathematics.

- Edger Gilbert (1923–2013)
- Ph.D., MIT, 1948.
- Worked on Coding Theory at Bell Labs, NJ.

Erdős-Rényi-Gilbert Model (continued)

Basic information about the model:

- Proposed by Gilbert and developed extensively by Erdős and Rényi.
- Commonly known as the Erdős-Rényi (ER) model.
- Uses two parameters:
 - 1 the number of nodes (n) and
 - **2** the probability (p) of an edge between any pair of nodes.
- Also called the G(n, p) model.
- Usually, p is a function of n (e.g. p = 1/n).
- Edges between pairs of nodes are chosen independently.

Erdős-Rényi-Gilbert Model (continued)

Note: Assume that the nodes are numbered 1 through *n*.

Algorithm for ER model graph generation:

```
for i = 1 to n - 1 do {
for j = i + 1 to n do {
Add edge \{i, j\} with probability p.
}
```

Notes:

- The above algorithm generates an undirected graphs.
- Can be easily modified to generate directed graphs.
- We will restrict our attention to undirected graphs.

Some Random Graph Generation Facilities in CINET

- *G*(*n*, *p*) random graph: This generates a random graph under the ER model.
- G(n, p) component: This generates a random graph under the ER model and gives the distribution of the sizes of the connected components (in the form of a table).
- G(n, m) random graph: This generates a random graph with *n* nodes and *m* edges.
- (*n*, *d*)-random regular graph:
 - A graph is **regular** if every node has the same degree.
 - This generator produces a random graph with n nodes where each node has degree = d.

- G(n, r) random graph: This generates a random geometric graph as follows:
 - A total of *n* points are randomly chosen within the unit cube.
 - Each point is a node of the graph.
 - An edge is added between a pair of nodes if the distance between the corresponding pair of points is at most *r*.
 - Such graphs arise in the study of wireless (ad hoc) networks.

Erdős-Rényi-Gilbert Model (continued)

Some simple properties:

1 Expected degree of any node = p(n-1).

Proof: Consider any node *v*.

- Node *v* may have up to *n* − 1 possible edges, say *e*₁, *e*₂, ..., *e*_{*n*−1}, to the other nodes.
- Let X_i be a RV associated with edge e_i , $1 \le i \le n 1$: $X_i = 1$ if edge e_i is present and 0 otherwise. (X_i is called an indicator RV.)
- Degree $(v) = X_1 + X_2 + \ldots + X_{n-1}$ is another RV.

• Now,
$$\Pr\{X_i = 1\} = p$$
 and $\Pr\{X_i = 0\} = 1 - p$.
So, $E[X_i] = p$ $(1 \le i \le n - 1)$.

• So, by linearity of expectation, E[Degree(v)] = p(n-1).

Erdős-Rényi-Gilbert Model (continued)

Some simple properties (continued):

2 Expected number of edges = n(n-1)p/2.

Proof:

Introduce an indicator RV Y_i for each of the N = n(n-1)/2 possible edges.

Let *Y* denote the RV for the number of edges. Thus,

$$Y = Y_1 + Y_2 + \ldots + Y_N.$$

- As before, $E[Y_i] = p$, $(1 \le i \le N)$.
- By linearity of expectation, E[Y] = pN = pn(n-1)/2.

Some simple properties (continued):

3 Let $\pi_k(v)$ denote the probability that node v has degree = k ($0 \le k \le n-1$). Then,

$$\pi_k(v) = \binom{n-1}{k} p^k (1-p)^{n-1-k}.$$

- This called the **binomial distribution**.
- This is the same probability as getting k heads from n-1 tosses of a coin, where the probability of heads = p.

Erdős-Rényi-Gilbert Model (continued)

Some non-trivial properties: The following results due to Erdős and Rényi are **asymptotic** (i.e., they hold for large *n*).

Condition	Property of $G(n, p)$
p < 1/n	Almost surely has no connected component of size larger than $c_1 \log_2 n$ for some constant c_1 .
p=1/n	Almost surely has a giant component of size at least $c_2 n^{2/3}$ for some constant c_2 .
<i>p</i> > 1/ <i>n</i>	Almost surely has a giant component of size at least αn for some constant α ($0 < \alpha < 1$). All other components will almost surely have size $\leq \beta \log_2 n$ for some constant β .
p = 1/2	With high probability, the size of the largest clique is $\approx 2 \log_2 n$.

Is the ER model appropriate for the web graph?

- Consider the node degrees as *n* increases.
- Each edge: A random variable (RV), which has the value 1 with probability p and the value 0 with probability 1 p.
- For any node v, degree(v) is the sum of the n-1 of the edge RVs.
- These *n*−1 RVs are **independent** and **identically distributed** (iid).

Central Limit Theorem (simplified statement):

As $n \to \infty$, the sum of n iid RVs approaches the **normal** (or Gaussian) distribution.

Note: For such a distribution and large values of k, the fraction of nodes with degree k can be shown to **decrease exponentially** (i.e., something like 2^{-k}).

Experimental evidence: The fraction of nodes with degree k in the web graph decreases (roughly) as $1/k^2$.

Comparison: Suppose k = 1000. Then $1/k^2 = 10^{-6}$. However,

$$2^{-k} = 1/2^{1000} < 10^{-250}$$

which is much smaller than 10^{-6} .

- So, ER model is **not** appropriate for the web graph.
- A more appropriate model is that of power law (or scale-free) graphs.

Definition: A function f(k) exhibits **power law** behavior if it decreases with k as k^{-c} for some positive constant c.

Examples from empirical studies: (from Chapter 18 of [EK] text)

- The fraction of telephone numbers that receive k calls per day is roughly proportional to $1/k^2$.
- The fraction of books bought by k people is roughly proportional to 1/k³.
- The fraction of scientific papers that receive k citations is roughly proportional to 1/k³.

Note: Many measures of popularity seem to exhibit power law behaviors.

A Characteristic of Power Law Distribution

Note: Power law distribution has a heavy tail.

How to Check for Power Law

Given: The values of function f(k) for different values of k.

k	f(k)	
1.0	445.7	
1.5	411.3	
÷	:	
31.2	13.9	

- We want to check whether the data exhibits a power law behavior.
- If so, we want to find the exponent c.

Idea: Suppose the data exhibits power law behavior; that is,

$$f(k) = a \times k^{-c}$$
 for some constants a and c.

Then

$$\log_{10}(f(k)) = \log_{10}(a) - c \log_{10}(k).$$

Observation: If $\log_{10}(f(k))$ is plotted against $\log_{10}(k)$, the graph will be a straight line.

How to Check for Power Law (continued)

Note: Many plotting programs can produce log-log plots.

Computing the exponent:

- Consider the function values $f(k_1)$ and $f(k_2)$ at two values k_1 and k_2 .
- Let $x_1 = \log_{10}(k_1)$ and $x_2 = \log_{10}(k_2)$.
- Let $y_1 = \log_{10}(f(k_1))$ and $y_2 = \log_{10}(f(k_2))$.
- Slope of the line $= (y_2 y_1)/(x_2 x_1)$ and the power law exponent c = slope.

Problem: Check whether the data shown in the following table exhibits power law behavior; if so, find the power law exponent.

k	f(k)	k	f(k)
10.00	19500.00	113.91	13.19
15.00	5777.78	170.86	3.91
22.50	1711.93	256.29	1.16
33.75	507.24	384.43	0.34
50.62	150.29	576.65	0.10
75.94	44.53		

Solution: The log-log plot for this data is shown on the next slide.

How to Check for Power Law (continued)

Log-Log plot for the data:

Note: Since the log-log plot is a straight line, the given data exhibits power law behavior.

Value of the power law exponent:

- From the given data set choose $k_1 = 22.50$ and $k_2 = 33.75$. So, $x_1 = \log_{10}(22.50)$ and $x_2 = \log_{10}(33.75)$.
- Also from the given data set, $f(k_1) = 1711.93$ and $f(k_2) = 507.24$. So, $y_1 = \log_{10}(1711.93)$ and $y_2 = \log_{10}(507.24)$.

• Slope =
$$(y_2 - y_1)/(x_2 - x_1) = -2.9999$$
.

■ So, power law exponent = 2.9999 (which is close to 3.0).

Power Law Example: Web Graph

An example from [EK]:

- From [Broder et al. 2000].
- Shows both total indegree (red) and remote-only indegree (blue).
- The corresponding power law exponents are (approximately) 2.09 and 2.1 respectively.

- The power law behavior of the web graph suggests that its evolution cannot be captured by the ER model.
- Question: Which random graph model allows node degrees to have a power law distribution?
- Answer: The preferential attachment (or "rich get richer") model.

Preferential Attachment Model

- Herbert A. Simon (1916–2001)
- Ph.D. (Political Science), University of Chicago, 1943.
- Taught at Carnegie Mellon University.

- Contributed to many areas (e.g. Political Science, Economics, Psychology, Cognitive Science, Computer Science).
- Won the Nobel Prize in Economics (for his contributions to decision-making processes in organizations).
- Also won the Turing Award in Computer Science (for his contributions to AI).

Preferential Attachment Model (continued)

Simon [Biometrika, 1955] developed a general model to explain power law behavior in many different situations.

Example: The fraction of cities with with population k was known to follow a power law.

Simon's model allowed the derivation of the corresponding power law using the following assumption:

The **rate** at which the population of a city grows is proportional to the **current size** of the population.

- Hence the name "rich get richer" model.
- The name "preferential attachment" was coined later (by Albert & Barabasi).

Preferential Attachment and the Web Graph

Web graph:

- Directed graph.
- Nodes are web pages; the directed edge (x, y) means that that web page x has a link to web page y.
- Indegrees exhibit a power law behavior.
- Interpretation of "rich get richer" idea:

Popular web pages are likely to get more in-links, further increasing their popularity.

 Consequence: Web pages with large indegrees exist.

Generating a Directed Graph with Power Law Behavior

Goal: To generate a random **directed** graph where **indegrees** have a power law behavior.

Assumptions:

- There are *n* web pages (numbered 1 through *n*) and they arrive one at a time.
- A probability value *p*, 0 < *p* < 1, which provides an indication of the likelihood of preferential attachment, is given.

Note: The value of *p* determines the power law exponent.

• Each node has an outdegree of 1.

Note: The graph generation procedure can be generalized to remove this assumption.

Description of the Algorithm: See Handout 7.1.

Generating an Undirected Graph with Power Law Behavior

Goal: To generate a random **undirected** graph where node **degrees** have a power law behavior.

Ref: [Albert & Barabasi, 2002]

Assumptions:

- Initially, there are $m_0 \ge 1$ nodes (numbered 1 through m_0). (When the algorithm ends, there are *n* nodes, numbered 1 through *n*.)
- For each new node, $m \leq m_0$ edges are added.
- In the resulting undirected graph, degrees follow a power law with exponent $c \approx 3$.

Description of the Algorithm: See Handout 7.2.

Note: CINET provides a graph generator for this model.

Example for Step 1(i) of the Algorithm in Handout 7.2

Note: Step 1(i) of the algorithm implements the "rich get richer" idea. **Example:**

- Let m = 1; that is, each new node will get one edge.
- There are 4 nodes (numbered 1, 2, 3 and 4) and the new one is node 5.
- Let the degrees of nodes 1, 2, 3 and 4 be 3, 3, 2 and 2 respectively.
- Current sum of degrees = 3 + 3 + 2 + 2 = 10.
- For node 5:
 - $\Pr{\text{Edge to node 1}} = 3/10.$
 - $\Pr{\text{Edge to node 2}} = 3/10.$
 - $\Pr{\text{Edge to node 3}} = 2/10.$
 - $\Pr{\text{Edge to node 4}} = 2/10.$

A Note on Scale-Free Graphs

- The terms "power law graphs" and "scale-free graphs" are treated as synonyms in the literature.
- There are several interpretations of the phrase "scale-free".

Interpretation 1: (due to Albert & Barabasi)

- There is no person with a height of 9 feet or more; that is, at "higher scales", the proportion drops to zero.
- For power law graphs, the proportion is positive even for very large degrees; that is, there are nodes at "all scales".

A Note on Scale-Free Graphs (continued)

Interpretation 2: Let P(d) denote the proportion of nodes with degree d.

• When P(d) obeys a power law,

$$P(d) = \alpha d^{\beta}$$
, for some $\alpha > 0$ and $\beta < 0$.

• For degree values d_1 and d_2 ,

$$\frac{P(d_1)}{P(d_2)} = \left(\frac{d_1}{d_2}\right)^{\beta}$$

• Suppose we "scale" the degrees d_1 and d_2 by a factor k. Then,

$$\frac{P(k d_1)}{P(k d_2)} = \left(\frac{d_1}{d_2}\right)^{\beta} = \frac{P(d_1)}{P(d_2)}.$$

So, the ratio doesn't change when degrees are scaled; in this sense, power law graphs are "scale-free".

Interpretation 3: (due to Fan Chung & Linyuan Lu)

- The word "scale" is with respect to time.
- **Example:** Consider the algorithm for generating directed graphs with power law distribution.
 - At each time step, one new node and one directed edge are added.
 - Instead, consider a time interval of length t: t nodes arrive during the interval and t edges are added.
 - The power law exponent is independent of the value of t; thus, it is free from any scaling with respect to time.

Chung-Lu Model of Random Graphs

- Proposed by Fan Chung (University of California, San Diego) and Linyuan Lu (University of South Carolina).
- Generalizes the ER model.
- Inputs:
 - Integer *n*, the number of nodes.
 - A sequence of *n* non-negative numbers $\langle w_1, w_2, \ldots, w_n \rangle$ (called a degree sequence) such that

$$\max_{1 \le i \le n} \{w_i^2\} < \sum_{i=1}^n w_i .$$

- **Output:** A random graph with *n* nodes (numbered 1 through *n*) such that the **expected degree** of node *i* is w_i , $1 \le i \le n$.
- The graph may have self loops.

Description of the Algorithm: See Handout 7.3.

Chung-Lu Model (continued)

Properties of the Chung-Lu Model:

- Generalizes the ER model:
 - Let $w_i = np$, $1 \le i \le n$, where *n* and *p* are the parameters of the ER model.
 - Then, the probability of adding any edge $\{i, j\}$ is exactly p.
- Can also generate graphs where degrees satisfy a power law.
 - For a power law exponent $\beta \geq 2$, the weights are chosen as follows:

$$w_i = (i/nB)^{-\frac{1}{\beta-1}}, \quad 1 \leq i \leq n,$$

where

$$B=rac{1}{(eta-1)\xi(eta)} \quad ext{and} \quad \xi(eta)=\sum_{k=1}^\infty k^{-eta}.$$

Properties of the Chung-Lu Model (continued):

- For $\beta > 3$:
 - The diameter of the resulting graph is $O(\log n)$ with high probability.
 - The average distance between any pair of nodes is O(log n/ log log n) with high probability.
- Thus, small-world networks can also be generated using the Chung-Lu model.

- Proposed in 1998 by Duncan Watts (Yahoo Research) and Steven Strogatz (Cornell University).
- Predates preferential attachment models.
- Addresses two aspects which are **not** present in the ER model.
 - ER model does not generate an adequate number of hubs (i.e., high degree nodes).
 - The average clustering coefficient is small under the ER model.
- Watts & Strogatz also wanted the graphs to have a small diameter (i.e., the "small world" property).

Watts-Strogatz Model (continued)

• Steps needed to "rewire" edge $\{c, d\}$ in the graph on the left.

1 Delete edge $\{c, d\}$.

- 2 Add an edge from c to some other node without causing multi-edges or self-loops.
- In the above example, edge $\{c, d\}$ may get replaced by $\{c, a\}$ or $\{c, e\}$, each with probability = 1/2.
- The graph with edge {*c*, *d*} replaced by {*c*, *a*} is shown on the right.
- Rewiring can decrease the average distance (by adding "long range" edges).

Watts-Strogatz Model (continued)

Inputs:

- The number of nodes: *n*.
- An even integer K, the average node degree in the resulting graph.
- The rewiring probability β .
- Assumption: $n \gg K \gg \ln n \gg 1$.

Output: An undirected graph with the following properties.

- The graph has *n* nodes and *nK*/2 edges. (Thus, the average node degree is *K*.)
- With high probability, the average distance between any pair of nodes is ln (n)/ln (K).

Description of the Algorithm: See Handout 7.4.

Notes:

- If $\beta = 0$, there is no rewiring and the diameter remains large.
- If $\beta = 1$, every edge gets rewired; it is known that such graphs are similar to graphs under the ER model.
- If C(0) represents the average clustering coefficient of the initial graph, empirical evidence suggests that the average clustering coefficient C(β) after rewiring is given by

$$C(\beta) = C(0) (1-\beta)^3 .$$

If β is small, the clustering coefficient does not decrease much due to rewriting.

Watts-Strogatz Model (continued)

Limitations:

- Degree distribution does not correspond to that of common social networks.
- The value of *n* must be known. So, the model is not useful in generating graphs that evolve over time.

Final Remarks:

- Researchers have tried the rewiring approach starting from other initial graphs (e.g. grids).
- **Newman-Watts Model:** Instead of rewiring, add edges between randomly chosen pairs of nodes with with probability = β .
 - This version is easier to implement.
 - The resulting model has properties similar to the Watts-Strogatz model.

Review of Some Concepts Related to Probability

Basic Information:

- Abbreviation: RV for "random variable".
- A discrete RV X takes on values from a discrete set S.
- For each element a ∈ S, the probability that X takes on the value a is denoted by Pr{X = a}.

• Note that
$$\sum_{a \in S} \Pr\{X = a\} = 1.$$

Example 1: Suppose X is an RV representing the outcome of tossing a fair coin. Here, $S = \{T, H\}$ and $Pr\{X = T\} = Pr\{X = H\} = 1/2$. (Thus, both the values of X are equally likely.)

Example 2: Suppose Y is an RV representing the outcome of tossing a fair die. Here, $S = \{1, 2, 3, 4, 5, 6\}$ and $Pr\{Y = i\} = 1/6$, for $1 \le i \le 6$. (Here, all the six values of Y are equally likely.)

Expectation: If X is a discrete RV taking values over a set S of numbers, then the **expectation** of X, denoted by E[X], is defined by

$$\mathbf{E}[X] = \sum_{a \in S} a \times \Pr\{X = a\}$$

Example 1: Suppose Y is an RV representing the outcome of tossing a fair die. Here, $S = \{1, 2, 3, 4, 5, 6\}$ and $Pr\{Y = i\} = 1/6$, for $1 \le i \le 6$. Then,

$$E[Y] = \sum_{i=1}^{6} i/6 = 3.5$$

Note: When all the values in *S* are equally likely, the expectation is equal to average (or mean value).

Expectation of a Discrete RV

Example 2: Suppose Z is an RV representing the outcome of tossing a loaded die. Again, $S = \{1, 2, 3, 4, 5, 6\}$. Let $Pr\{Z = 1\} = 1/2$ and $Pr\{Z = i\} = 1/10$, for $2 \le i \le 6$. Then,

$$E[Z] = 1 \times 1/2 + \sum_{i=2}^{6} i/10 = 2.5$$

Linearity of Expectation: Suppose X_1, X_1, \ldots, X_n are RVs and a new RV X is defined by

$$X = X_1 + X_2 + \ldots + X_n .$$

Then

$$\mathbf{E}[X] = \mathbf{E}[X_1] + \mathbf{E}[X_2] + \ldots + \mathbf{E}[X_n].$$

Note: The above equation holds **even if there are dependencies among the RVs**.

Application of Linearity of Expectation:

Problem: Suppose we throw **two** fair dice. Find the expectation of the sum of the face values of the two dice.

Solution: Let W denote the RV that represents the sum of the face values of the two dice.

Method I (somewhat tedious): The possible values for the RV W are $\{2, 3, 4, \ldots, 12\}$. We first compute the probability of each these possible values.

$$Pr\{W = 2\} = 1/36$$
$$Pr\{W = 3\} = 2/36$$
$$\vdots$$
$$Pr\{W = 12\} = 1/36$$

Then, we compute E[W] using the above values.

Application of Linearity of Expectation (continued):

Method II: Let Y_1 and Y_2 denote the RVs corresponding to the face values of the two dice. Define a new RV $Y = Y_1 + Y_2$. Our goal is to compute E[Y].

By linearity of expectation, $E[Y] = E[Y_1] + E[Y_2]$. As shown previously, $E[Y_1] = E[Y_2] = 3.5$. Thus, E[Y] = 3.5 + 3.5 = 7.

Generalization: For any $n \ge 1$, the expectation of the sum of the face values of *n* fair dice = $3.5 \times n$.