CSI 445/660 - Part 7

(Models for Random Graphs)

Models for Random Graphs

References:

1 R. Albert and A. Barabasi, "Statistical Mechanics of Complex Networks", Reviews of Modern Physics, Vol. 74, Jan. 2002, pp. 47-97.

2 Chapter 18 of [EK].

Motivation:

- Provide methods for generating large random networks.
- Such synthetic networks are useful in
- testing applications and

■ checking whether or not a given social network is similar to a random network.

- Many methods have been proposed; each is useful in certain applications.

Erdős-Rényi-Gilbert Model

- Paul Erdős (1913-1996)

■ See slides for Part 1 for additional information.

- Alfréd Rényi (1921-1970)
- Ph.D., University of Szeged, 1947.
- Many contributions to Mathematics.

- Edger Gilbert (1923-2013)

■ Ph.D., MIT, 1948.

- Worked on Coding Theory at Bell Labs, NJ.

Erdős-Rényi-Gilbert Model (continued)

Basic information about the model:

- Proposed by Gilbert and developed extensively by Erdős and Rényi.

■ Commonly known as the Erdős-Rényi (ER) model.

- Uses two parameters:

1 the number of nodes (n) and
2 the probability (p) of an edge between any pair of nodes.

- Also called the $G(n, p)$ model.
- Usually, p is a function of n (e.g. $p=1 / n$).
- Edges between pairs of nodes are chosen independently.

Erdős-Rényi-Gilbert Model (continued)

Note: Assume that the nodes are numbered 1 through n.
Algorithm for ER model graph generation:

```
for i=1 to n-1 do {
    for }j=i+1 to n do {
    Add edge {i,j} with probability p.
    }
}
```

Notes:

- The above algorithm generates an undirected graphs.
- Can be easily modified to generate directed graphs.
- We will restrict our attention to undirected graphs.

Some Random Graph Generation Facilities in CINET

- $G(n, p)$ random graph: This generates a random graph under the ER model.

■ $G(n, p)$ component: This generates a random graph under the ER model and gives the distribution of the sizes of the connected components (in the form of a table).

■ $G(n, m)$ random graph: This generates a random graph with n nodes and m edges.

■ (n, d)-random regular graph:

- A graph is regular if every node has the same degree.
- This generator produces a random graph with n nodes where each node has degree $=d$.

Some Random Graph ... CINET (continued)

■ $G(n, r)$ random graph: This generates a random geometric graph as follows:

- A total of n points are randomly chosen within the unit cube.
- Each point is a node of the graph.
- An edge is added between a pair of nodes if the distance between the corresponding pair of points is at most r.
- Such graphs arise in the study of wireless (ad hoc) networks.

Erdős-Rényi-Gilbert Model (continued)

Some simple properties:

1 Expected degree of any node $=p(n-1)$.

Proof: Consider any node v.

- Node v may have up to $n-1$ possible edges, say $e_{1}, e_{2}, \ldots, e_{n-1}$, to the other nodes.
- Let X_{i} be a RV associated with edge $e_{i}, \quad 1 \leq i \leq n-1: \quad X_{i}=1$ if edge e_{i} is present and 0 otherwise. (X_{i} is called an indicator RV.)
- $\operatorname{Degree}(v)=X_{1}+X_{2}+\ldots+X_{n-1}$ is another RV.
- Now, $\operatorname{Pr}\left\{X_{i}=1\right\}=p$ and $\operatorname{Pr}\left\{X_{i}=0\right\}=1-p$. So, $\mathrm{E}\left[X_{i}\right]=p(1 \leq i \leq n-1)$.
- So, by linearity of expectation, $\mathrm{E}[\operatorname{Degree}(v)]=p(n-1)$.

Erdős-Rényi-Gilbert Model (continued)

Some simple properties (continued):
2 Expected number of edges $=n(n-1) p / 2$.

Proof:

- Introduce an indicator RV Y_{i} for each of the $N=n(n-1) / 2$ possible edges.
- Let Y denote the RV for the number of edges. Thus,

$$
Y=Y_{1}+Y_{2}+\ldots+Y_{N} .
$$

- As before, $\mathrm{E}\left[Y_{i}\right]=p,(1 \leq i \leq N)$.
- By linearity of expectation, $\mathrm{E}[Y]=p N=p n(n-1) / 2$.

Erdős-Rényi-Gilbert Model (continued)

Some simple properties (continued):
3 Let $\pi_{k}(v)$ denote the probability that node v has degree $=k(0 \leq k \leq n-1)$. Then,

$$
\pi_{k}(v)=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

- This called the binomial distribution.
- This is the same probability as getting k heads from $n-1$ tosses of a coin, where the probability of heads $=p$.

Erdős-Rényi-Gilbert Model (continued)

Some non-trivial properties: The following results due to Erdős and Rényi are asymptotic (i.e., they hold for large n).

Condition	Property of $G(n, p)$
$p<1 / n$	Almost surely has no connected component of size larger than $c_{1} \log _{2} n$ for some constant c_{1}.
$p=1 / n$	Almost surely has a giant component of size at least $c_{2} n^{2 / 3}$ for some constant c_{2}.
$p>1 / n$	Almost surely has a giant component of size at least αn for some constant $\alpha(0<\alpha<1)$. All other components will almost surely have size $\leq \beta \log _{2} n$ for some constant β.
$p=1 / 2$	With high probability, the size of the largest clique is $\approx 2 \log _{2} n$.

ER Model and the Web Graph

Is the ER model appropriate for the web graph?

- Consider the node degrees as n increases.

■ Each edge: A random variable (RV), which has the value 1 with probability p and the value 0 with probability $1-p$.

- For any node v, degree (v) is the sum of the $n-1$ of the edge RV s.
- These $n-1$ RVs are independent and identically distributed (iid).

Central Limit Theorem (simplified statement):
As $n \rightarrow \infty$, the sum of n iid RVs approaches the normal (or Gaussian) distribution.

ER Model and the Web Graph (continued)

Note: For such a distribution and large values of k, the fraction of nodes with degree k can be shown to decrease exponentially (i.e., something like 2^{-k}).

Experimental evidence: The fraction of nodes with degree k in the web graph decreases (roughly) as $1 / k^{2}$.

Comparison: Suppose $k=1000$. Then $1 / k^{2}=10^{-6}$. However,

$$
2^{-k}=1 / 2^{1000}<10^{-250}
$$

which is much smaller than 10^{-6}.

- So, ER model is not appropriate for the web graph.
- A more appropriate model is that of power law (or scale-free) graphs.

Definition of Power Law

Definition: A function $f(k)$ exhibits power law behavior if it decreases with k as k^{-c} for some positive constant c.

Examples from empirical studies: (from Chapter 18 of [EK] text)

- The fraction of telephone numbers that receive k calls per day is roughly proportional to $1 / k^{2}$.
- The fraction of books bought by k people is roughly proportional to $1 / k^{3}$.
- The fraction of scientific papers that receive k citations is roughly proportional to $1 / k^{3}$.

Note: Many measures of popularity seem to exhibit power law behaviors.

A Characteristic of Power Law Distribution

Note: Power law distribution has a heavy tail.

How to Check for Power Law

Given: The values of function $f(k)$ for different values of k.

k	$f(k)$
1.0	445.7
1.5	411.3
\vdots	\vdots
31.2	13.9

- We want to check whether the data exhibits a power law behavior.
- If so, we want to find the exponent c.

Idea: Suppose the data exhibits power law behavior; that is,

$$
f(k)=a \times k^{-c} \quad \text { for some constants } a \text { and } c .
$$

Then

$$
\log _{10}(f(k))=\log _{10}(a)-c \log _{10}(k) .
$$

Observation: If $\log _{10}(f(k))$ is plotted against $\log _{10}(k)$, the graph will be a straight line.

How to Check for Power Law (continued)

- Slope of the line $=-c$.
- y-intercept of the line $=\log _{10}(a)$.

Note: Many plotting programs can produce log-log plots.
Computing the exponent:

- Consider the function values $f\left(k_{1}\right)$ and $f\left(k_{2}\right)$ at two values k_{1} and k_{2}.
- Let $x_{1}=\log _{10}\left(k_{1}\right)$ and $x_{2}=\log _{10}\left(k_{2}\right)$.
- Let $y_{1}=\log _{10}\left(f\left(k_{1}\right)\right)$ and $y_{2}=\log _{10}\left(f\left(k_{2}\right)\right)$.
- Slope of the line $=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$ and the power law exponent $c=-$ slope.

How to Check for Power Law (continued)

Problem: Check whether the data shown in the following table exhibits power law behavior; if so, find the power law exponent.

k	$f(k)$	k	$f(k)$
10.00	19500.00	113.91	13.19
15.00	5777.78	170.86	3.91
22.50	1711.93	256.29	1.16
33.75	507.24	384.43	0.34
50.62	150.29	576.65	0.10
75.94	44.53		

Solution: The log-log plot for this data is shown on the next slide.

How to Check for Power Law (continued)

Log-Log plot for the data:

Note: Since the log-log plot is a straight line, the given data exhibits power law behavior.

How to Check for Power Law (continued)

Value of the power law exponent:

- From the given data set choose $k_{1}=22.50$ and $k_{2}=33.75$. So, $x_{1}=\log _{10}(22.50)$ and $x_{2}=\log _{10}(33.75)$.
- Also from the given data set, $f\left(k_{1}\right)=1711.93$ and $f\left(k_{2}\right)=507.24$. So, $y_{1}=\log _{10}(1711.93)$ and $y_{2}=\log _{10}(507.24)$.
- Slope $=\left(y_{2}-y_{1}\right) /\left(x_{2}-x 1\right)=-2.9999$.
- So, power law exponent $=2.9999$ (which is close to 3.0).

Power Law Example: Web Graph

An example from [EK]:

- From [Broder et al. 2000].
- Shows both total indegree (red) and remote-only indegree (blue).
- The corresponding power law exponents are (approximately) 2.09 and 2.1 respectively.
- The power law behavior of the web graph suggests that its evolution cannot be captured by the ER model.
- Question: Which random graph model allows node degrees to have a power law distribution?
- Answer: The preferential attachment (or "rich get richer") model.

Preferential Attachment Model

- Herbert A. Simon (1916-2001)
- Ph.D. (Political Science), University of Chicago, 1943.
- Taught at Carnegie Mellon University.

■ Contributed to many areas (e.g. Political Science, Economics, Psychology, Cognitive Science, Computer Science).

- Won the Nobel Prize in Economics (for his contributions to decision-making processes in organizations).
- Also won the Turing Award in Computer Science (for his contributions to AI).

Preferential Attachment Model (continued)

- Simon [Biometrika, 1955] developed a general model to explain power law behavior in many different situations.

Example: The fraction of cities with with population k was known to follow a power law.

- Simon's model allowed the derivation of the corresponding power law using the following assumption:

The rate at which the population of a city grows is proportional to the current size of the population.

- Hence the name "rich get richer" model.
- The name "preferential attachment" was coined later (by Albert \& Barabasi).

Preferential Attachment and the Web Graph

Web graph:

- Directed graph.
- Nodes are web pages; the directed edge (x, y) means that that web page x has a link to web page y.
- Indegrees exhibit a power law behavior.
- Interpretation of "rich get richer" idea:

Popular web pages are likely to get more in-links, further increasing their popularity.

■ Consequence: Web pages with large indegrees exist.

Generating a Directed Graph with Power Law Behavior

Goal: To generate a random directed graph where indegrees have a power law behavior.

Assumptions:

- There are n web pages (numbered 1 through n) and they arrive one at a time.
- A probability value $p, 0<p<1$, which provides an indication of the likelihood of preferential attachment, is given.

Note: The value of p determines the power law exponent.

- Each node has an outdegree of 1 .

Note: The graph generation procedure can be generalized to remove this assumption.

Description of the Algorithm: See Handout 7.1.

Generating an Undirected Graph with Power Law Behavior

Goal: To generate a random undirected graph where node degrees have a power law behavior.

Ref: [Albert \& Barabasi, 2002]

Assumptions:

- Initially, there are $m_{0} \geq 1$ nodes (numbered 1 through m_{0}). (When the algorithm ends, there are n nodes, numbered 1 through n.)
- For each new node, $m \leq m_{0}$ edges are added.
- In the resulting undirected graph, degrees follow a power law with exponent $c \approx 3$.

Description of the Algorithm: See Handout 7.2.
Note: CINET provides a graph generator for this model.

Example for Step 1(i) of the Algorithm in Handout 7.2

Note: Step 1(i) of the algorithm implements the "rich get richer" idea.

Example:

- Let $m=1$; that is, each new node will get one edge.
- There are 4 nodes (numbered 1, 2, 3 and 4) and the new one is node 5 .

■ Let the degrees of nodes $1,2,3$ and 4 be $3,3,2$ and 2 respectively.

- Current sum of degrees $=3+3+2+2=10$.
- For node 5 :
- $\operatorname{Pr}\{$ Edge to node 1$\}=3 / 10$.
- $\operatorname{Pr}\{$ Edge to node 2$\}=3 / 10$.
- $\operatorname{Pr}\{$ Edge to node 3$\}=2 / 10$.
- $\operatorname{Pr}\{$ Edge to node 4$\}=2 / 10$.

A Note on Scale-Free Graphs

- The terms "power law graphs" and "scale-free graphs" are treated as synonyms in the literature.
- There are several interpretations of the phrase "scale-free".

Interpretation 1: (due to Albert \& Barabasi)

- There is no person with a height of 9 feet or more; that is, at "higher scales", the proportion drops to zero.
- For power law graphs, the proportion is positive even for very large degrees; that is, there are nodes at "all scales".

A Note on Scale-Free Graphs (continued)

Interpretation 2: Let $P(d)$ denote the proportion of nodes with degree d.

- When $P(d)$ obeys a power law,

$$
P(d)=\alpha d^{\beta}, \text { for some } \alpha>0 \text { and } \beta<0 .
$$

- For degree values d_{1} and d_{2},

$$
\frac{P\left(d_{1}\right)}{P\left(d_{2}\right)}=\left(\frac{d_{1}}{d_{2}}\right)^{\beta}
$$

- Suppose we "scale" the degrees d_{1} and d_{2} by a factor k. Then,

$$
\frac{P\left(k d_{1}\right)}{P\left(k d_{2}\right)}=\left(\frac{d_{1}}{d_{2}}\right)^{\beta}=\frac{P\left(d_{1}\right)}{P\left(d_{2}\right)}
$$

- So, the ratio doesn't change when degrees are scaled; in this sense, power law graphs are "scale-free".

A Note on Scale-Free Graphs (continued)

Interpretation 3: (due to Fan Chung \& Linyuan Lu)

- The word "scale" is with respect to time.
- Example: Consider the algorithm for generating directed graphs with power law distribution.
- At each time step, one new node and one directed edge are added.
- Instead, consider a time interval of length $t: t$ nodes arrive during the interval and t edges are added.
- The power law exponent is independent of the value of t; thus, it is free from any scaling with respect to time.

Chung-Lu Model of Random Graphs

- Proposed by Fan Chung (University of California, San Diego) and Linyuan Lu (University of South Carolina).
- Generalizes the ER model.
- Inputs:
- Integer n, the number of nodes.
- A sequence of n non-negative numbers

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle \text { (called a degree sequence) such that } \\
& \max _{1 \leq i \leq n}\left\{w_{i}^{2}\right\}<\sum_{i=1}^{n} w_{i} .
\end{aligned}
$$

- Output: A random graph with n nodes (numbered 1 through n) such that the expected degree of node i is $w_{i}, 1 \leq i \leq n$.
- The graph may have self loops.

Description of the Algorithm: See Handout 7.3.

Chung-Lu Model (continued)

Properties of the Chung-Lu Model:

- Generalizes the ER model:
- Let $w_{i}=n p, \quad 1 \leq i \leq n$, where n and p are the parameters of the ER model.
- Then, the probability of adding any edge $\{i, j\}$ is exactly p.
- Can also generate graphs where degrees satisfy a power law.
- For a power law exponent $\beta \geq 2$, the weights are chosen as follows:

$$
w_{i}=(i / n B)^{-\frac{1}{\beta-1}}, \quad 1 \leq i \leq n,
$$

where

$$
B=\frac{1}{(\beta-1) \xi(\beta)} \quad \text { and } \quad \xi(\beta)=\sum_{k=1}^{\infty} k^{-\beta} .
$$

Chung-Lu Model (continued)

Properties of the Chung-Lu Model (continued):

- For $\beta>3$:
- The diameter of the resulting graph is $O(\log n)$ with high probability.
- The average distance between any pair of nodes is $O(\log n / \log \log n)$ with high probability.
- Thus, small-world networks can also be generated using the Chung-Lu model.

Watts-Strogatz Model

- Proposed in 1998 by Duncan Watts (Yahoo Research) and Steven Strogatz (Cornell University).
- Predates preferential attachment models.
- Addresses two aspects which are not present in the ER model.

■ ER model does not generate an adequate number of hubs (i.e., high degree nodes).

- The average clustering coefficient is small under the ER model.
- Watts \& Strogatz also wanted the graphs to have a small diameter (i.e., the "small world" property).

Watts-Strogatz Model (continued)

Rewiring:

- Steps needed to "rewire" edge $\{c, d\}$ in the graph on the left.

1 Delete edge $\{c, d\}$.
2 Add an edge from c to some other node without causing multi-edges or self-loops.

- In the above example, edge $\{c, d\}$ may get replaced by $\{c, a\}$ or $\{c, e\}$, each with probability $=1 / 2$.
- The graph with edge $\{c, d\}$ replaced by $\{c, a\}$ is shown on the right.
- Rewiring can decrease the average distance (by adding "long range" edges).

Watts-Strogatz Model (continued)

Inputs:

■ The number of nodes: n.
■ An even integer K, the average node degree in the resulting graph.
■ The rewiring probability β.
■ Assumption: $n \gg K>\ln n \gg 1$.

Output: An undirected graph with the following properties.
■ The graph has n nodes and $n K / 2$ edges. (Thus, the average node degree is K.)

- With high probability, the average distance between any pair of nodes is $\ln (n) / \ln (K)$.

Description of the Algorithm: See Handout 7.4.

Watts-Strogatz Model (continued)

Notes:

■ If $\beta=0$, there is no rewiring and the diameter remains large.
■ If $\beta=1$, every edge gets rewired; it is known that such graphs are similar to graphs under the ER model.

- If $C(0)$ represents the average clustering coefficient of the initial graph, empirical evidence suggests that the average clustering coefficient $C(\beta)$ after rewiring is given by

$$
C(\beta)=C(0)(1-\beta)^{3}
$$

If β is small, the clustering coefficient does not decrease much due to rewriting.

Watts-Strogatz Model (continued)

Limitations:

- Degree distribution does not correspond to that of common social networks.
- The value of n must be known. So, the model is not useful in generating graphs that evolve over time.

Final Remarks:

- Researchers have tried the rewiring approach starting from other initial graphs (e.g. grids).

■ Newman-Watts Model: Instead of rewiring, add edges between randomly chosen pairs of nodes with with probability $=\beta$.

- This version is easier to implement.
- The resulting model has properties similar to the Watts-Strogatz model.

Appendix to Part 7

Review of Some Concepts Related to Probability

Discrete Random Variable

Basic Information:

- Abbreviation: RV for "random variable".
- A discrete RV X takes on values from a discrete set S.
- For each element $a \in S$, the probability that X takes on the value a is denoted by $\operatorname{Pr}\{X=a\}$.
- Note that $\sum_{a \in S} \operatorname{Pr}\{X=a\}=1$.

Example 1: Suppose X is an RV representing the outcome of tossing a fair coin. Here, $S=\{T, H\}$ and $\operatorname{Pr}\{X=T\}=\operatorname{Pr}\{X=H\}=1 / 2$.
(Thus, both the values of X are equally likely.)
Example 2: Suppose Y is an RV representing the outcome of tossing a fair die. Here, $S=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}\{Y=i\}=1 / 6$, for $1 \leq i \leq 6$. (Here, all the six values of Y are equally likely.)

Expectation of a Discrete RV

Expectation: If X is a discrete RV taking values over a set S of numbers, then the expectation of X, denoted by $\mathrm{E}[X]$, is defined by

$$
\mathrm{E}[X]=\sum_{a \in S} a \times \operatorname{Pr}\{X=a\}
$$

Example 1: Suppose Y is an RV representing the outcome of tossing a fair die. Here, $S=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}\{Y=i\}=1 / 6$, for $1 \leq i \leq 6$. Then,

$$
\mathrm{E}[Y]=\sum_{i=1}^{6} i / 6=3.5
$$

Note: When all the values in S are equally likely, the expectation is equal to average (or mean value).

Expectation of a Discrete RV

Example 2: Suppose Z is an RV representing the outcome of tossing a loaded die. Again, $S=\{1,2,3,4,5,6\}$. Let $\operatorname{Pr}\{Z=1\}=1 / 2$ and $\operatorname{Pr}\{Z=i\}=1 / 10$, for $2 \leq i \leq 6$. Then,

$$
\mathrm{E}[Z]=1 \times 1 / 2+\sum_{i=2}^{6} i / 10=2.5
$$

Linearity of Expectation: Suppose $X_{1}, X_{1}, \ldots, X_{n}$ are RV s and a new RV X is defined by

$$
X=X_{1}+X_{2}+\ldots+X_{n}
$$

Then

$$
\mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\ldots+\mathrm{E}\left[X_{n}\right] .
$$

Note: The above equation holds even if there are dependencies among the RVs.

Expectation of a Discrete RV

Application of Linearity of Expectation:

Problem: Suppose we throw two fair dice. Find the expectation of the sum of the face values of the two dice.

Solution: Let W denote the RV that represents the sum of the face values of the two dice.

Method I (somewhat tedious): The possible values for the RV W are $\{2,3,4, \ldots, 12\}$. We first compute the probability of each these possible values.

$$
\begin{array}{cc}
\operatorname{Pr}\{W=2\} & =1 / 36 \\
\operatorname{Pr}\{W=3\} & =2 / 36 \\
& \vdots \\
\operatorname{Pr}\{W=12\} & =1 / 36
\end{array}
$$

Then, we compute $\mathrm{E}[W]$ using the above values.

Expectation of a Discrete RV (continued)

Application of Linearity of Expectation (continued):

Method II: Let Y_{1} and Y_{2} denote the RVs corresponding to the face values of the two dice. Define a new RV $Y=Y_{1}+Y_{2}$. Our goal is to compute $\mathrm{E}[Y]$.

> By linearity of expectation, $\mathrm{E}[Y]=\mathrm{E}\left[Y_{1}\right]+\mathrm{E}\left[Y_{2}\right]$. As shown previously, $\mathrm{E}\left[Y_{1}\right]=\mathrm{E}\left[Y_{2}\right]=3.5$. Thus, $\mathrm{E}[Y]=3.5+3.5=7$.

Generalization: For any $n \geq 1$, the expectation of the sum of the face values of n fair dice $=3.5 \times n$.

