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Models for Random Graphs

References:

R. Albert and A. Barabasi, “Statistical Mechanics of Complex
Networks”, Reviews of Modern Physics, Vol. 74, Jan. 2002,
pp. 47-97.

H Chapter 18 of [EK].

Motivation:

m Provide methods for generating large random networks.

m Such synthetic networks are useful in

m testing applications and

m checking whether or not a given social network is
similar to a random network.

m Many methods have been proposed; each is useful in certain
applications.
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Erdos-Rényi-Gilbert Model

Paul Erdés (1913-1996)

See slides for Part 1 for additional information.

Alfréd Rényi (1921-1970)
Ph.D., University of Szeged, 1947.

Many contributions to Mathematics.

Edger Gilbert (1923-2013)
Ph.D., MIT, 1948.
Worked on Coding Theory at Bell Labs, NJ.
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Erdés-Rényi-Gilbert Model (continued)

Basic information about the model:

m Proposed by Gilbert and developed extensively by
Erdds and Rényi.

Commonly known as the Erdés-Rényi (ER) model.

Uses two parameters:

the number of nodes (n) and
the probability (p) of an edge between any pair of nodes.

Also called the G(n, p) model.

Usually, p is a function of n (e.g. p=1/n).

Edges between pairs of nodes are chosen independently.
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Erdés-Rényi-Gilbert Model (continued)

Note: Assume that the nodes are numbered 1 through n.
Algorithm for ER model graph generation:

for i=1 to n—1 do{
for j=i+1 to n do{
Add edge {i, j} with probability p.
}
}

Notes:

m The above algorithm generates an undirected graphs.
m Can be easily modified to generate directed graphs.

m We will restrict our attention to undirected graphs.
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Some Random Graph Generation Facilities in CINET

m G(n,p) random graph: This generates a random graph
under the ER model.

m G(n,p) component: This generates a random graph under
the ER model and gives the distribution of the sizes of the
connected components (in the form of a table).

m G(n,m) random graph: This generates a random graph
with n nodes and m edges.

m (n, d)-random regular graph:
m A graph is regular if every node has the same degree.

m This generator produces a random graph with n nodes where
each node has degree = d.
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Some Random Graph ... CINET (continued)

m G(n,r) random graph: This generates a random geometric
graph as follows:

m A total of n points are randomly chosen within the unit cube.
m Each point is a node of the graph.

m An edge is added between a pair of nodes if the distance
between the corresponding pair of points is at most r.

m Such graphs arise in the study of wireless (ad hoc) networks.
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Erdés-Rényi-Gilbert Model (continued)

Some simple properties:

Expected degree of any node = p(n—1).

Proof: Consider any node v.

Node v may have up to n — 1 possible edges, say e, e, ..., e,_1,
to the other nodes.

Let X; be a RV associated with edge ¢;, 1 <i<n—1: X;=1Iif
edge ¢; is present and 0 otherwise. (X; is called an indicator RV.)

Degree(v) = X1+ Xo + ...+ X,—_1 is another RV.

Now, Pr{X; =1} = pand Pr{X;=0} = 1—p.
So, E[X] = p (1<i<n-1).

So, by linearity of expectation, E[Degree(v)] = p(n — 1).
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Erdés-Rényi-Gilbert Model (continued)

Some simple properties (continued):

Expected number of edges = n(n—1)p/2.

Proof:

m Introduce an indicator RV Y; for each of the N = n(n—1)/2
possible edges.

m Let Y denote the RV for the number of edges. Thus,
Y = Yi+Yo+...+ Yn.

m As before, E[Yi]] = p, (1 <i<N).

m By linearity of expectation, E[Y] = pN = pn(n —1)/2.
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Erdés-Rényi-Gilbert Model (continued)

Some simple properties (continued):

Let mx(v) denote the probability that node v has
degree = k (0 < k< n—1). Then,

() = (") ras e

m This called the binomial distribution.

m This is the same probability as getting k heads from n — 1 tosses of
a coin, where the probability of heads = p.
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Erdés-Rényi-Gilbert Model (continued)

Some non-trivial properties: The following results due to Erdés and
Rényi are asymptotic (i.e., they hold for large n).

| Condition [ Property of G(n, p) \

p<1l/n Almost surely has no connected component of size
larger than c; log, n for some constant ¢;.

p=1/n Almost surely has a giant component of size at least
¢, n%/3 for some constant cs.

p>1/n Almost surely has a giant component of size at least
an for some constant o (0 < o < 1).
All other components will almost surely have size
< pBlogzn for some constant 3.

p=1/2 With high probability, the size of
the largest clique is = 2 log, n.
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ER Model and the Web Graph

Is the ER model appropriate for the web graph?

m Consider the node degrees as n increases.

Each edge: A random variable (RV), which has the value 1 with
probability p and the value 0 with probability 1 — p.

For any node v, degree(v) is the sum of the n — 1 of the edge RVs.
m These n—1 RVs are independent and identically distributed (iid).

Central Limit Theorem (simplified statement):

As n — oo, the sum of n iid RVs approaches the normal
(or Gaussian) distribution.
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ER Model and the Web Graph (continued)

Note: For such a distribution and large
values of k, the fraction of nodes with degree
k can be shown to decrease exponentially
(i.e., something like 275).

Experimental evidence: The fraction of nodes with degree k in the

web graph decreases (roughly) as 1/k2.

Comparison: Suppose k = 1000. Then 1/k? = 107°. However,
2—k _ 1/21000 < 10—250

which is much smaller than 107°.

m So, ER model is not appropriate for the web graph.

m A more appropriate model is that of power law (or scale-free)
graphs.
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Definition of Power Law

Definition: A function (k) exhibits power law behavior if it decreases
with k as k~¢ for some positive constant c.

Examples from empirical studies: (from Chapter 18 of [EK] text)

m The fraction of telephone numbers that receive k calls per day is
roughly proportional to 1/k2.

m The fraction of books bought by k people is roughly
proportional to 1/k3.

m The fraction of scientific papers that receive k citations is
roughly proportional to 1/k3.

Note: Many measures of popularity seem to exhibit power law behaviors.
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A Characteristic of Power Law Distribution

«—— Binomial distribution

/ Power law distribution

Note: Power law distribution has a heavy tail.
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How to Check for Power Law

Given: The values of function f(k) for different values of k.

10 | 4457 m We want to check whether the data
15 | 4113 exhibits a power law behavior.

m If so, we want to find the exponent c.

31.2 | 139

Idea: Suppose the data exhibits power law behavior; that is,
f(k) = ax k¢ for some constants a and c.

Then
log1o(f(k)) = logig(a) — clogig(k).

Observation: If log;,(f(k)) is plotted against logy(k), the graph will
be a straight line.
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How to Check for Power Law (continued)

Note: h = log(a)
log(f(k)) slope = -c m Slope of the line = —c.
h
‘ m y-intercept of the line = logy(a).
— log(k)
Note:

Many plotting programs can produce log-log plots.
Computing the exponent:

m Consider the function values f(k;) and f(ky) at two values
kl and kg.

m Let x; = logyg(ki) and xo = logyg (ko).
m Let y; = logyo(f(k1)) and y2 = logqo(f(k2)).

m Slope of the line = (y2 — y1)/(x2 — x1) and the power law
exponent ¢ = — slope.
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How to Check for Power Law (continued)

Problem: Check whether the data shown in the following table exhibits
power law behavior; if so, find the power law exponent.

k] k) k] fk) ]
10.00 | 19500.00 || 113.91 | 13.19
15.00 | 5777.78 | 170.86 | 3.91
2250 | 1711.93 | 256.29 | 1.16
33.75 | 507.24 384.43 | 0.34
50.62 | 150.29 576.65 | 0.10
75.94 4453

Solution: The log-log plot for this data is shown on the next slide.
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How to Check for Power Law (continued)

Log-Log plot for the data:
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Note: Since the log-log plot is a
power law behavior.
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How to Check for Power Law (continued)

Value of the power law exponent:

m From the given data set choose k; = 22.50 and k, = 33.75.
So, x1 = log15(22.50) and x; = log;(33.75).

m Also from the given data set, f(k;) = 1711.93 and f(k,) = 507.24.
So, y1 = log1p(1711.93) and y» = log;(507.24).

m Slope = (y» — y1)/(x2 — x1) = —2.9999.

m So, power law exponent = 2.9999 (which is close to 3.0).
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Power Law Example: Web Graph

An example from [EK]:

In-degree (total, remote-only) distr.
1e+10 - T T

te+09 m From [Broder et al. 2000].

m Shows both total indegree (red)
and remote-only indegree (blue).

1e+06
180060
10008
1800

number of pages

m The corresponding power law
exponents are (approximately) 2.09
and 2.1 respectively.

100
1@

1

1 18 108 100000
in-degree

m The power law behavior of the web graph suggests that its evolution
cannot be captured by the ER model.

m Question: Which random graph model allows node degrees to
have a power law distribution?

m Answer: The preferential attachment (or “rich get richer”)
model.
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Preferential Attachment Model

m Herbert A. Simon (1916-2001)

m Ph.D. (Political Science), University of Chicago,
1943.

m Taught at Carnegie Mellon University.

m Contributed to many areas (e.g. Political Science, Economics,
Psychology, Cognitive Science, Computer Science).

m Won the Nobel Prize in Economics (for his contributions to
decision-making processes in organizations).

m Also won the Turing Award in Computer Science (for his
contributions to Al).
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Preferential Attachment Model (continued)

m Simon [Biometrika, 1955] developed a general model to explain
power law behavior in many different situations.

Example: The fraction of cities with with population k was known
to follow a power law.

m Simon’'s model allowed the derivation of the corresponding power
law using the following assumption:

The rate at which the population of a city grows is
proportional to the current size of the population.

m Hence the name “rich get richer” model.

m The name “preferential attachment” was coined later
(by Albert & Barabasi).
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Preferential Attachment and the Web Graph

Web graph:

m Directed graph.

m Nodes are web pages; the directed edge (x, y) means that that web
page x has a link to web page y.

m Indegrees exhibit a power law behavior.
m Interpretation of “rich get richer” idea:

Popular web pages are likely to get more in-links, further increasing
their popularity.

/ !
pee— o2 m Consequence: Web pages with large
\ indegrees exist.

vn
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Generating a Directed Graph with Power Law Behavior

Goal: To generate a random directed graph where indegrees have a
power law behavior.

Assumptions:
m There are n web pages (numbered 1 through n) and they arrive one
at a time.

m A probability value p, 0 < p < 1, which provides an indication of
the likelihood of preferential attachment, is given.

Note: The value of p determines the power law exponent.
m Each node has an outdegree of 1.

Note: The graph generation procedure can be generalized to
remove this assumption.

Description of the Algorithm: See Handout 7.1.
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Generating an Undirected Graph with Power Law Behavior

Goal: To generate a random undirected graph where node degrees
have a power law behavior.

Ref: [Albert & Barabasi, 2002]
Assumptions:

m Initially, there are my > 1 nodes (numbered 1 through mg). (When
the algorithm ends, there are n nodes, numbered 1 through n.)

m For each new node, m < mg edges are added.

m In the resulting undirected graph, degrees follow a power law with
exponent ¢ ~ 3.

Description of the Algorithm: See Handout 7.2.

Note: CINET provides a graph generator for this model.
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Example for Step 1(i) of the Algorithm in Handout 7.2

Note: Step 1(i) of the algorithm implements the “rich get richer” idea.
Example:

m Let m=1; that is, each new node will get one edge.

m There are 4 nodes (numbered 1, 2, 3 and 4) and
the new one is node 5.

Let the degrees of nodes 1, 2, 3 and 4 be 3, 3, 2 and 2 respectively.
m Current sum of degrees =3+3+2+2 = 10.

m For node 5:

m Pr{Edge to node 1} 3/10.
m Pr{Edge to node 2} = 3/10.
m Pr{Edge to node 3} 2/10.
m Pr{Edge to node 4} = 2/10.
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A Note on Scale-Free Graphs

m The terms “power law graphs” and “scale-free graphs” are treated
as synonyms in the literature.

m There are several interpretations of the phrase “scale-free”.

Interpretation 1: (due to Albert & Barabasi)

Fraction of people
T

Height

m There is no person with a height of 9 feet or more; that is, at
“higher scales”, the proportion drops to zero.

m For power law graphs, the proportion is positive even for very large
degrees; that is, there are nodes at “all scales”.
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A Note on Scale-Free Graphs (continued)

Interpretation 2: Let P(d) denote the proportion of nodes
with degree d.

m When P(d) obeys a power law,
P(d) = ad?, forsomea >0and 8 <0.
m For degree values d; and db,
P(d) _ ( & )’3
P(dy) d)
m Suppose we “scale” the degrees dy and d, by a factor k. Then,

P(kdy) _ (dl>ﬁ _ P(dh)
P(k dy) d> P(dy)

m So, the ratio doesn’t change when degrees are scaled; in this
sense, power law graphs are “scale-free”.
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A Note on Scale-Free Graphs (continued)

Interpretation 3: (due to Fan Chung & Linyuan Lu)
m The word “scale” is with respect to time.

m Example: Consider the algorithm for generating directed graphs
with power law distribution.

m At each time step, one new node and one directed edge
are added.

m Instead, consider a time interval of length t: t nodes arrive
during the interval and t edges are added.

m The power law exponent is independent of the value of t;
thus, it is free from any scaling with respect to time.
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Chung-Lu Model of Random Graphs

m Proposed by Fan Chung (University of California, San Diego) and
Linyuan Lu (University of South Carolina).

m Generalizes the ER model.

m Inputs:

m Integer n, the number of nodes.

m A sequence of n non-negative numbers

(wy, wa,...,w,) (called a degree sequence) such that
n
2 .
lrg%)(n{w,-} < le, :
=

m Output: A random graph with n nodes (numbered 1 through n)
such that the expected degree of node i is w;, 1 < i< n.

m The graph may have self loops.

Description of the Algorithm: See Handout 7.3.
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Chung-Lu Model (continued)

Properties of the Chung-Lu Model:

m Generalizes the ER model:

m Let w; = np, 1 < i< n, where n and p are the parameters
of the ER model.

m Then, the probability of adding any edge {/,} is exactly p.

m Can also generate graphs where degrees satisfy a power law.

m For a power law exponent 3 > 2, the weights are chosen as

follows:
wi = (i/nB) 71, 1<i<n,
where
1 (o)
B=_—-—— and =) k"
CEO RS
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Chung-Lu Model (continued)

Properties of the Chung-Lu Model (continued):

m For 5 > 3:

m The diameter of the resulting graph is O(log n) with high
probability.

m The average distance between any pair of nodes is
O(log n/ log log n) with high probability.

m Thus, small-world networks can also be generated using the
Chung-Lu model.
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Watts-Strogatz Model

m Proposed in 1998 by Duncan Watts (Yahoo Research) and Steven
Strogatz (Cornell University).

Predates preferential attachment models.

m Addresses two aspects which are not present in the ER model.

m ER model does not generate an adequate number of hubs (i.e.,
high degree nodes).

m The average clustering coefficient is small under the ER model.

m Watts & Strogatz also wanted the graphs to have a small diameter
(i.e., the “small world" property).
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Watts-Strogatz Model (continued)

Rewiring:

c e [ e

m Steps needed to “rewire” edge {c,d} in the graph on the left.

Delete edge {c, d}.
Add an edge from ¢ to some other node without causing
multi-edges or self-loops.

m In the above example, edge {c, d} may get replaced by {c, a} or
{c, e}, each with probability = 1/2.
m The graph with edge {c, d} replaced by {c, a} is shown on the right.

m Rewiring can decrease the average distance (by adding
“long range” edges).
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Watts-Strogatz Model (continued)

Inputs:

m The number of nodes: n.
m An even integer K, the average node degree in the resulting graph.

m The rewiring probability 3.

Assumption: n > K > Inn > 1.

Output: An undirected graph with the following properties.

m The graph has n nodes and nK /2 edges. (Thus, the average node
degree is K.)

m With high probability, the average distance between any pair of
nodes is In(n)/In(K).

Description of the Algorithm: See Handout 7.4.
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Watts-Strogatz Model (continued)

Notes:
m If 8 =0, there is no rewiring and the diameter remains large.

m If B =1, every edge gets rewired; it is known that such graphs are
similar to graphs under the ER model.

m If C(0) represents the average clustering coefficient of the initial
graph, empirical evidence suggests that the average clustering
coefficient C(B) after rewiring is given by

C(B) = C(0)(1-5) .

If 5 is small, the clustering coefficient does not decrease much due
to rewriting.
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Watts-Strogatz Model (continued)

Limitations:

m Degree distribution does not correspond to that of common social
networks.

m The value of n must be known. So, the model is not useful in
generating graphs that evolve over time.

Final Remarks:
m Researchers have tried the rewiring approach starting from other
initial graphs (e.g. grids).

m Newman-Watts Model: Instead of rewiring, add edges between
randomly chosen pairs of nodes with with probability = 3.
m This version is easier to implement.

m The resulting model has properties similar to the
Watts-Strogatz model.
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Appendix to Part 7

Review of Some Concepts Related to Probability
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Discrete Random Variable

Basic Information:

m Abbreviation: RV for “random variable”.

m A discrete RV X takes on values from a discrete set S.

m For each element a € S, the probability that X takes on
the value a is denoted by Pr{X = a}.

m Note that ZPr{X =a} = L
acs

Example 1: Suppose X is an RV representing the outcome of tossing a
fair coin. Here, S = {T,H} and Pr{X = T} = Pr{X = H} = 1/2.
(Thus, both the values of X are equally likely.)

Example 2: Suppose Y is an RV representing the outcome of tossing a
fair die. Here, S ={1,2,3,4,5,6} and Pr{Y =i} =1/6, for 1 <i <6.
(Here, all the six values of Y are equally likely.)
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Expectation of a Discrete RV

Expectation: If X is a discrete RV taking values over a set S of
numbers, then the expectation of X, denoted by E[X], is defined by

E[X] = ) axPr{X=a}
acs

Example 1: Suppose Y is an RV representing the outcome of tossing a
fair die. Here, $ ={1,2,3,4,5,6} and Pr{Y =i} =1/6, for 1 <i <6.
Then,

E[Y] = 26://6 = 35

Note: When all the values in S are equally likely, the expectation is
equal to average (or mean value).
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Expectation of a Discrete RV

Example 2: Suppose Z is an RV representing the outcome of tossing a
loaded die. Again, S ={1,2,3,4,5,6}. Let Pr{Z =1} =1/2 and
Pr{Z =i} = 1/10, for 2 < i < 6. Then,

6
E[Z] = 1x1/2 + ) i/10 = 25
i=2
Linearity of Expectation: Suppose Xi, Xi, ..., X, are RVs and a new
RV X is defined by
X = X1+X+...+ X, .

Then
E[X] = E[Xi|+E[X2] +... + E[X,].

Note: The above equation holds even if there are dependencies
among the RVs.
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Expectation of a Discrete RV

Application of Linearity of Expectation:

Problem: Suppose we throw two fair dice. Find the expectation of the
sum of the face values of the two dice.

Solution: Let W denote the RV that represents the sum of the face
values of the two dice.

Method | (somewhat tedious): The possible values for the RV W
are {2,3,4,...,12}. We first compute the probability of each these
possible values.

Pr{W =2} = 1/36
Pr{W =3} = 2/36
Pr{W = 12} i 1/36

Then, we compute E[W] using the above values.
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Expectation of a Discrete RV (continued)

Application of Linearity of Expectation (continued):

Method II: Let Y; and Y, denote the RVs corresponding to the face
values of the two dice. Define a new RV Y = Y; + Y5. Our goal is to
compute E[Y].

By linearity of expectation, E[Y] = E[Y:i] + E[Y2]. As shown
previously, E[Y1] = E[Y2] = 3.5. Thus, E[Y] = 35435 = 7.

Generalization: For any n > 1, the expectation of the sum of the face
values of n fair dice = 3.5 x n.
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