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Centrality Measures for Networks

Centrality:

Represents a “measure of importance”.

Usually for nodes.

Some measures can also be defined for edges
(or subgraphs, in general).

Idea proposed by Alex Bavelas during the late 1940’s.

Further work by Harold Leavitt (Stanford) and
Sidney Smith (MIT) led to qualitative measures.

Quantitative measures came years later. (Many such
measures have been proposed.)
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Point Centrality – A Qualitative Measure

Example:

a fedcb

x (center)

(leaves)

The center node is “structurally more
important” than the other nodes.

Reasons for the importance of the center node:

The center node has the maximum possible degree.

It lies on the shortest path (“geodesic”) between any pair of
other nodes (leaves).

It is the closest node to each leaf.

It is in the “thick of things” with respect to any
communication in the network.
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Degree Centrality – A Quantitative Measure

For an undirected graph, the degree of a node is the number of
edges incident on that node.

For a directed graph, both indegree (i.e., the number of incoming
edges) and outdegree (i.e., the number of outgoing edges) must be
considered.

Example 1:

a fedcb

x

Degree of x = 6.

For all other nodes, degree = 1.

Example 2:

a b

c
d g

fe

Indegree of b = 1.

Outdegree of d = 2.
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Degree Centrality (continued)

When does a large indegree imply higher importance?

x

y1 y2 yn

Consider the Twitter network.

Think of x as a celebrity and the
other nodes as followers of x .

For a different context, think of each node in the directed
graph as a web page.

Each of the nodes y1, y2, . . ., yn has a link to x .

The larger the value of n, the higher is the “importance” of x
(a crude definition of page rank).
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Degree Centrality (continued)

When does a large outdegree imply higher importance?

x

y1 y2 yn

Consider the hierarchy in an organization.

Think of x as the manager of y1, y2, . . .,
yn.

Large outdegree may mean more “power”.

Undirected graphs:

High degree nodes are called hubs (e.g. airlines).

High degree may also also represent higher risk.

Example: In disease propagation, a high degree node is more likely
to get infected compared to a low degree node.
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Normalized Degree

Definition: The normalized degree of a node x is given by

Normalized Degree of x =
Degree of x

Maximum possible degree

Useful in comparing degree centralities of nodes between two
networks.

Example: A node with a degree of 5 in a network with 10 nodes may be
relatively more important than a node with a degree of 5 in a network
with a million nodes.

Weighted Degree Centrality (Strength):

v

w2

w1 wr

x2x1 xr

Weighted degree (or strength) of v =
w1 + w2 + . . . + wr .
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Degree Centrality (continued)

Assuming an adjacency list representation

for an undirected graph G (V ,E ), the degree (or weighted degree)
of all nodes can be computed in linear time (i.e., in time
O(|V |+ |E |)) and

for a directed graph G (V ,E ), the indegree or outdegree (or their
weighted versions) of all nodes can be computed in linear time.

Combining degree and strength: ([Opsahl et al. 2009])

Motivating Example:

4

1

1

1

C

F

E

D

A

4 1

B
A and B have the same strength.

However, B seems more central than A.
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Combining Degree and Strength (continued)

Proposed Measure by Opsahl et al.:

Let d and s be the degree and strength of a node v
respectively.

Let α be a parameter satisfying the condition 0 ≤ α ≤ 1.

The combined measure for node v = dα × s1−α.

When α = 1, the combined measure is the degree.

When α = 0, the combined measure is the strength.

A suitable value of α must be chosen for each context.
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Farness and Closeness Centralities

Assumptions:

Undirected graphs. (Extension to directed graphs is
straightforward.)

Connected graphs.

No edge weights. (Extension to weighted graphs is also
straightforward.)

Notation:

Nodes of the graph are denoted by v1, v2, . . ., vn. The set of all
nodes is denoted by V .

For any pair of nodes vi and vj , dij denotes the number of edges in
a shortest path between vi and vj .

6–12 / 68



Farness and Closeness Centralities (continued)

v1

v2

vn

vi A schematic showing shortest
paths between node vi and the
other nodes of an undirected
graph.

Definition: The farness centrality fi of node vi is given by

fi = Sum of the distances between vi and the other nodes

=
∑

vj∈V−{vi}

dij

Definition: The closeness centrality (or nearness centrality) ηi of
node vi is given by ηi = 1/fi .

Note: If a node x has a larger closeness centrality value compared to a

node y , then x is more central than y .
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Farness and Closeness Centralities (continued)

Example 1:

v1 v2 v3 v4

f1 = 1 + 2 + 3 = 6. So, η1 = 1/6.

f2 = 1 + 1 + 2 = 4. So, η2 = 1/4.

f3 = 2 + 1 + 2 = 4. So, η3 = 1/4.

f4 = 3 + 2 + 1 = 6. So, η4 = 1/6.

So, in the above example, nodes v2 and v3 are more central than nodes

v1 and v4.
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Farness and Closeness Centralities (continued)

Example 2:

v5

v1

v2 v3 v4

f1 = 4. So, η1 = 1/4.

For every other node, the farness
centrality value = 7; so the closeness
centrality value = 1/7.

Thus, v1 is more central than the other
nodes.

Remarks:

For any graph with n nodes, the farness centrality of each node is
at least n − 1.

Reason: Each of the other n − 1 nodes must be at a distance
of at least 1.
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Farness and Closeness Centralities (continued)

Remarks (continued):

Since the farness centrality of each node is at least n − 1, the
closeness centrality of any node must be at most 1/(n − 1).

v

n−1 nodes

For the star graph on the left, the
closeness centrality of the center node v is
exactly 1/(n − 1).

If G is an n-clique, then the closeness centrality of each node of G
is 1/(n − 1).
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An Algorithm for Computing Farness and Closeness

Assumptions: The given undirected graph is connected and
does not have edge weights.

Computing Farness (or closeness) Centrality (Idea):

A Breadth-First-Search (BFS) starting at a node vi will find
shortest paths to all the other nodes.

Example:

b

d

a

f

e

c

b f

c e

d

a

Level 1

Level 2

Level 3
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An Algorithm for Farness ... (continued)

Let G (V ,E ) denote the given graph.

Recall that the time for doing a BFS on G = O(|V |+ |E |).

So, farness (or closeness) centrality for any node of G can be
computed in O(|V |+ |E |) time.

By carrying out a BFS from each node, the time to compute
farness (or closeness) centrality for all nodes of G
= O(|V |(|V |+ |E |)).

The time is O(|V |3) for dense graphs (where |E | = Ω(|V |2))
and O(|V |2) for sparse graphs (where |E | = O(|V |)).
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Eccentricity Measure

Recall that farness centrality of a node vi is given by

fi =
∑

vj∈V−{vi}

dij

The eccentricity µi of node vi is defined by replacing the

summation operator
(∑)

by the maximization operator; that is,

µi = max
vj∈V−{vi}

{dij}

This measure was studied by two graph theorists
(Gert Sabidussi and Seifollah L. Hakimi).

Interpretation: If µi denotes the eccentricity of node vi , then
every other node is within a distance of at most µi from vi .

If the eccentricity of node x is less than that of y , then x is more
central than y .
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Examples: Eccentricity Computation

Example 1:

v1 v2 v3 v4

µ1 = max{1, 2, 3} = 3.

µ2 = max{1, 1, 2} = 2.

µ3 = max{2, 1, 1} = 2.

µ4 = max{3, 2, 1} = 3.

Example 2:

v5

v1

v2 v3 v4

µ1 = 1.

For every other node, eccentricity = 2.
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Eccentricity – Additional Definitions

Definition: A node v of a graph which has the smallest eccentricity
among all the nodes is called a center of the graph.

Example:

v5

v1

v2 v3 v4

The center of this graph is v1.
(The eccentricity of v1 = 1.)

Note: A graph may have two or more centers.

Example:

wv

n−2  nodes

Both v and w are centers of this graph.
(Their eccentricities are = 1.)

If G is clique on n nodes, then every node
of G is a center.
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Eccentricity – Additional Definitions (continued)

Definition: The smallest eccentricity value among all the nodes is called
the radius of the graph.

Note: The value of the radius is the eccentricity of a center.

Example:

v5

v1

v2 v3 v4

The radius of this graph is 1 (since v1 is
the center of this graph and the
eccentricity of v1 = 1.)

Facts:

The largest eccentricity value is the diameter of the graph.

For any graph, the diameter is at most twice the radius.
(Students should try to prove this result.)
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An Algorithm for Computing Eccentricity

Let G (V ,E ) denote the given graph.

Recall: By carrying out a BFS from node vi , the shortest
path distances between vi and all the other nodes can be
found in O(|V |+ |E |) time.

So, the eccentricity of any node of G can be computed in
O(|V |+ |E |) time.

By repeating the BFS for each node, the time to compute
eccentricity for all nodes of G = O(|V |(|V |+ |E |)).

So, the radius, diameter and all centers of G can be found in
O(|V |(|V |+ |E |)) time.
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Random Walk Based Centrality (Brief Discussion)

Ref: [Noh & Rieger 2004]

Motivation:

Definitions of centrality measures (such as closeness centrality)
assume that “information” propagates along shortest paths.

This may not be appropriate for certain other types of propagation.
For example, propagation of diseases is a probabilistic phenomenon.

Idea of Random Walk Distance in a Graph:

u v
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Random Walk ... (Brief Discussion)

Random Walk Algorithm – Outline:

Suppose we want to find the random walk distance from u to v .

Initialize: Current Node = u and No. of steps = 0.

Repeat

1 Randomly choose a neighbor x of the Current Node.
2 No. of steps = No. of steps + 1.
3 Set Current Node = x .

Until Current Node = v .

Note: In Step 1 of the loop, if the Current Node has degree d ,

probability of choosing any neighbor is 1/d .
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Examples of Random Walks

A graph for carrying out a random walk:

u

v

Examples of random walks on the above graph:

u

v

u

v
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Random Walk ... (Brief Discussion)

Definition: The random walk distance (or hitting time) from
u to v is the expected number of steps used in a random walk that
starts at u and ends at v .

One can define farness/closeness centrality measures based on
random walk distances.

Weakness: Even for undirected graphs, the random walk
distances are not symmetric; that is, the random walk
distance from u to v may not be the same as the random
walk distance from v to u.
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Betweenness Centrality (for Nodes)

Measures the importance of a node using the number of
shortest paths in which the node appears.

Suggested by Bavelas; however, he didn’t formalize it.

The measure was developed by Linton Freeman and J. M.
Anthonisse.

Consider a node v and two other nodes s and t.

s t

v

Each shortest path between s and
t shown in green doesn’t pass
through node v .

Each shortest path between s and
t shown in red passes through
node v .
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Betweenness Centrality ... (continued)

Notation: Any shortest path between nodes s and t will be called an
s-t shortest path.

s t

v

Let σst denote the number of all s-t
shortest paths.

Let σst(v) denote the number of all
s-t shortest paths that pass through
node v .

Consider the ratio
σst(v)

σst
:

This gives the fraction of s-t shortest paths passing through v .

The larger the ratio, the more important v is with respect to the
pair of nodes s and t.

To properly measure the importance of a node v , we need to
consider all pairs of nodes (not involving v).
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Betweenness Centrality ... (continued)

Definition: The betweenness centrality of a node v , denoted by β(v),
is defined by

β(v) =
∑
s , t

s 6=v , t 6=v

[
σst(v)

σst

]

Interpreting the above formula: Suppose we want to compute β(v)
for some node v . The formula suggests the following steps.

Set β(v) = 0.

For each pair of nodes s and t such that s 6= v and t 6= v ,

1 Compute σst and σst(v).

2 Set β(v) = β(v) + σst(v)/σst .

Output β(v).

Note: For two nodes x and y , if β(x) > β(y), then x is more central

than y .
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Examples: Betweenness Computation

Example 1:

v1 v2 v3 v4

Note: Here, there is only one path between
any pair of nodes. (So, that path is also the
shortest path.)

Consider the computation of β(v2) first.

The s-t pairs to be considered are: (v1, v3), (v1, v4) and (v3, v4).

For the pair (v1, v3):

The number of shortest paths between v1 and v3 is 1;
thus, σv1,v3 = 1.

The (only) path between v1 and v3 passes through v2;
thus, σv1,v3(v2) = 1.

So, the ratio σv1,v3(v2)/σv1,v3 = 1.

In a similar manner, for the pair (v1, v4), the ratio
σv1,v4(v2)/σv1,v4 = 1.
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Examples: Betweenness Computation (continued)

Computation of β(v2) continued:

v1 v2 v3 v4

For the pair (v3, v4):

The number of shortest paths between v3 and v4 is 1;
thus, σv3,v4 = 1.

The (only) path between v3 and v4 does not pass through v2;
thus, σv3,v4(v2) = 0.

So, the ratio σv3,v4(v2)/σv3,v4 = 0.

Therefore,
β(v2) = 1 (for the pair (v1, v3))

+ 1 (for the pair (v1, v4))
+ 0 (for the pair (v3, v4))

= 2.

Note: In a similar manner, β(v3) = 2.
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Examples: Betweenness Computation

Example 1: (continued)

v1 v2 v3 v4

Now, consider the computation of β(v1).

The s-t pairs to be considered are: (v2, v3), (v2, v4) and (v3, v4).

For each of these pairs, the number of shortest paths is 1.

v1 doesn’t lie on any of these shortest paths.

Thus, for each pair, the fraction of shortest paths
that pass through v1 = 0.

Therefore, β(v1) = 0.

Note: In a similar manner, β(v4) = 0.
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Examples: Betweenness Computation (continued)

Summary for Example 1:

v1 v2 v3 v4

β(v1) = β(v4) = 0.

β(v2) = β(v3) = 2.

Example 2:

v5

v1

v2 v3 v4

Here also, there is only one path between
any pair of nodes.

Consider the computation of β(v1) first.
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Examples: Betweenness Computation (continued)

Computation of β(v1) (continued):

v5

v1

v2 v3 v4

We must consider all pairs of nodes from {v2, v3, v4, v5}.

The number of such pairs = 6. (They are: (v2, v3), (v2, v4),
(v2, v5), (v3, v4), (v3, v5), (v4, v5).)

For each pair, there is only one path between them and the path
passes through v1.

Therefore, the ratio contributed by each pair is 1.

Since there are 6 pairs, β(v1) = 6.
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Examples: Betweenness Computation (continued)

Computation of β(v2):

v5

v1

v2 v3 v4

We must consider all pairs of nodes from
{v1, v3, v4, v5}.

The number of such pairs = 6.

For each pair, there is only one path between them and the path
doesn’t pass through v2.

Therefore, β(v2) = 0.

Notes:

In a similar manner, β(v3) = β(v4) = β(v5) = 0.

Summary for Example 2:

β(v1) = 6 and

β(vi ) = 0, for i = 2, 3, 4, 5.
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Computing Betweenness: Major Steps

Requirement: Given graph G (V ,E ), compute β(v) for
each node v ∈ V .

Note: A straightforward algorithm and its running time will be
discussed.

Major steps: Consider one node (say, v) at a time.

For a given pair of nodes s and t, where s 6= v and t 6= v ,
compute the following values:

1 The no. of s-t shortest paths (i.e., the value of σst).
2 The no. of s-t shortest paths passing through v

(i.e., the value of σst(v)).

Major Step 1: Computing the number of shortest paths between a
pair of nodes s and t.

Method: Breadth-First-Search (BFS) from node s followed by a top

down computation procedure.
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Example for Major Step 1

(a) Carrying out a BFS:

s

a b

c d

t

=⇒
BFS

s

a b

c d

t

Note: The edge {a, b} does not play
any role in the computation of σst .

(b) Computing the value of σst :

s

a b

c d

t

(1)

(1) (1)

(2)

(3)

For each node, the value shown in red gives the
number of shortest paths from s to that node.

These numbers are computed through a
top-down computation (to be explained in class).

In this example, σst = 3.
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Running Time of Major Step 1

Assume that G (V ,E ) is the given graph.

For each node s, the time for BFS starting at s is O(|V |+ |E |).

For the chosen s, computing the σst value for for all other nodes t
can also be done in O(|V |+ |E |) time.

So, the computation time for each node s is O(|V |+ |E |).

Since there are |V | nodes, the time for Major Step 1 is
O(|V |(|V |+ |E |).

The running time is O(|V |3) for dense graphs and O(|V |2) for
sparse graphs.
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Idea for Major Step 2

Goal of Major Step 2: Given an (s, t) pair and a node v (which is
neither s nor t), compute σst(v), the number of s-t shortest paths
passing through v .

Idea:

s t

v

Compute the the number of of s-t shortest
paths that don’t pass through v (i.e., the
number of green paths). Let γst(v) denote
this value.

Then, σst(v) = σst − γst(v).

How can we compute γst(v)?

If we delete node v from the graph, all the green paths remain in
the graph.

So, γst(v) can be computed by considering the graph Gv obtained
by deleting v and all the edges incident on v .
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Example for Major Step 2

Graph G (V ,E ) :

s

a b

c d

t

Goal: Compute the number of s-t shortest
paths that don’t pass through a.

Graph Ga :

s

b

c d

t

The number of s-t shortest paths in G
that don’t pass through a is the
number of s-t shortest paths in Ga.

The required computation is exactly
that of Major Step 1, except that it
must be done for graph Gv .
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Example for Major Step 2 (continued)

Graph Ga :

s

b

c d

t

(1) (1)

(1)

(2)

For each node, the number in red gives
the number of shortest paths between s
and the node in Ga.

From the figure, γst(a) = 2.

Since σst = 3, σst(a) = 3− 2 = 1.
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Running Time of Major Step 2

As before, assume that G (V ,E ) is the given graph.

For each node v ∈ V , the following steps are carried out.

Construct graph Gv . (This can be done in O(|V |+ E |) time.)

For each node s of Gv , computing the number of s-t shortest
paths for all other nodes can be done in O(|V |+ |E |) time.

Since there are |V | − 1 nodes Gv , the time for Major Step 2
for each node v is O(|V |(|V |+ |E |).

So, over all the nodes v ∈ V , the running time for Major Step 2 is
O(|V |2(|V |+ |E |)).

The running time is O(|V |4) for dense graphs and O(|V |3) for
sparse graphs.

Algorithm for betweenness computation: See Handout 6.1.

6–43 / 68



Eigenvector Centrality

Phillip Bonacich (1940–)

Ph.D., Harvard University, 1968.

Professor Emeritus of Sociology, UCLA.

Co-author of a famous text on Mathematical
Sociology.

Degree centrality vs Eigenvector centrality:

B

A

Nodes A and B both have degree 5.

The four nodes (other than A) to which B
is adjacent may be “unimportant” (since
they don’t have any interactions among
themselves).

So, A seems more central than B.

Eigenvector centrality was proposed to
capture this.
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Eigenvector Centrality (continued)

Example: Consider the following undirected graph and its adjacency
matrix. (The matrix is symmetric.)

v1

v4v3v2

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

We want the centrality of each node to be a function of the
centrality values of its neighbors.

The simplest function is the sum of the centrality values.

A scaling factor λ is used to allow for more general solutions.
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Eigenvector Centrality (continued)
v1

v4v3v2

Notation: Let xi denote the centrality of
node vi , 1 ≤ i ≤ 4.

The equations to be satisfied by the unknowns x1, x2, x3 and x4 are:

x1 =
1

λ
(x2 + x3 + x4)

x2 =
1

λ
(x1)

x3 =
1

λ
(x1)

x4 =
1

λ
(x1)

Must avoid the trivial solution x1 = x2 = x3 = x4 = 0.

So, additional constraint: xi > 0, for at least one i ∈ {1, 2, 3, 4}.
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Eigenvector Centrality (continued)

Rewriting the equations, we get:

λ x1 = x2 + x3 + x4

λ x2 = x1

λ x3 = x1

λ x4 = x1

Matrix version:

λ


x1
x2
x3
x4

 =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0




x1
x2
x3
x4



Note: The matrix on the right side of the above equation is the

adjacency matrix of the graph.
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Eigenvector Centrality (continued)

Using x for the vector [x1 x2 x3 x4]T , and A for the adjacency matrix
of the graph, the equation becomes:

λ x = A x

Observation: λ is an eigenvalue of matrix A and x is the
corresponding eigenvector.

Goal: To use the numbers in an eigenvector as the centrality values
for nodes.

Theorem: [Perron-Frobenius Theorem]

If a matrix A has non-negative entries and is symmetric, then all the

values in the the eigenvector corresponding to the principal eigenvalue

of A are positive.
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Eigenvector Centrality (continued)

Algorithm for Eigenvector Centrality:

Input: The adjacency matrix A of an undirected graph G (V ,E ).

Output: The eigenvector centrality of each node of G .

Steps of the algorithm:

1 Compute the principal eigenvalue λ∗ of A.

2 Compute the eigenvector x corresponding to the eigenvalue λ∗.

3 Each component of x gives the eigenvector centrality of the
corresponding node of G .

Running time: O(|V |3).
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Eigenvector Centrality (continued)

Example: Consider the following graph and its adjacency matrix A.

v1

v4v3v2


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 The characteristic equation for
matrix A is λ4 − 3λ2 = 0.

The eigenvalues are: −
√

3, 0, 0 and
√

3.

The principal eigenvalue λ∗ of A =
√

3.

The corresponding eigenvector =


0.707
0.408
0.408
0.408

.

Note that the center node v1 has a larger eigenvector centrality
value than the other nodes.
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A Note about Pagerank

Pagerank is a measure of importance for web pages.

We must consider directed graphs.

The original definition of pagerank (due to Sergey Brin and
Larry Page) relied on the eigenvector centrality measure.

A definition of pagerank:

Let p1, p2, . . ., pn denote n web pages.

The adjacency matrix A = [aij ]n×n for the web pages
is defined by

aij = 1 if pi has a link to pj
= 0 otherwise.
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A Note about Pagerank (continued)

Define another matrix M = [mij ]n×n from A as follows:

mij =
(1− d)

n
+

d × aji
outdegree(pi )

where d , 0 < d < 1, is a constant called damping factor.

It is believed that d = 0.85 was used by Google initially.
(The exact value is not public.)

The eigenvector associated with the principal eigenvalue
gives the pagerank values.
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Centralization Index for a Graph

A measure of the extent to which the centrality value of a most
central node differs from the centrality of the other nodes.

Value depends on which centrality measure is used.

Freeman’s definition provides a normalized value.

Definition of Centralization Index:

Let C be any centrality measure and let G (V ,E ) be a graph
with n nodes.

Notation: For any node v ∈ V , C (v) denotes the
centrality value of v .

Let v∗ be a node of maximum centrality in G with respect to C .

Define QG =
∑
v∈V

[C (v∗)− C (v) ].
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Centralization Index ... (continued)

Definition of Centralization Index (continued):

Let Q∗ be the maximum value of QG over all graphs with n nodes.

The centralization index CG of G is the ratio QG/Q
∗.

CG provides an indication of how close G is to the graph with the
maximum value Q∗.

Example: We will use the following graph G and degree centrality.

v5v4

v2 v3

v1

Node with highest degree centrality = v1.

QG =
5∑

i=2

[degree(v1)− degree(vi )] = 10.
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Centralization Index ... (continued)

Example (continued):

v5

v1

v2 v3 v4

The graph with the highest value Q∗ for the
degree centrality measure is a star graph on 5
nodes.

Thus, Q∗ = 4× 3 = 12.

Since QG = 10 and Q∗ = 12, CG = 10/12 ≈ 0.833.

Thus, G is “very similar to” the star graph on 5 nodes.

Suppose G is a clique on 5 nodes.

QG = 0 and so CG = 0.

In other words, a clique on 5 nodes is “not similar to” the star
graph on 5 nodes.
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Applying Centrality Measures

Ref: [Yan & Ding, 2009]

Used data from 16 journals in Library & Information Science over a
period of 20 years.

Constructed a co-authorship network. (Number of nodes ≈
10,600 and number of edges ≈ 10,000.)

Giant component had ≈ 2200 nodes.

Computed closeness, betweenness and eigenvector centrality
measures for the nodes in the giant component.

Also computed the citation counts for each author. (This is not
based on the co-authorship network.)
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Applying Centrality Measures (continued)

Focus: Relationship between centrality values and citation counts.

Chose the top 30 authors according to each of the centrality
measures.

Summary of Observations:

Among the three centrality measures, the number of citations had
the highest correlation with betweenness centrality.

The number of citations has the lowest correlation with
closeness centrality.

Some authors (e.g. Gerry Salton) with very high citation counts
don’t necessarily have high centrality values.
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Appendix to Part 6

A Review of Concepts Related to Matrices
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Review of Concepts Related to Matrices

Example:[
7 −8 −14
2 4 −3

]
A matrix with 2 rows and 3 columns.

Also referred to as a 2× 3 matrix.

This matrix is rectangular.

In a square matrix, the number of
rows equals the number of columns.

Notation: For an m × n matrix A, aij denotes the entry in row i and
column j of A, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Matrix addition or subtraction:

Two matrices can be added (or subtracted) only if they have the
same number of rows and columns.

The result is obtained by adding (or subtracting) the
corresponding entries.

Example:[
7 −8 −14
2 4 −3

]
+

[
3 2 −1
1 2 −4

]
=

[
10 −6 −15
3 6 −7

]
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Review of Matrices (continued)

Matrix multiplication:

Given matrices P and Q, the product PQ is defined only when
the number of columns of P = the number of rows of Q.

If P is an m × n matrix and Q is an n × r matrix, the
product PQ is an m × r matrix.

Example: (The procedure will be explained in class.)

[
1 0 3
2 1 0

]
∗

 3 2
1 2
2 0

 =

[
9 2
7 6

]

Main diagonal of a square matrix:
3 4 5 0
2 4 3 7
3 1 9 4
7 9 2 8

 A 4× 4 (square) matrix.

The main diagonal entries are in blue.
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Review of Matrices (continued)

Identity Matrix: For any positive integer n, the n × n identity matrix,
denoted by In, has 1’s along the main diagonal and 0’s in every other
position.

Example: Identity matrix I4.
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Property: For any n × n matrix A, In A = A In = A.

Example:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∗


3 2 2 3
1 2 3 −2
2 1 1 4
7 5 4 1

 =


3 2 2 3
1 2 3 −2
2 1 1 4
7 5 4 1


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Review of Matrices (continued)

Definition: An n × n matrix A is symmetric if aij = aji
for all i and j , 1 ≤ i , j ≤ n.

Example:

2 3 7
3 4 9
7 9 6

A 3× 3 symmetric matrix.

Observe the symmetry around the main diagonal.

Notes:

For any n, the identity matrix In is symmetric.

For any undirected graph G , its adjacency matrix is symmetric.

Example: An undirected graph and its adjacency matrix.

v1

v4v3v2

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0
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Review of Matrices (continued)

Definition: Let P be an m × n matrix, where pij is the entry in row i
and column j , 1 ≤ i ≤ m and 1 ≤ j ≤ n. The transpose of P, denoted
by PT , is an n ×m matrix obtained by making each row of P into a
column of PT .

Examples:

P =
[

1 2 3 4
]
1×4 PT =


1
2
3
4


4×1

Q =

[
7 −8 −14
2 4 −3

]
2×3

QT =

 7 2
−8 4
−14 −3


3×2

Note: If a matrix A is symmetric, then AT = A.
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Review of Matrices (continued)

Example – Multiplying a matrix by a number (scalar):

3×
[

1 2
−5 4

]
=

[
3 6
−15 12

]
.

Determinant of a square matrix:

For a 2× 2 matrix A =

[
a b
c d

]
, the value of

the determinant is given by

Det(A) = ad − bc.

Example: Suppose A =

[
2 −1
3 −2

]
. Then

Det(A) = (−2× 2)− (3×−1) = −1.
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Review of Matrices (continued)

Example: Computing the determinant of a 3× 3 matrix.

B =

 3 1 0
2 −1 2
0 2 1


Det(B) can be computed as follows.

Det(B) = 3×Det

[
−1 2
2 1

]
−1×Det

[
2 2
0 1

]
+0×Det

[
2 −1
0 2

]
= 3(−5)− 1(2) + 0

= −17.

Note: In the expression for Det(B), the signs of the successive terms on

the right side alternate.
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Review of Matrices (continued)

Eigenvalues of a square matrix: If A is an n × n matrix, the
eigenvalues of A are the solutions to the characteristic equation

Det(A− λ In) = 0

where λ is a variable.

Example: Suppose

A =

[
1 3
2 2

]
.

Note that

λ I2 =

[
λ 0
0 λ

]
.

So,

A− λ I2 =

[
1− λ 3

2 2− λ

]
.

Hence,

Det(A− λ I2) = (2− λ)(1− λ)− 6 = λ2 − 3λ− 4.
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Review of Matrices (continued)

Example (continued):

So, the characteristic equation for A is given by

λ2 − 3λ− 4 = 0

The solutions to this equation are: λ = 4 and λ = −1.

These are the eigenvalues of the matrix A.

The largest eigenvalue (in this case, λ = 4) is called the
principal eigenvalue.

For each eigenvalue λ of A, there is a 2× 1 matrix (vector) x such
that Ax = λx. Such a vector is called an eigenvector of the
eigenvalue λ. (This vector can be computed efficiently.)

For the above matrix A, for the principal eigenvalue λ = 4, an
eigenvector x is given by

x =

[
1
1

]
.
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Review of Matrices (continued)

Matrices and linear equations:

Example:

3x1 − 2x2 + x3 = 7

x1 − 3x2 − 2x3 = 0

2x1 + 3x2 + 3x3 = 5

Suppose

A =

 3 −2 1
1 −3 −2
2 3 3

 X =

 x1
x2
x3

 and B =

 7
0
5

 .
Then the above set of equations can be written as 3 −2 1

1 −3 −2
2 3 3

 ∗
 x1

x2
x3

 =

 7
0
5

 or AX = B.
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