CSI 445/660 - Part 6

(Centrality Measures for Networks)

References

1 L. Freeman, "Centrality in Social Networks: Conceptual Clarification", Social Networks, Vol. 1, 1978/1979, pp. 215-239.

2 S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, New York, NY, 1994.

3 M. E. J. Newman, Networks: An Introduction, Oxford University Press, New York, NY, 2010.

4 Wikipedia entry on Centrality Measures: https://en.wikipedia.org/wiki/Centrality

Some Pioneers on the Topic

■ Alex Bavelas (1913-1993) (??)

- Received Ph.D. from MIT (1948) in Psychology.
- Dorwin Cartwright was a member of his Ph.D. thesis committee.
- Taught at MIT, Stanford and the University of Victoria (Canada).

- Harold Leavitt (1922-2007)
- Received Ph.D. from MIT.
- Authored an influential text ("Managerial Psychology") in 1958.
- Taught at Carnegie Mellon and Stanford.

Centrality Measures for Networks

Centrality:

- Represents a "measure of importance".

■ Usually for nodes.

- Some measures can also be defined for edges (or subgraphs, in general).
- Idea proposed by Alex Bavelas during the late 1940's.
- Further work by Harold Leavitt (Stanford) and Sidney Smith (MIT) led to qualitative measures.
- Quantitative measures came years later. (Many such measures have been proposed.)

Point Centrality - A Qualitative Measure

Example:

- The center node is "structurally more important" than the other nodes.

Reasons for the importance of the center node:

- The center node has the maximum possible degree.

■ It lies on the shortest path ("geodesic") between any pair of other nodes (leaves).

- It is the closest node to each leaf.
- It is in the "thick of things" with respect to any communication in the network.

Degree Centrality - A Quantitative Measure

- For an undirected graph, the degree of a node is the number of edges incident on that node.
■ For a directed graph, both indegree (i.e., the number of incoming edges) and outdegree (i.e., the number of outgoing edges) must be considered.

Example 1:

- Degree of $x=6$.
- For all other nodes, degree $=1$.

Example 2:

- Indegree of $b=1$.
- Outdegree of $d=2$.

Degree Centrality (continued)

When does a large indegree imply higher importance?

- Consider the Twitter network.
- Think of x as a celebrity and the other nodes as followers of x.

■ For a different context, think of each node in the directed graph as a web page.

- Each of the nodes $y_{1}, y_{2}, \ldots, y_{n}$ has a link to x.
- The larger the value of n, the higher is the "importance" of x (a crude definition of page rank).

Degree Centrality (continued)

When does a large outdegree imply higher importance?

- Consider the hierarchy in an organization.
- Think of x as the manager of y_{1}, y_{2}, \ldots, y_{n}.
- Large outdegree may mean more "power".

Undirected graphs:

- High degree nodes are called hubs (e.g. airlines).
- High degree may also also represent higher risk.

Example: In disease propagation, a high degree node is more likely to get infected compared to a low degree node.

Normalized Degree

Definition: The normalized degree of a node x is given by

$$
\text { Normalized Degree of } x=\frac{\text { Degree of } x}{\text { Maximum possible degree }}
$$

- Useful in comparing degree centralities of nodes between two networks.

Example: A node with a degree of 5 in a network with 10 nodes may be relatively more important than a node with a degree of 5 in a network with a million nodes.

Weighted Degree Centrality (Strength):

- Weighted degree (or strength) of $v=$ $w_{1}+w_{2}+\ldots+w_{r}$.

Degree Centrality (continued)

Assuming an adjacency list representation
■ for an undirected graph $G(V, E)$, the degree (or weighted degree) of all nodes can be computed in linear time (i.e., in time $O(|V|+|E|))$ and

- for a directed graph $G(V, E)$, the indegree or outdegree (or their weighted versions) of all nodes can be computed in linear time.

Combining degree and strength: ([Opsahl et al. 2009])
Motivating Example:

- A and B have the same strength.
- However, B seems more central than A.

Combining Degree and Strength (continued)

Proposed Measure by Opsahl et al.:

- Let d and s be the degree and strength of a node v respectively.
- Let α be a parameter satisfying the condition $0 \leq \alpha \leq 1$.

■ The combined measure for node $v=d^{\alpha} \times s^{1-\alpha}$.

- When $\alpha=1$, the combined measure is the degree.

■ When $\alpha=0$, the combined measure is the strength.

- A suitable value of α must be chosen for each context.

Farness and Closeness Centralities

Assumptions:

- Undirected graphs. (Extension to directed graphs is straightforward.)
- Connected graphs.
- No edge weights. (Extension to weighted graphs is also straightforward.)

Notation:

■ Nodes of the graph are denoted by $v_{1}, v_{2}, \ldots, v_{n}$. The set of all nodes is denoted by V.

■ For any pair of nodes v_{i} and $v_{j}, d_{i j}$ denotes the number of edges in a shortest path between v_{i} and v_{j}.

Farness and Closeness Centralities (continued)

Definition: The farness centrality f_{i} of node v_{i} is given by
$f_{i}=$ Sum of the distances between v_{i} and the other nodes

$$
=\sum_{v_{j} \in V-\left\{v_{i}\right\}} d_{i j}
$$

Definition: The closeness centrality (or nearness centrality) η_{i} of node v_{i} is given by $\eta_{i}=1 / f_{i}$.

Note: If a node x has a larger closeness centrality value compared to a node y, then x is more central than y.

Farness and Closeness Centralities (continued)

Example 1:

So, in the above example, nodes v_{2} and v_{3} are more central than nodes v_{1} and v_{4}.

Farness and Closeness Centralities (continued)

Example 2:

■ $f_{1}=4$. So, $\eta_{1}=1 / 4$.

- For every other node, the farness centrality value $=7$; so the closeness centrality value $=1 / 7$.
- Thus, v_{1} is more central than the other nodes.

Remarks:

■ For any graph with n nodes, the farness centrality of each node is at least $n-1$.

Reason: Each of the other $n-1$ nodes must be at a distance of at least 1 .

Farness and Closeness Centralities (continued)

Remarks (continued):

- Since the farness centrality of each node is at least $n-1$, the closeness centrality of any node must be at most $1 /(n-1)$.

- For the star graph on the left, the closeness centrality of the center node v is exactly $1 /(n-1)$.
- If G is an n-clique, then the closeness centrality of each node of G is $1 /(n-1)$.

An Algorithm for Computing Farness and Closeness

Assumptions: The given undirected graph is connected and does not have edge weights.

Computing Farness (or closeness) Centrality (Idea):

■ A Breadth-First-Search (BFS) starting at a node v_{i} will find shortest paths to all the other nodes.

Example:

An Algorithm for Farness ... (continued)

Let $G(V, E)$ denote the given graph.

- Recall that the time for doing a BFS on $G=O(|V|+|E|)$.

■ So, farness (or closeness) centrality for any node of G can be computed in $O(|V|+|E|)$ time.

- By carrying out a BFS from each node, the time to compute farness (or closeness) centrality for all nodes of G $=O(|V|(|V|+|E|))$.
- The time is $O\left(|V|^{3}\right)$ for dense graphs (where $|E|=\Omega\left(|V|^{2}\right)$) and $O\left(|V|^{2}\right)$ for sparse graphs (where $|E|=O(|V|)$).

Eccentricity Measure

- Recall that farness centrality of a node v_{i} is given by

$$
f_{i}=\sum_{v_{j} \in V-\left\{v_{i}\right\}} d_{i j}
$$

■ The eccentricity μ_{i} of node v_{i} is defined by replacing the summation operator $\left(\sum\right)$ by the maximization operator; that is,

$$
\mu_{i}=\max _{v_{j} \in V-\left\{v_{i}\right\}}\left\{d_{i j}\right\}
$$

- This measure was studied by two graph theorists (Gert Sabidussi and Seifollah L. Hakimi).
- Interpretation: If μ_{i} denotes the eccentricity of node v_{i}, then every other node is within a distance of at most μ_{i} from v_{i}.
- If the eccentricity of node x is less than that of y, then x is more central than y.

Examples: Eccentricity Computation

Example 1:

- $\mu_{1}=\max \{1,2,3\}=3$.
- $\mu_{2}=\max \{1,1,2\}=2$.
- $\mu_{3}=\max \{2,1,1\}=2$.
- $\mu_{4}=\max \{3,2,1\}=3$.

Example 2:

- $\mu_{1}=1$.
- For every other node, eccentricity $=2$.

Eccentricity - Additional Definitions

Definition: A node v of a graph which has the smallest eccentricity among all the nodes is called a center of the graph.

Example:

- The center of this graph is v_{1}. (The eccentricity of $v_{1}=1$.)

Note: A graph may have two or more centers.
Example:

- Both v and w are centers of this graph. (Their eccentricities are $=1$.)
- If G is clique on n nodes, then every node of G is a center.

Eccentricity - Additional Definitions (continued)

Definition: The smallest eccentricity value among all the nodes is called the radius of the graph.
Note: The value of the radius is the eccentricity of a center.
Example:

- The radius of this graph is 1 (since v_{1} is the center of this graph and the eccentricity of $v_{1}=1$.)

Facts:

- The largest eccentricity value is the diameter of the graph.
- For any graph, the diameter is at most twice the radius. (Students should try to prove this result.)

An Algorithm for Computing Eccentricity

Let $G(V, E)$ denote the given graph.
■ Recall: By carrying out a BFS from node v_{i}, the shortest path distances between v_{i} and all the other nodes can be found in $O(|V|+|E|)$ time.

■ So, the eccentricity of any node of G can be computed in $O(|V|+|E|)$ time.

■ By repeating the BFS for each node, the time to compute eccentricity for all nodes of $G=O(|V|(|V|+|E|))$.

- So, the radius, diameter and all centers of G can be found in $O(|V|(|V|+|E|))$ time.

Random Walk Based Centrality (Brief Discussion)

Ref: [Noh \& Rieger 2004]

Motivation:

- Definitions of centrality measures (such as closeness centrality) assume that "information" propagates along shortest paths.
- This may not be appropriate for certain other types of propagation. For example, propagation of diseases is a probabilistic phenomenon.

Idea of Random Walk Distance in a Graph:

Random Walk ... (Brief Discussion)

Random Walk Algorithm - Outline:

- Suppose we want to find the random walk distance from u to v.

■ Initialize: Current Node $=u$ and No. of steps $=0$.

- Repeat

1 Randomly choose a neighbor x of the Current Node.
2 No. of steps $=$ No. of steps +1 .
3 Set Current Node $=x$.
Until Current Node $=v$.

Note: In Step 1 of the loop, if the Current Node has degree d, probability of choosing any neighbor is $1 / d$.

Examples of Random Walks

A graph for carrying out a random walk:

Examples of random walks on the above graph:

Random Walk ... (Brief Discussion)

Definition: The random walk distance (or hitting time) from u to v is the expected number of steps used in a random walk that starts at u and ends at v.

- One can define farness/closeness centrality measures based on random walk distances.

■ Weakness: Even for undirected graphs, the random walk distances are not symmetric; that is, the random walk distance from u to v may not be the same as the random walk distance from v to u.

Betweenness Centrality (for Nodes)

■ Measures the importance of a node using the number of shortest paths in which the node appears.

■ Suggested by Bavelas; however, he didn't formalize it.
■ The measure was developed by Linton Freeman and J. M. Anthonisse.

Consider a node v and two other nodes s and t.
■ Each shortest path between s and t shown in green doesn't pass through node v.

■ Each shortest path between s and t shown in red passes through node v.

Betweenness Centrality ... (continued)

Notation: Any shortest path between nodes s and t will be called an $s-t$ shortest path.

- Let $\sigma_{\text {st }}$ denote the number of all s - t shortest paths.
- Let $\sigma_{s t}(v)$ denote the number of all s - t shortest paths that pass through node v.
Consider the ratio $\frac{\sigma_{s t}(v)}{\sigma_{s t}}$:
- This gives the fraction of s - t shortest paths passing through v.
- The larger the ratio, the more important v is with respect to the pair of nodes s and t.
- To properly measure the importance of a node v, we need to consider all pairs of nodes (not involving v).

Betweenness Centrality ... (continued)

Definition: The betweenness centrality of a node v, denoted by $\beta(v)$, is defined by

$$
\beta(v)=\sum_{\substack{s, t \\ s \neq v, t \not t v}}\left[\frac{\sigma_{s t}(v)}{\sigma_{s t}}\right]
$$

Interpreting the above formula: Suppose we want to compute $\beta(v)$ for some node v. The formula suggests the following steps.

- Set $\beta(v)=0$.
- For each pair of nodes s and t such that $s \neq v$ and $t \neq v$,

1 Compute $\sigma_{\text {st }}$ and $\sigma_{\text {st }}(v)$.
2 Set $\beta(v)=\beta(v)+\sigma_{s t}(v) / \sigma_{s t}$.

- Output $\beta(v)$.

Note: For two nodes x and y, if $\beta(x)>\beta(y)$, then x is more central than y.

Examples: Betweenness Computation

Example 1:

Note: Here, there is only one path between any pair of nodes. (So, that path is also the shortest path.)

Consider the computation of $\beta\left(v_{2}\right)$ first.

- The s - t pairs to be considered are: $\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right)$ and $\left(v_{3}, v_{4}\right)$.
- For the pair $\left(v_{1}, v_{3}\right)$:
- The number of shortest paths between v_{1} and v_{3} is 1 ; thus, $\sigma_{v_{1}, v_{3}}=1$.
- The (only) path between v_{1} and v_{3} passes through v_{2}; thus, $\sigma_{v_{1}, v_{3}}\left(v_{2}\right)=1$.
- So, the ratio $\sigma_{v_{1}, v_{3}}\left(v_{2}\right) / \sigma_{v_{1}, v_{3}}=1$.
- In a similar manner, for the pair $\left(v_{1}, v_{4}\right)$, the ratio $\sigma_{v_{1}, v_{4}}\left(v_{2}\right) / \sigma_{v_{1}, v_{4}}=1$.

Examples: Betweenness Computation (continued)

Computation of $\beta\left(v_{2}\right)$ continued:

- For the pair $\left(v_{3}, v_{4}\right)$:
- The number of shortest paths between v_{3} and v_{4} is 1 ; thus, $\sigma_{v_{3}, v_{4}}=1$.
- The (only) path between v_{3} and v_{4} does not pass through v_{2}; thus, $\sigma_{v_{3}, v_{4}}\left(v_{2}\right)=0$.
- So, the ratio $\sigma_{v_{3}, v_{4}}\left(v_{2}\right) / \sigma_{v_{3}, v_{4}}=0$.

Therefore,

$$
\begin{array}{rlr}
\beta\left(v_{2}\right)= & 1 & \left(\text { for the pair }\left(v_{1}, v_{3}\right)\right) \\
& +1 & \left(\text { for the pair }\left(v_{1}, v_{4}\right)\right) \\
& +0 & \left(\text { for the pair }\left(v_{3}, v_{4}\right)\right) \\
= & 2 .
\end{array}
$$

Note: In a similar manner, $\beta\left(v_{3}\right)=2$.

Examples: Betweenness Computation

Example 1: (continued)

Now, consider the computation of $\beta\left(v_{1}\right)$.

- The s - t pairs to be considered are: $\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right)$ and $\left(v_{3}, v_{4}\right)$.

■ For each of these pairs, the number of shortest paths is 1 .

- v_{1} doesn't lie on any of these shortest paths.
- Thus, for each pair, the fraction of shortest paths that pass through $v_{1}=0$.
- Therefore, $\beta\left(v_{1}\right)=0$.

Note: In a similar manner, $\beta\left(v_{4}\right)=0$.

Examples: Betweenness Computation (continued)

Summary for Example 1:

- $\beta\left(v_{1}\right)=\beta\left(v_{4}\right)=0$.
- $\beta\left(v_{2}\right)=\beta\left(v_{3}\right)=2$.

Example 2:

- Here also, there is only one path between any pair of nodes.
- Consider the computation of $\beta\left(v_{1}\right)$ first.

Examples: Betweenness Computation (continued)

Computation of $\beta\left(v_{1}\right)$ (continued):

- We must consider all pairs of nodes from $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$.

■ The number of such pairs $=6$. (They are: $\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right)$, $\left.\left(v_{2}, v_{5}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{5}\right),\left(v_{4}, v_{5}\right).\right)$

- For each pair, there is only one path between them and the path passes through v_{1}.
- Therefore, the ratio contributed by each pair is 1 .
- Since there are 6 pairs, $\beta\left(v_{1}\right)=6$.

Examples: Betweenness Computation (continued)

Computation of $\beta\left(v_{2}\right)$:

- We must consider all pairs of nodes from $\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$.
- The number of such pairs $=6$.
- For each pair, there is only one path between them and the path doesn't pass through v_{2}.
- Therefore, $\beta\left(v_{2}\right)=0$.

Notes:

- In a similar manner, $\beta\left(v_{3}\right)=\beta\left(v_{4}\right)=\beta\left(v_{5}\right)=0$.
- Summary for Example 2:
- $\beta\left(v_{1}\right)=6$ and
- $\beta\left(v_{i}\right)=0$, for $i=2,3,4,5$.

Computing Betweenness: Major Steps

Requirement: Given graph $G(V, E)$, compute $\beta(v)$ for each node $v \in V$.

Note: A straightforward algorithm and its running time will be discussed.

Major steps: Consider one node (say, v) at a time.

- For a given pair of nodes s and t, where $s \neq v$ and $t \neq v$, compute the following values:
1 The no. of s - t shortest paths (i.e., the value of $\sigma_{s t}$).
2 The no. of s - t shortest paths passing through v (i.e., the value of $\sigma_{s t}(v)$).

Major Step 1: Computing the number of shortest paths between a pair of nodes s and t.

Method: Breadth-First-Search (BFS) from node s followed by a top down computation procedure.

Example for Major Step 1

(a) Carrying out a BFS:

Note: The edge $\{a, b\}$ does not play any role in the computation of $\sigma_{s t}$.
(b) Computing the value of $\sigma_{s t}$:

■ For each node, the value shown in red gives the number of shortest paths from s to that node.

■ These numbers are computed through a top-down computation (to be explained in class).

■ In this example, $\sigma_{s t}=3$.

Running Time of Major Step 1

Assume that $G(V, E)$ is the given graph.

- For each node s, the time for BFS starting at s is $O(|V|+|E|)$.
- For the chosen s, computing the $\sigma_{s t}$ value for for all other nodes t can also be done in $O(|V|+|E|)$ time.

■ So, the computation time for each node s is $O(|V|+|E|)$.

- Since there are $|V|$ nodes, the time for Major Step 1 is $O(|V|(|V|+|E|)$.
- The running time is $O\left(|V|^{3}\right)$ for dense graphs and $O\left(|V|^{2}\right)$ for sparse graphs.

Idea for Major Step 2

Goal of Major Step 2: Given an (s, t) pair and a node v (which is neither s nor t), compute $\sigma_{s t}(v)$, the number of $s-t$ shortest paths passing through v.

Idea:

- Compute the the number of of $s-t$ shortest paths that don't pass through v (i.e., the number of green paths). Let $\gamma_{s t}(v)$ denote this value.
- Then, $\sigma_{s t}(v)=\sigma_{s t}-\gamma_{s t}(v)$.

How can we compute $\gamma_{s t}(v)$?

- If we delete node v from the graph, all the green paths remain in the graph.
- So, $\gamma_{s t}(v)$ can be computed by considering the graph G_{v} obtained by deleting v and all the edges incident on v.

Example for Major Step 2

Graph $G(V, E)$:

Goal: Compute the number of s - t shortest paths that don't pass through a.

Graph G_{a} :

■ The number of s - t shortest paths in G that don't pass through a is the number of s - t shortest paths in G_{a}.

- The required computation is exactly that of Major Step 1, except that it must be done for graph G_{v}.

Example for Major Step 2 (continued)

Graph G_{a} :

- For each node, the number in red gives the number of shortest paths between s and the node in G_{a}.
- From the figure, $\gamma_{s t}(a)=2$.
- Since $\sigma_{s t}=3, \sigma_{s t}(a)=3-2=1$.

Running Time of Major Step 2

As before, assume that $G(V, E)$ is the given graph.

- For each node $v \in V$, the following steps are carried out.
- Construct graph G_{v}. (This can be done in $O(|V|+E \mid)$ time.)
- For each node s of G_{v}, computing the number of s - t shortest paths for all other nodes can be done in $O(|V|+|E|)$ time.
$■$ Since there are $|V|-1$ nodes G_{v}, the time for Major Step 2 for each node v is $O(|V|(|V|+|E|)$.
- So, over all the nodes $v \in V$, the running time for Major Step 2 is $O\left(|V|^{2}(|V|+|E|)\right)$.
- The running time is $O\left(|V|^{4}\right)$ for dense graphs and $O\left(|V|^{3}\right)$ for sparse graphs.

Algorithm for betweenness computation: See Handout 6.1.

Eigenvector Centrality

- Phillip Bonacich (1940-)
- Ph.D., Harvard University, 1968.
- Professor Emeritus of Sociology, UCLA.
- Co-author of a famous text on Mathematical Sociology.

Degree centrality vs Eigenvector centrality:

- Nodes A and B both have degree 5 .

- The four nodes (other than A) to which B is adjacent may be "unimportant" (since they don't have any interactions among themselves).
- So, A seems more central than B.
- Eigenvector centrality was proposed to capture this.

Eigenvector Centrality (continued)

Example: Consider the following undirected graph and its adjacency matrix. (The matrix is symmetric.)

- We want the centrality of each node to be a function of the centrality values of its neighbors.
- The simplest function is the sum of the centrality values.
- A scaling factor λ is used to allow for more general solutions.

Eigenvector Centrality (continued)

- Notation: Let x_{i} denote the centrality of node $v_{i}, \quad 1 \leq i \leq 4$.

The equations to be satisfied by the unknowns x_{1}, x_{2}, x_{3} and x_{4} are:

$$
\begin{aligned}
& x_{1}=\frac{1}{\lambda}\left(x_{2}+x_{3}+x_{4}\right) \\
& x_{2}=\frac{1}{\lambda}\left(x_{1}\right) \\
& x_{3}=\frac{1}{\lambda}\left(x_{1}\right) \\
& x_{4}=\frac{1}{\lambda}\left(x_{1}\right)
\end{aligned}
$$

- Must avoid the trivial solution $x_{1}=x_{2}=x_{3}=x_{4}=0$.
- So, additional constraint: $x_{i}>0$, for at least one $i \in\{1,2,3,4\}$.

Eigenvector Centrality (continued)

Rewriting the equations, we get:

$$
\begin{aligned}
\lambda x_{1} & =x_{2}+x_{3}+x_{4} \\
\lambda x_{2} & =x_{1} \\
\lambda x_{3} & =x_{1} \\
\lambda x_{4} & =x_{1}
\end{aligned}
$$

Matrix version:

$$
\lambda\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Note: The matrix on the right side of the above equation is the adjacency matrix of the graph.

Eigenvector Centrality (continued)

Using \mathbf{x} for the vector $\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$, and A for the adjacency matrix of the graph, the equation becomes:

$$
\lambda \mathbf{x}=A \mathbf{x}
$$

Observation: λ is an eigenvalue of matrix A and \mathbf{x} is the corresponding eigenvector.

Goal: To use the numbers in an eigenvector as the centrality values for nodes.

Theorem: [Perron-Frobenius Theorem]
If a matrix A has non-negative entries and is symmetric, then all the values in the the eigenvector corresponding to the principal eigenvalue of A are positive.

Eigenvector Centrality (continued)

Algorithm for Eigenvector Centrality:

Input: The adjacency matrix A of an undirected graph $G(V, E)$.
Output: The eigenvector centrality of each node of G.
Steps of the algorithm:
1 Compute the principal eigenvalue λ^{*} of A.
2 Compute the eigenvector \mathbf{x} corresponding to the eigenvalue λ^{*}.
3 Each component of \mathbf{x} gives the eigenvector centrality of the corresponding node of G.

Running time: $O\left(|V|^{3}\right)$.

Eigenvector Centrality (continued)

Example: Consider the following graph and its adjacency matrix A.

- The characteristic equation for matrix A is $\lambda^{4}-3 \lambda^{2}=0$.
- The eigenvalues are: $-\sqrt{3}, 0,0$ and $\sqrt{3}$.
- The principal eigenvalue λ^{*} of $A=\sqrt{3}$.
- The corresponding eigenvector $=\left[\begin{array}{l}0.707 \\ 0.408 \\ 0.408 \\ 0.408\end{array}\right]$.
- Note that the center node v_{1} has a larger eigenvector centrality value than the other nodes.

A Note about Pagerank

- Pagerank is a measure of importance for web pages.
- We must consider directed graphs.
- The original definition of pagerank (due to Sergey Brin and Larry Page) relied on the eigenvector centrality measure.

A definition of pagerank:

■ Let $p_{1}, p_{2}, \ldots, p_{n}$ denote n web pages.

- The adjacency matrix $A=\left[a_{i j}\right]_{n \times n}$ for the web pages is defined by

$$
\begin{aligned}
a_{i j} & =1 \quad \text { if } p_{i} \text { has a link to } p_{j} \\
& =0
\end{aligned} \quad \text { otherwise. }
$$

A Note about Pagerank (continued)

- Define another matrix $M=\left[m_{i j}\right]_{n \times n}$ from A as follows:

$$
m_{i j}=\frac{(1-d)}{n}+\frac{d \times a_{j i}}{\text { outdegree }\left(p_{i}\right)}
$$

where $d, 0<d<1$, is a constant called damping factor.

- It is believed that $d=0.85$ was used by Google initially. (The exact value is not public.)
- The eigenvector associated with the principal eigenvalue gives the pagerank values.

Centralization Index for a Graph

- A measure of the extent to which the centrality value of a most central node differs from the centrality of the other nodes.
- Value depends on which centrality measure is used.
- Freeman's definition provides a normalized value.

Definition of Centralization Index:

- Let C be any centrality measure and let $G(V, E)$ be a graph with n nodes.
- Notation: For any node $v \in V, C(v)$ denotes the centrality value of v.
- Let v^{*} be a node of maximum centrality in G with respect to C.
- Define $Q_{G}=\sum_{v \in V}\left[C\left(v^{*}\right)-C(v)\right]$.

Centralization Index ... (continued)

Definition of Centralization Index (continued):

- Let Q^{*} be the maximum value of Q_{G} over all graphs with n nodes.
- The centralization index C_{G} of G is the ratio Q_{G} / Q^{*}.
- C_{G} provides an indication of how close G is to the graph with the maximum value Q^{*}.

Example: We will use the following graph G and degree centrality.

- Node with highest degree centrality $=v_{1}$.
- $Q_{G}=\sum_{i=2}^{5}\left[\operatorname{degree}\left(v_{1}\right)-\operatorname{degree}\left(v_{i}\right)\right]=10$.

Centralization Index ... (continued)

Example (continued):

- The graph with the highest value Q^{*} for the degree centrality measure is a star graph on 5 nodes.
- Thus, $Q^{*}=4 \times 3=12$.
- Since $Q_{G}=10$ and $Q^{*}=12, C_{G}=10 / 12 \approx 0.833$.
- Thus, G is "very similar to" the star graph on 5 nodes.
- Suppose G is a clique on 5 nodes.
- $Q_{G}=0$ and so $C_{G}=0$.
- In other words, a clique on 5 nodes is "not similar to" the star graph on 5 nodes.

Applying Centrality Measures

Ref: [Yan \& Ding, 2009]

- Used data from 16 journals in Library \& Information Science over a period of 20 years.
- Constructed a co-authorship network. (Number of nodes \approx 10,600 and number of edges $\approx 10,000$.)
- Giant component had ≈ 2200 nodes.
- Computed closeness, betweenness and eigenvector centrality measures for the nodes in the giant component.
- Also computed the citation counts for each author. (This is not based on the co-authorship network.)

Applying Centrality Measures (continued)

- Focus: Relationship between centrality values and citation counts.
- Chose the top 30 authors according to each of the centrality measures.

Summary of Observations:

- Among the three centrality measures, the number of citations had the highest correlation with betweenness centrality.
- The number of citations has the lowest correlation with closeness centrality.
- Some authors (e.g. Gerry Salton) with very high citation counts don't necessarily have high centrality values.

Appendix to Part 6

A Review of Concepts Related to Matrices

Review of Concepts Related to Matrices

- A matrix with 2 rows and 3 columns.

Example:

$\left[\begin{array}{ccc}7 & -8 & -14 \\ 2 & 4 & -3\end{array}\right]$

- Also referred to as a 2×3 matrix.
- This matrix is rectangular.
- In a square matrix, the number of rows equals the number of columns.

Notation: For an $m \times n$ matrix $A, a_{i j}$ denotes the entry in row i and column j of $A, 1 \leq i \leq m$ and $1 \leq j \leq n$.

Matrix addition or subtraction:

- Two matrices can be added (or subtracted) only if they have the same number of rows and columns.
- The result is obtained by adding (or subtracting) the corresponding entries.

Example:

$$
\left[\begin{array}{ccc}
7 & -8 & -14 \\
2 & 4 & -3
\end{array}\right]+\left[\begin{array}{lll}
3 & 2 & -1 \\
1 & 2 & -4
\end{array}\right]=\left[\begin{array}{ccc}
10 & -6 & -15 \\
3 & 6 & -7
\end{array}\right]
$$

Review of Matrices (continued)

Matrix multiplication:

- Given matrices P and Q, the product $P Q$ is defined only when the number of columns of $P=$ the number of rows of Q.
- If P is an $m \times n$ matrix and Q is an $n \times r$ matrix, the product $P Q$ is an $m \times r$ matrix.

Example: (The procedure will be explained in class.)

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 0
\end{array}\right] *\left[\begin{array}{ll}
3 & 2 \\
1 & 2 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
9 & 2 \\
7 & 6
\end{array}\right]
$$

Main diagonal of a square matrix:
$\left[\begin{array}{llll}3 & 4 & 5 & 0 \\ 2 & 4 & 3 & 7 \\ 3 & 1 & 9 & 4 \\ 7 & 9 & 2 & 8\end{array}\right]$

- A 4×4 (square) matrix.
- The main diagonal entries are in blue.

Review of Matrices (continued)

Identity Matrix: For any positive integer n, the $n \times n$ identity matrix, denoted by I_{n}, has 1 's along the main diagonal and 0 's in every other position.

Example: Identity matrix I_{4}.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Property: For any $n \times n$ matrix $A, I_{n} A=A I_{n}=A$.
Example:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{cccc}
3 & 2 & 2 & 3 \\
1 & 2 & 3 & -2 \\
2 & 1 & 1 & 4 \\
7 & 5 & 4 & 1
\end{array}\right]=\left[\begin{array}{cccc}
3 & 2 & 2 & 3 \\
1 & 2 & 3 & -2 \\
2 & 1 & 1 & 4 \\
7 & 5 & 4 & 1
\end{array}\right]
$$

Review of Matrices (continued)

Definition: An $n \times n$ matrix A is symmetric if $a_{i j}=a_{j i}$ for all i and $j, 1 \leq i, j \leq n$.

Example:

$\begin{array}{lll}2 & 3 & 7\end{array}$
349
$\begin{array}{lll}7 & 9 & 6 \\ \text { - Observe the symmetry around the main diagonal. }\end{array}$

Notes:

- For any n, the identity matrix I_{n} is symmetric.
- For any undirected graph G, its adjacency matrix is symmetric.

Example: An undirected graph and its adjacency matrix.

Review of Matrices (continued)

Definition: Let P be an $m \times n$ matrix, where $p_{i j}$ is the entry in row i and column $j, 1 \leq i \leq m$ and $1 \leq j \leq n$. The transpose of P, denoted by P^{T}, is an $n \times m$ matrix obtained by making each row of P into a column of P^{T}.

Examples:

$$
\begin{array}{cc}
P=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]_{1 \times 4} & P^{T}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]_{4 \times 1} \\
Q=\left[\begin{array}{ccc}
7 & -8 & -14 \\
2 & 4 & -3
\end{array}\right]_{2 \times 3} & Q^{T}=\left[\begin{array}{cc}
7 & 2 \\
-8 & 4 \\
-14 & -3
\end{array}\right]_{3 \times 2}
\end{array}
$$

Note: If a matrix A is symmetric, then $A^{T}=A$.

Review of Matrices (continued)

Example - Multiplying a matrix by a number (scalar):

$$
3 \times\left[\begin{array}{cc}
1 & 2 \\
-5 & 4
\end{array}\right]=\left[\begin{array}{cc}
3 & 6 \\
-15 & 12
\end{array}\right] .
$$

Determinant of a square matrix:

- For a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the value of the determinant is given by

$$
\operatorname{Det}(A)=a d-b c
$$

Example: Suppose $A=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]$. Then

$$
\operatorname{Det}(A)=(-2 \times 2)-(3 \times-1)=-1
$$

Review of Matrices (continued)

Example: Computing the determinant of a 3×3 matrix.

$$
B=\left[\begin{array}{ccc}
3 & 1 & 0 \\
2 & -1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

$\operatorname{Det}(B)$ can be computed as follows.

$$
\begin{aligned}
\operatorname{Det}(B)= & 3 \times \operatorname{Det}\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]-1 \times \operatorname{Det}\left[\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right] \\
& +0 \times \operatorname{Det}\left[\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right] \\
= & 3(-5)-1(2)+0 \\
= & -17 .
\end{aligned}
$$

Note: In the expression for $\operatorname{Det}(B)$, the signs of the successive terms on the right side alternate.

Review of Matrices (continued)

Eigenvalues of a square matrix: If A is an $n \times n$ matrix, the eigenvalues of A are the solutions to the characteristic equation

$$
\operatorname{Det}\left(A-\lambda I_{n}\right)=0
$$

where λ is a variable.

Example: Suppose

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right] .
$$

Note that

$$
\lambda I_{2}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] .
$$

So,

$$
A-\lambda I_{2}=\left[\begin{array}{cc}
1-\lambda & 3 \\
2 & 2-\lambda
\end{array}\right] .
$$

Hence,

$$
\operatorname{Det}\left(A-\lambda I_{2}\right)=(2-\lambda)(1-\lambda)-6=\lambda^{2}-3 \lambda-4
$$

Review of Matrices (continued)

Example (continued):

So, the characteristic equation for A is given by

$$
\lambda^{2}-3 \lambda-4=0
$$

- The solutions to this equation are: $\lambda=4$ and $\lambda=-1$.
- These are the eigenvalues of the matrix A.
- The largest eigenvalue (in this case, $\lambda=4$) is called the principal eigenvalue.
- For each eigenvalue λ of A, there is a 2×1 matrix (vector) x such that $A \mathbf{x}=\lambda \mathbf{x}$. Such a vector is called an eigenvector of the eigenvalue λ. (This vector can be computed efficiently.)
- For the above matrix A, for the principal eigenvalue $\lambda=4$, an eigenvector \mathbf{x} is given by

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Review of Matrices (continued)

Matrices and linear equations:
Example:

$$
\begin{array}{r}
3 x_{1}-2 x_{2}+x_{3}=7 \\
x_{1}-3 x_{2}-2 x_{3}=0 \\
2 x_{1}+3 x_{2}+3 x_{3}=5
\end{array}
$$

Suppose

$$
A=\left[\begin{array}{ccc}
3 & -2 & 1 \\
1 & -3 & -2 \\
2 & 3 & 3
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { and } B=\left[\begin{array}{l}
7 \\
0 \\
5
\end{array}\right] .
$$

Then the above set of equations can be written as

$$
\left[\begin{array}{ccc}
3 & -2 & 1 \\
1 & -3 & -2 \\
2 & 3 & 3
\end{array}\right] *\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
5
\end{array}\right] \text { or } A X=B
$$

