
CSI 445/660 – Part 1

(Graph Theory Basics)

Ref: Chapter 2 of [Easley & Kleinberg].
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Types of Graphs

Undirected and Directed.

b

d

a

f

e

c

Undirected graph:

Example: Friendship
relation among people.

A symmetric relationship.

e

a d

c

b

Directed graph:

Example: Follower
relationship in Twitter.

May not be symmetric.
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Undirected Graphs: Notation and Definitions

Example:

b

d

a

f

e

c

Notation: G (V ,E )

V = {a, b, c, d, e, f} (nodes or vertices)

E = { {a,b}, {a,f}, {b,c}, {c,d}, {c,f}, {d,e}, {e,f} }
(edges)

|V | = No. of nodes = 6 |E | = No. of edges = 7
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Notation and Definitions (continued)

b

d

a

f

e

c

Definition: The degree of a node v is
the number of edges incident on v.

Example: Degree of a = 2, degree of f = 3.

Some observations:

Sum of the degrees of all the nodes
= Degree(a) + Degree(b) + . . . + Degree(f)
= 2 + 2 + 3 + 2 + 2 + 3 = 14 (even)
= 2 × No. of edges.

Nodes with odd degree = {c, f}; thus, the number of nodes
of odd degree is even.
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Notation and Definitions (continued)

Theorem: [First Theorem of Graph Theory]

In any undirected graph, the sum of the degrees of all the
nodes is equal to twice the number of edges.

Corollary: In any undirected graph, the number of nodes of
odd degree is even.

b

d

a

f

e

c

Examples of paths in graph G :

a – f – e – d

a – b – c – f – e – d

There is a path between every pair of nodes.

Graph G is connected.

1–5 / 47



Notation and Definitions (continued)

b

a

d
f

c e Disconnected graph.

Has two connected components.

Evolution of a large social network: Imagine the following
global friendship graph.

One node per person in the world
(No. of nodes ≈ 7.3 billion).

An edge between each pair of friends.

1–6 / 47



Friendship Network Evolution
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Friendship Network Evolution (continued)
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Friendship Network Evolution (continued)
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Friendship Network Evolution (continued)

Components get merged over time.

The graph is likely to contain paths between people in remote
parts of the world.

A large subset of the nodes are in one component, called the
giant component. (This is typical of many social networks
arising in practice.)

An Illustration by Prof. Alistair Sinclair (UC Berkeley):
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Giant Component: Another Example

Collaboration graph at a research center (from [EK]):
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Shortest Paths

b

d

a

f

e

c

Paths between a and e:

a – f – e : Length = 2 (No. of edges)

a – b – c – f – e : Length = 4

There is no path between a and e with length < 2.

So, a – f – e is a shortest path between a and e.

Shortest paths can be found using a procedure called
breadth-first-search (BFS).
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Breadth-First-Search: Example I

b

d

a

f

e

c

b f

c e

d

a

Level 1

Level 2

Level 3

Friends of a

Friends of b or f

Friend of c or e

Observation: Each node is within a distance of 3 from node a.

1–13 / 47



Breadth-First-Search: Example II

b

d

a

f

e

c

f

Level 1

Level 2

a c
e

b d

Observation: Each node is within a distance of 2 from node f.
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Definition of Diameter

b

d

a

f

e

c

Shortest Path Lengths: (Partial list)

Node Shortest
pair Distance

a, b 1

a, c 2

a, d 3
...

...

b, e 3
...

...

e, f 1

Diameter: Maximum among the shortest path lengths.

Diameter of the above graph = 3.
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Some Notes About Diameter

Diameter is meaningful only for connected graphs. (Some
references use ∞ as the diameter of a disconnected graph.)

If a graph is disconnected, one needs to consider the diameter
each connected component.

For a connected graph with n nodes, the diameter is at most
n − 1.

In communication networks, diameter gives an indication of
the worst-case delay for message delivery.

Typically, giant components of social networks have small
diameters (small world phenomenon).
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BFS and Diameter

v

Level 1

Level 2

Level 3

Level r

Observation: For any connected graph, if a BFS produces r
levels, then the diameter of the graph is at most 2r .
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Small World Phenomenon

Example: Erdős Collaboration Network

Paul Erdős (1913 – 1996)

Hungarian Mathematician

Each node is a researcher and edge {x , y} means that
researchers x and y co-authored at least one paper.

Level 0: Node corresponding to Erdős.

Level 1: Nodes corresponding to researchers who
co-authored a paper with Erdős.
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Erdős Collaboration Network (continued)

Level 2: Nodes corresponding to researchers who
co-authored a paper with some researcher in Level 1.

...
...

Level j : Nodes corresponding to researchers who
co-authored a paper with some researcher in Level j − 1.

Erdős Number of a researcher: The level number in the
graph for the node corresponding to the researcher.

Largest known Erdős Number = 8.
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An Example for Erdős Number

Graham

Ullman

Hunt III

Moorthy

Kapur

Rosenkrantz

Ravi

Lovasz

Sundaram

Erdos

Ravi’s Erdős Number ≤ 3.

Erdős Numbers of Teri Harrison, Catherine Dumas and
Dan Lamanna ≤ 4.
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Small World Phenomenon

Stanley Milgram (1933 – 1984)

American Sociologist/Psychologist
(Yale University)

Milgram’s Experiment:

Done during the 1960’s. (Budget: $680)

Chose 296 random starters (in Nebraska and Kansas).

Asked each starter to forward a letter to a
target person in Boston.

Rule: Each person should forwarded the letter to another
person whom they knew on a first name basis (to eventually
reach the target as quickly as possible).
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Milgram’s Experiment (continued)

64 letters eventually reached the destination.

Each letter that reached the destination forms a chain of
people.

Median length of the chain = 6 (“six degrees of
separation”).
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Milgram’s Experiment (continued)

The experiment suggested that social networks exhibit the
small world phenomenon: they contain short paths between
nodes (i.e., they have small diameters).

Kevin Bacon Game popularized the idea.

Milgram’s work was influenced by the work of
Ithiel de Sola Pool and Manfred Kochen.

The “small world” idea also appeared in a short story by the
Hungarian author Frigyes Karinthy in 1929.
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A Recent Large Scale Study

By Eric Horovitz and Jure
Leskovec [2008].

Large social network with ≈
240 million users of Internet
Messenger.

An edge in the graph indicates
that the two users engaged in a
two-way conversation during
the observation period.

The giant component includes
almost all the nodes.

Median path length = 7.
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Generalization – Edge Weights

So far: Distance = No. of edges.

More general situation: Each edge has a non-negative
“weight” (which may represent distance, time, etc.).

Example:

5

2 2

c

3

7

4b

e

a d

Length of path a – b – e =
5 + 4 = 9.

Length of path a – c – d – e =
2 + 2 + 3 = 7.

So path a – c – d – e is shorter
(even though it uses more edges).
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Generalization – Edge Weights (continued)

When all edge weights are 1, we get the previous case
(i.e., unweighted graphs).

Software for obtaining travel directions uses weighted graphs
(constructed from road maps).

With edge weights, BFS cannot be used to find shortest
paths; a more sophisticated algorithm is used.

Diameter can be defined as before (except that shortest paths
are based on edge weights).
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Cycles in graphs

Cycle: A path that starts and ends at the same node.

b

d

a

f

e

c

Cycle 1: a – b – c – f – a.

Cycle 2: c – f – e – d – c.

Acyclic graph: A graph with no cycles.

a

b
c

d

e f

g

h

i

Each connected component
is a tree.

The graph is a forest.
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Standard Way of Displaying Trees

a

b
c

fed

Node a: Root of the tree.

Nodes b, c: Children of the root (siblings).

Nodes d, e, f: Children of node c.

Nodes b, d, e, f: Leaves. (They don’t have any children.)

Note the BFS structure.
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Directed Graphs: Notation and Definitions

Example:

e

a d

c

b

Edges can be traversed only
in the indicated direction.

V = {a, b, c, d, e} (nodes or vertices)

E = { (a,b), (a,c), (b,d), (c,e), (d,c), (e,d) }
(directed edges)

|V | = No. of nodes = 5 |E | = No. of directed edges = 6

Note: Directed edges are indicated as ordered pairs.
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Directed Graphs (continued)

e

a d

c

b

Outdegree of a node v: No. of
edges leaving v.

Indegree of a node v: No. of
edges entering v.

Total Degree of a node v
= Outdegree(v) + Indegree(v).

Example: Indegree of a = 0, Outdegree of a = 2.

Observation: Sum of the outdegrees of all the nodes = Sum of
the indegrees of all the nodes = No. of directed edges.
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Paths and Cycles in Directed Graphs

e

a d

c

b

Directed paths:

a → c → e: Length = 2.

a → b → d → c → e: Length = 4.

There is no directed path from e to a.

Directed cycle: d → c → e → d: Length = 3.
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Connectivity in Directed Graphs

Weakly connected: Undirected graph obtained by erasing all
edge directions is connected.

Strongly connected: There is a directed path from any node to
any other node.

Examples:
e

a d

c

b

Weakly connected but not strongly connected. (There is no
directed path from e to a.)
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Connectivity in Directed Graphs (continued)

a

b

c

zy

x

(i) (ii)

d

Directed graphs (i) and (ii) are both strongly connected.

Simple Facts:

Every strongly connected graph is also weakly connected;
however, a weakly connected graph need not be strongly
connected.

Every strongly connected graph contains a directed cycle.
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Directed Acyclic Graphs

Directed Acyclic Graph (dag): A directed graph without any
directed cycle.

Examples:

a d

c

b

a b

c

d e f

g

h

Note: The dag on the right is a model of the hierarchy in an
organization.
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Directed Acyclic Graphs (continued)

Fact: The nodes of any dag can be arranged along a line so that
each directed edge goes from left to right.

Example:

a d

c

b

a c d b

(i)

(ii)

Such an arrangement of the nodes of a dag is called a
topological sort.

A topological sort of a dag can be constructed efficiently.

1–35 / 47



Representing an Undirected graph as a Directed Graph

a

c db

a

b

c
d

An undirected graph can be thought of as a directed graph by
replacing each undirected edge by a pair of edges in opposite
directions.

Software tools that work only with directed graphs can handle
undirected graphs using this transformation.
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Representing Graphs in a Computer

Visual representation is not useful in developing algorithms.

Two common forms: Adjacency Matrix and
Adjacency List.

Adjacency Matrix for an Undirected Graph:

2 3 4

1
1 2 3 4

1 0 1 1 0

2 1 0 1 0

3 1 1 0 1

4 0 0 1 0

For an undirected graph with n nodes, the adjacency matrix
has n rows and n columns.

The entry in row i and column j is 1 if {i , j} is an edge; the
entry is 0 otherwise.

The matrix is symmetric.
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Representing Graphs ... (continued)

Adjacency Matrix for a Directed Graph:

2 3 4

1
1 2 3 4

1 0 1 0 0

2 0 0 1 0

3 1 0 0 1

4 0 0 0 0

For a directed graph with n nodes, the adjacency matrix has n
rows and n columns.

The entry in row i and column j is 1 if (i , j) is an edge; the
entry is 0 otherwise.

The matrix is not necessarily symmetric.
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Representing Graphs ... (continued)

Remarks on Adjacency Matrix Representation:

For a graph with n nodes, the memory space needed for the
adjacency matrix is n2. (This is not practical for large
graphs.)

For weighted graphs, we can store the weight of each edge in
the adjacency matrix.

Adjacency List Representation:

For each node i , list the nodes to which i has an edge
(in some order).

The size of this representation is linear in the number of
edges of the graph.

Preferred representation for large graphs.
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Representing Graphs ... (continued)

Adjacency List Representation – Undirected Graph:

2 3 4

1 Node 1: 2 3
Node 2: 1 3
Node 3: 1 2 4
Node 4: 3

Adjacency List Representation – Directed Graph:

Note: List stores the outgoing edges for each node.

2 3 4

1 Node 1: 2
Node 2: 3
Node 3: 1 4
Node 4:
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Egocentric Networks

Also called ego networks.

p q

a
b c d

e

Each node is called ego.

Neighbors of a node are its
alters.

Example: With node p as ego, its alters are a, b, c and d.
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Egocentric Networks (continued)

The 1-Degree Egocentric Network of node p:
p

a
b c d

Note: This network consists of p,
the alters of p and edges between
p and its alters.

The 1.5-Degree Egocentric Network of node p:
p

a
b c d

Note: This network is obtained
by adding the edges between the
alters of p in the original graph to
the 1-degree egocentric network
of p.
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Settings that Provide Large Network Data Sets

Manually constructed social networks involving human
interactions are small.

Other settings provide larger data sets representing
interactions (which are not necessarily through direct contact).

A. Collaboration Networks: (“Who Works With Whom”)

Co-authorship networks
Rich form of interaction over a long period of time (suitable
for longitudinal studies).

Nodes with high degrees likely to represent influential
scientists.

Co-appearance in movies

Co-membership in Board of Directors of large
companies: used to explain business decisions made by
companies.
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Settings that Provide ... (continued)

B. Networks from Communication Among People:
(“Who Talks to Whom”)

Internet Messenger example [Horovitz & Leskovec, 2008]
discussed earlier.

Email logs within a company: The most famous example is
the Enron data set.

Call graphs constructed from phone numbers: Privacy of
individuals must be protected.
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Settings that Provide ... (continued)

C. Information Linkage Graphs:

Web data:

Directed graph with nearly 5 billion nodes.

Extremely large for effective processing using commodity
hardware.

Researchers work with reasonable subsets (e.g. linkage among
bloggers, linkage among articles of Wikipedia).

Citation networks:

Useful in tracking the development of disciplines (e.g.
identifying “central papers” of a discipline).

Also useful for longitudinal studies.
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Settings that Provide ... (continued)

D. Technological Networks:

Computer networks

Power grid

E. Networks in the Natural World:

(a) Food Web (“Who Eats Whom” relationship):

a d

c

b

Directed edge x → y indicates that
species x eats species y .

Important in studying cascading
extinction of species.
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Settings that Provide ... (continued)

(b) Neural connections in the brain:

Nodes are neurons.

The interconnections among the neurons determines cognitive
behavior.

(c) Biological networks:

Nodes are chemical compounds that play a role the metabolic
process.

Edges represent chemical interactions.

Study of such networks has applications in medicine (e.g.
blocking certain interactions may help in curing certain
diseases).
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