CSI 445/660 - Part 1 (Graph Theory Basics)

Ref: Chapter 2 of [Easley \& Kleinberg].

Types of Graphs

■ Undirected and Directed.

Undirected graph:

■ Example: Friendship relation among people.

■ A symmetric relationship.

Directed graph:

■ Example: Follower relationship in Twitter.

- May not be symmetric.

Undirected Graphs: Notation and Definitions

Example:

Notation: $G(V, E)$

$$
\begin{aligned}
V= & \{a, b, c, d, e, f\} \quad \text { (nodes or vertices) } \\
E= & \{\{a, b\},\{a, f\},\{b, c\},\{c, d\},\{c, f\},\{d, e\},\{e, f\}\} \\
& (\text { edges })
\end{aligned}
$$

$|V|=$ No. of nodes $=6 \quad|E|=$ No. of edges $=7$

Notation and Definitions (continued)

Definition: The degree of a node v is the number of edges incident on v.

Example: Degree of $a=2$, degree of $f=3$.
Some observations:

- Sum of the degrees of all the nodes

$$
\begin{aligned}
& =\text { Degree }(\mathrm{a})+\text { Degree }(\mathrm{b})+\ldots+\text { Degree(} \mathrm{f}) \\
& =2+2+3+2+2+3=14(\text { even }) \\
& =2 \times \text { No. of edges. }
\end{aligned}
$$

$■$ Nodes with odd degree $=\{c, f\}$; thus, the number of nodes of odd degree is even.

Notation and Definitions (continued)

Theorem: [First Theorem of Graph Theory]

In any undirected graph, the sum of the degrees of all the nodes is equal to twice the number of edges.

Corollary: In any undirected graph, the number of nodes of odd degree is even.

Examples of paths in graph G :

- $a-f-e-d$

■ $\mathbf{a}-\mathrm{b}-\mathrm{c}-\mathrm{f}-\mathrm{e}-\mathrm{d}$

- There is a path between every pair of nodes.
- Graph G is connected.

Notation and Definitions (continued)

- Disconnected graph.

■ Has two connected components.

Evolution of a large social network: Imagine the following global friendship graph.

- One node per person in the world (No. of nodes ≈ 7.3 billion).
- An edge between each pair of friends.

Friendship Network Evolution

Friendship Network Evolution (continued)

Friendship Network Evolution (continued)

Friendship Network Evolution (continued)

- Components get merged over time.
- The graph is likely to contain paths between people in remote parts of the world.
- A large subset of the nodes are in one component, called the giant component. (This is typical of many social networks arising in practice.)

An Illustration by Prof. Alistair Sinclair (UC Berkeley):

Giant Component: Another Example

Collaboration graph at a research center (from [EK]):

Shortest Paths

Paths between a and e:
■ $\mathbf{a}-\mathbf{f}-\mathbf{e}$: Length $=2$ (No. of edges)
■ $\mathbf{a}-\mathbf{b}-\mathbf{c}-\mathbf{f}-\mathbf{e}:$ Length $=4$

- There is no path between a and e with length <2.

■ So, $\mathbf{a}-\mathbf{f}-\mathbf{e}$ is a shortest path between a and e.
■ Shortest paths can be found using a procedure called breadth-first-search (BFS).

Breadth-First-Search: Example I

Observation: Each node is within a distance of 3 from node a.

Breadth-First-Search: Example II

Observation: Each node is within a distance of 2 from node f .

Definition of Diameter

Shortest Path Lengths: (Partial list)

Node pair	Shortest Distance
a, b	1
a, c	2
a, d	3
\vdots	\vdots
$\mathrm{~b}, \mathrm{e}$	3
\vdots	\vdots
e, f	1

■ Diameter: Maximum among the shortest path lengths.

- Diameter of the above graph $=3$.

Some Notes About Diameter

- Diameter is meaningful only for connected graphs. (Some references use ∞ as the diameter of a disconnected graph.)
- If a graph is disconnected, one needs to consider the diameter each connected component.
- For a connected graph with n nodes, the diameter is at most $n-1$.
- In communication networks, diameter gives an indication of the worst-case delay for message delivery.
- Typically, giant components of social networks have small diameters (small world phenomenon).

BFS and Diameter

Observation: For any connected graph, if a BFS produces r levels, then the diameter of the graph is at most $2 r$.

Small World Phenomenon

Example: Erdős Collaboration Network

- Paul Erdős (1913 - 1996)
- Hungarian Mathematician
- Each node is a researcher and edge $\{x, y\}$ means that researchers x and y co-authored at least one paper.

■ Level 0: Node corresponding to Erdős.
■ Level 1: Nodes corresponding to researchers who co-authored a paper with Erdős.

Erdős Collaboration Network (continued)

■ Level 2: Nodes corresponding to researchers who co-authored a paper with some researcher in Level 1.

■ Level j : Nodes corresponding to researchers who co-authored a paper with some researcher in Level $j-1$.

- Erdős Number of a researcher: The level number in the graph for the node corresponding to the researcher.

Largest known Erdős Number $=8$.

An Example for Erdős Number

- Ravi's Erdős Number ≤ 3.
- Erdős Numbers of Teri Harrison, Catherine Dumas and Dan Lamanna ≤ 4.

Small World Phenomenon

- Stanley Milgram (1933 - 1984)
- American Sociologist/Psychologist (Yale University)

Milgram's Experiment:

- Done during the 1960's. (Budget: \$680)
- Chose 296 random starters (in Nebraska and Kansas).
- Asked each starter to forward a letter to a target person in Boston.
- Rule: Each person should forwarded the letter to another person whom they knew on a first name basis (to eventually reach the target as quickly as possible).

Milgram's Experiment (continued)

- 64 letters eventually reached the destination.
- Each letter that reached the destination forms a chain of people.
- Median length of the chain $=6$ ("six degrees of separation").

Milgram's Experiment (continued)

■ The experiment suggested that social networks exhibit the small world phenomenon: they contain short paths between nodes (i.e., they have small diameters).

- Kevin Bacon Game popularized the idea.
- Milgram's work was influenced by the work of Ithiel de Sola Pool and Manfred Kochen.
- The "small world" idea also appeared in a short story by the Hungarian author Frigyes Karinthy in 1929.

A Recent Large Scale Study

- By Eric Horovitz and Jure Leskovec [2008].
- Large social network with \approx 240 million users of Internet Messenger.
- An edge in the graph indicates that the two users engaged in a two-way conversation during the observation period.

- The giant component includes almost all the nodes.

■ Median path length $=7$.

Generalization - Edge Weights

- So far: Distance $=$ No. of edges.

■ More general situation: Each edge has a non-negative "weight" (which may represent distance, time, etc.).

Example:

- Length of path $\mathbf{a}-\mathbf{b}-\mathbf{e}=$ $5+4=9$.

■ Length of path a - c - d - e= $2+2+3=7$.

■ So path a-c-d-e is shorter (even though it uses more edges).

Generalization - Edge Weights (continued)

■ When all edge weights are 1 , we get the previous case (i.e., unweighted graphs).

- Software for obtaining travel directions uses weighted graphs (constructed from road maps).
- With edge weights, BFS cannot be used to find shortest paths; a more sophisticated algorithm is used.
- Diameter can be defined as before (except that shortest paths are based on edge weights).

Cycles in graphs

Cycle: A path that starts and ends at the same node.

■ Cycle 1: $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{f}-\mathrm{a}$.
■ Cycle 2: $\mathrm{c}-\mathrm{f}-\mathrm{e}-\mathrm{d}-\mathrm{c}$.

Acyclic graph: A graph with no cycles.

- Each connected component is a tree.
- The graph is a forest.

Standard Way of Displaying Trees

- Node a: Root of the tree.
- Nodes b, c: Children of the root (siblings).

■ Nodes d, e, f: Children of node c.
■ Nodes b, d, e, f: Leaves. (They don't have any children.)

- Note the BFS structure.

Directed Graphs: Notation and Definitions

Example:

■ Edges can be traversed only in the indicated direction.

$$
\begin{aligned}
& V=\{a, b, c, d, e\} \quad \text { (nodes or vertices) } \\
& E=\{(a, b),(a, c),(b, d),(c, e),(d, c),(e, d)\}
\end{aligned}
$$

(directed edges)
$|V|=$ No. of nodes $=5 \quad|E|=$ No. of directed edges $=6$
Note: Directed edges are indicated as ordered pairs.

Directed Graphs (continued)

■ Outdegree of a node v: No. of edges leaving v .

■ Indegree of a node v : No. of edges entering v .

- Total Degree of a node v $=$ Outdegree(v) + Indegree(v).

Example: Indegree of $a=0$, Outdegree of $a=2$.
Observation: Sum of the outdegrees of all the nodes $=$ Sum of the indegrees of all the nodes $=$ No. of directed edges.

Paths and Cycles in Directed Graphs

Directed paths:
■ $\mathbf{a} \rightarrow \mathbf{c} \rightarrow \mathbf{e}:$ Length $=2$.
$■ \mathbf{a} \rightarrow \mathbf{b} \rightarrow \mathbf{d} \rightarrow \mathbf{c} \rightarrow \mathbf{e}:$ Length $=4$.

- There is no directed path from e to a.

Directed cycle: $\mathbf{d} \rightarrow \mathbf{c} \rightarrow \mathbf{e} \rightarrow \mathbf{d}$: Length $=3$.

Connectivity in Directed Graphs

Weakly connected: Undirected graph obtained by erasing all edge directions is connected.

Strongly connected: There is a directed path from any node to any other node.

Examples:

■ Weakly connected but not strongly connected. (There is no directed path from e to a.)

Connectivity in Directed Graphs (continued)

(i)

(ii)

■ Directed graphs (i) and (ii) are both strongly connected.

Simple Facts:

- Every strongly connected graph is also weakly connected; however, a weakly connected graph need not be strongly connected.
- Every strongly connected graph contains a directed cycle.

Directed Acyclic Graphs

Directed Acyclic Graph (dag): A directed graph without any directed cycle.

Examples:

Note: The dag on the right is a model of the hierarchy in an organization.

Directed Acyclic Graphs (continued)

Fact: The nodes of any dag can be arranged along a line so that each directed edge goes from left to right.

Example:

(ii)
(i)

■ Such an arrangement of the nodes of a dag is called a topological sort.

- A topological sort of a dag can be constructed efficiently.

Representing an Undirected graph as a Directed Graph

- An undirected graph can be thought of as a directed graph by replacing each undirected edge by a pair of edges in opposite directions.
- Software tools that work only with directed graphs can handle undirected graphs using this transformation.

Representing Graphs in a Computer

■ Visual representation is not useful in developing algorithms.

- Two common forms: Adjacency Matrix and Adjacency List.

Adjacency Matrix for an Undirected Graph:

			1	2	3	4
			1	0	1	1

- For an undirected graph with n nodes, the adjacency matrix has n rows and n columns.
- The entry in row i and column j is 1 if $\{i, j\}$ is an edge; the entry is 0 otherwise.
- The matrix is symmetric.

Representing Graphs ... (continued)

Adjacency Matrix for a Directed Graph:

	1	2	3	4
1	0	1	0	0
2	0	0	1	0
3	1	0	0	1
4	0	0	0	0

- For a directed graph with n nodes, the adjacency matrix has n rows and n columns.
- The entry in row i and column j is 1 if (i, j) is an edge; the entry is 0 otherwise.
- The matrix is not necessarily symmetric.

Representing Graphs ... (continued)

Remarks on Adjacency Matrix Representation:

- For a graph with n nodes, the memory space needed for the adjacency matrix is n^{2}. (This is not practical for large graphs.)

■ For weighted graphs, we can store the weight of each edge in the adjacency matrix.

Adjacency List Representation:

- For each node i, list the nodes to which i has an edge (in some order).
- The size of this representation is linear in the number of edges of the graph.
- Preferred representation for large graphs.

Representing Graphs ... (continued)

Adjacency List Representation - Undirected Graph:

Node 1: 23
Node 2: 13
Node 3: 124
Node 4: 3

Adjacency List Representation - Directed Graph:
Note: List stores the outgoing edges for each node.

Node 1: 2
Node 2: 3
Node 3: 14
Node 4:

Egocentric Networks

- Also called ego networks.

- Each node is called ego.
- Neighbors of a node are its alters.

Example: With node p as ego, its alters are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

Egocentric Networks (continued)

The 1-Degree Egocentric Network of node p:

Note: This network consists of p, the alters of p and edges between p and its alters.

The 1.5-Degree Egocentric Network of node p:

Note: This network is obtained by adding the edges between the alters of p in the original graph to the 1-degree egocentric network of p.

Settings that Provide Large Network Data Sets

- Manually constructed social networks involving human interactions are small.
- Other settings provide larger data sets representing interactions (which are not necessarily through direct contact).
A. Collaboration Networks: ("Who Works With Whom")
- Co-authorship networks
- Rich form of interaction over a long period of time (suitable for longitudinal studies).
- Nodes with high degrees likely to represent influential scientists.
- Co-appearance in movies
- Co-membership in Board of Directors of large companies: used to explain business decisions made by companies.

Settings that Provide ... (continued)

B. Networks from Communication Among People: ("Who Talks to Whom")

- Internet Messenger example [Horovitz \& Leskovec, 2008] discussed earlier.
- Email logs within a company: The most famous example is the Enron data set.

■ Call graphs constructed from phone numbers: Privacy of individuals must be protected.

Settings that Provide ... (continued)

C. Information Linkage Graphs:

- Web data:
- Directed graph with nearly 5 billion nodes.
- Extremely large for effective processing using commodity hardware.
- Researchers work with reasonable subsets (e.g. linkage among bloggers, linkage among articles of Wikipedia).
- Citation networks:
- Useful in tracking the development of disciplines (e.g. identifying "central papers" of a discipline).
- Also useful for longitudinal studies.

Settings that Provide ... (continued)

D. Technological Networks:

- Computer networks
- Power grid
E. Networks in the Natural World:
- (a) Food Web ("Who Eats Whom" relationship):

- Directed edge $x \rightarrow y$ indicates that species x eats species y.
- Important in studying cascading extinction of species.

Settings that Provide ... (continued)

- (b) Neural connections in the brain:
- Nodes are neurons.
- The interconnections among the neurons determines cognitive behavior.
- (c) Biological networks:
- Nodes are chemical compounds that play a role the metabolic process.
- Edges represent chemical interactions.
- Study of such networks has applications in medicine (e.g. blocking certain interactions may help in curing certain diseases).

