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In recent years, researchers have investigated a growing number of weighted networks where ties are
differentiated according to their strength or capacity. Yet, most network measures do not take weights
into consideration, and thus do not fully capture the richness of the information contained in the data.
In this paper, we focus on a measure originally defined for unweighted networks: the global clustering
coefficient. We propose a generalization of this coefficient that retains the information encoded in the
weights of ties. We then undertake a comparative assessment by applying the standard and generalized

of net
coefficients to a number

. Introduction

While a substantial body of recent research has investigated the
opological features of a variety of networks (Barabási et al., 2002;
ngram and Roberts, 2000; Kossinets and Watts, 2006; Uzzi and
piro, 2005; Watts and Strogatz, 1998), relatively little work has
een conducted that moves beyond merely topological measures
o take explicitly into account the heterogeneity of ties (or edges)
onnecting nodes (or vertices) (Barrat et al., 2004). In a number
f real-world networks, ties are often associated with weights that
ifferentiate them in terms of their strength, intensity or capacity
Barrat et al., 2004; Wasserman and Faust, 1994). On the one hand,
ranovetter (1973) argued that the strength of social relationships

n social networks is a function of their duration, emotional inten-
ity, intimacy, and exchange of services. On the other, for non-social
etworks, weights often refer to the function performed by ties,
.g., the carbon flow (mg/m2/day) between species in food webs
Luczkowich et al., 2003; Nordlund, 2007), the number of synapses
nd gap junctions in neural networks (Watts and Strogatz, 1998), or
he amount of traffic flowing along connections in transportation
etworks (Barrat et al., 2004). In order to fully capture the richness
f the data, it is therefore crucial that the measures used to study a
etwork incorporate the weights of the ties.

A measure that has long received much attention in both the-
retical and empirical research is concerned with the degree to

hich nodes tend to cluster together. Evidence suggests that in most

eal-world networks, and especially social networks, nodes tend to
luster into densely connected groups (Feld, 1981; Friedkin, 1984;
olland and Leinhardt, 1970; Louch, 2000; Simmel, 1923; Snijders,

∗ Corresponding author. Tel.: +44 20 7882 6984; fax: +44 20 7882 3615.
E-mail addresses: t.opsahl@qmul.ac.uk (T. Opsahl), p.panzarasa@qmul.ac.uk
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work datasets.
© 2009 Elsevier B.V. All rights reserved.

2001; Snijders et al., 2006; Watts and Strogatz, 1998). In partic-
ular, the problem of network clustering can be investigated from
a two-fold perspective. On the one hand, it involves determining
whether and to what extent clustering is a property of a network
or, alternatively, whether nodes tend to be members of tightly knit
groups (Luce and Perry, 1949). On the other, it is concerned with
the identification of the groups of nodes into which a network can
be partitioned. This can be obtained, for example, by applying algo-
rithms for community detection that assess and compare densities
within and between groups (Newman, 2006; Newman and Girvan,
2004; Rosvall and Bergstrom, 2008), or by using the image matrix
in blockmodeling for grouping nodes with the same or similar pat-
terns of ties and uncovering connections between groups of nodes
(Doreian et al., 2005).

In this paper, we focus our attention only on the problem of
determining whether clustering is a property of a network. More
specifically, to address this problem one may ask: If there are three
nodes in a network, i, j, and k, and i is connected to j and k, how
likely is it that j and k are also connected with each other? In real-
world networks, empirical studies have shown that this likelihood
tends to be greater than the probability of a tie randomly estab-
lished between two nodes (Barabási et al., 2002; Davis et al., 2003;
Ebel et al., 2002; Holme et al., 2004; Ingram and Roberts, 2000;
Newman, 2001; Uzzi and Spiro, 2005; Watts and Strogatz, 1998). For
social networks, scholars have investigated the mechanisms that
are responsible for the increase in the probability that two people
will be connected if they share a common acquaintance (Holland
and Leinhardt, 1971; Simmel, 1923; Snijders, 2001; Snijders et al.,
2006). The nature of these mechanisms can be cognitive, as in the

case of individuals’ desire to maintain balance among ties with oth-
ers (Hallinan, 1974; Heider, 1946), social, as in the case of third-part
referral (Davis, 1970), or can be explained in other ways, such as in
terms of focus constraints (Feld, 1981; Kossinets and Watts, 2006;
Louch, 2000; Monge et al., 1985) or the differing popularity among

http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:t.opsahl@qmul.ac.uk
mailto:p.panzarasa@qmul.ac.uk
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ndividuals (Feld and Elmore, 1982a, b). While clustering is likely to
esult from a combination of all these mechanisms, network stud-
es have offered no conclusive theoretical explanation of its causes,
or have they concentrated as much on its underpinning processes
s on the measures to formally detect its presence in real-world
etworks (Levine and Kurzban, 2006).

Traditionally, the two main measures developed for testing the
endency of nodes to cluster together into tightly knit groups are the
ocal clustering coefficient (Watts and Strogatz, 1998) and the global
lustering coefficient (Feld, 1981; Karlberg, 1997, 1999; Louch,
000; Newman, 2003). The local clustering coefficient is based on
go’s network density or local density (Scott, 2000; Wasserman and
aust, 1994). For node i, this is measured as the fraction of the num-
er of ties connecting i’s neighbors over the total number of possible
ies between i’s neighbors. To create an overall local coefficient for
he whole network, the individual fractions are averaged across all
odes.

Despite its ability to capture the degree of social embeddedness
hat characterizes the nodes of a network, nonetheless the local
lustering coefficient suffers from a number of limitations. First,
n its original formulation, it does not take into consideration the

eights of the ties in the network. As a result, the same value of
he coefficient might be attributed to networks that share the same
opology but differ in terms of how weights are distributed across
ies and, as a result, may be characterized by different likelihoods
o befriend the friends of one’s friends. Second, the local clustering
oefficient does not take into consideration the directionality of
he ties connecting a node to its neighbors (Wasserman and Faust,
994).1 Recently, there have been a number of attempts to extend
he local clustering coefficient to the case of weighted networks
Barrat et al., 2004; Lopez-Fernandez et al., 2004; Onnela et al.,
005; Zhang and Horvath, 2005). However, the issue of directional-

ty still remains mainly unresolved (Caldarelli, 2007), thus making
he coefficient suitable primarily for undirected networks.

Moreover, the local clustering coefficient, even in its weighted
ersion, is biased by correlations with nodes’ degrees: a node with
ore neighbors is likely to be embedded in relatively fewer closed

riplets, and therefore to have a smaller local clustering than a node
onnected to fewer neighbors (Ravasz and Barabási, 2003; Ravasz et
l., 2002). An additional bias might stem from degree–degree cor-
elations. When nodes preferentially connect to others with similar
egree, local clustering is positively correlated with nodes’ degree
Ravasz and Barabási, 2003; Ravasz et al., 2002; Soffer and Vàzquez,
005). Lack of comparability between values of clustering of nodes
ith different degrees thus makes the average value of local clus-

ering sensitive with respect to how degrees are distributed across
he whole network.

Unlike the local clustering coefficient, the global clustering coef-
cient is based on transitivity, which is a measure used to detect the

raction of triplets that are closed in directed networks (Wasserman
nd Faust, 1994, p. 243). It is not an average of individual frac-
ions calculated for each node, and, as a result, it does not suffer
rom the same type of correlations with nodes’ degrees as the
ocal coefficient. Despite its merits, however, in its original formu-
ation, the global coefficient applies only to networks where ties
re unweighted. To address this limitation, and make the coeffi-
ient suitable also to networks where ties are weighted, researchers

ave typically introduced an arbitrary cut-off level of the weight,
nd then dichotomized the network by removing ties with weights
hat are below the cut-off, and then setting the weights of the
emaining ties equal to one (Doreian, 1969; Wasserman and Faust,

1 Node i’s neighbor might be: (1) a node that has directed a tie toward i; (2) a node
o which i has directed a tie; or (3) a node that has directed a tie toward i and, at the
ame time, has received a tie from i.
tworks 31 (2009) 155–163

1994). The outcome of this procedure is a binary network consist-
ing of ties that are either present (i.e., equal to 1) or absent (i.e.,
equal to 0) (Scott, 2000; Wasserman and Faust, 1994). For example,
Doreian (1969) studied clustering in a weighted network by creat-
ing a series of binary networks from the original weighted network
using different cut-offs. To address potential problems arising from
the subjectivity inherent in the choice of the cut-off, a sensitivity
analysis was conducted to assess the degree to which the value
of clustering varies depending on the cut-off (Doreian, 1969). How-
ever, this analysis tells us little about the original weighted network,
apart from the fact that the value of clustering changes at different
levels of the cut-off.

In this paper, we focus on the global clustering coefficient, and
propose a generalization that explicitly takes weights of ties into
consideration and, for this reason, does not depend on a cut-off to
dichotomize weighted networks. In what follows, we start by dis-
cussing the existing literature on the global clustering coefficient in
undirected and unweighted networks. In Section 3, we propose our
generalized measure of clustering. We then turn our attention to
directed networks, and discuss the current literature on clustering
in those networks. We extend our generalized measure of clustering
to cover weighted and directed networks. In Section 5, we empiri-
cally test our proposed measure, and compare it with the standard
one, by using a number of weighted network datasets. Finally, in
Section 6 we summarize and discuss the main results.

2. Clustering coefficient

The global clustering coefficient is concerned with the density of
triplets of nodes in a network. A triplet can be defined as three nodes
that are connected by either two (open triplet) or three (closed
triplet) ties. A triangle consists of three closed triplets, each cen-
tered on one node. The global clustering coefficient is defined as
the number of closed triplets (or 3× triangles) over the total num-
ber of triplets (both open and closed). The first attempt to measure
the coefficient was made by Luce and Perry (1949). For an undi-
rected network, they showed that the total number of triplets could
be found by summing the non-diagonal cells of a squared binary
matrix. The number of closed triplets could be found by summing
the diagonal of a cubed matrix. For clarity, we will refer to the global
clustering coefficient as the standard clustering coefficient C:

C = 3 × number of triangles
number of triples

=
∑

��∑
�

(1)

where
∑

� is the total number of triplets and
∑

�� is the sub-
set of these triplets that are closed as a result of the addition of a
third tie. The coefficient takes values between 0 and 1. In a com-
pletely connected network, C = 1 as all triplets are closed, whereas
in a classical random network C → 0 as the network size grows.
More specifically, in a classical random network, the probabilities
that pairs of nodes have of being connected are, by definition, inde-
pendent (Erdős and Rényi, 1959; Solomonoff and Rapoport, 1951).
Therefore, C is equal to the probability of a tie in these networks
(Newman, 2003).

A major limitation of the clustering coefficient is that it cannot
be applied to weighted networks. As a result, the same outcome
might be attributed to networks that differ in terms of distribu-
tion of weights and that, for this reason, might be characterized
by different likelihoods of one’s neighbors being connected with
each other. This limitation could therefore bias the analysis of the

network structure. In order to overcome this shortcoming, in the
following section we will propose a generalization of the cluster-
ing coefficient that explicitly captures the richness of the weights
attached to ties, while at the same time it produces the same results
as the standard clustering coefficient when ties are unweighted.
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Table 1
Methods for calculating the triplet value, ω.

Triplet value ω of

Method

Arithmetic mean (2 + 2)/2 = 2 (1 + 3)/2 = 2
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form the triangle have higher weights than the average tie weight
in the network, whereas the reverse is true in network b.

Both networks have the same clustering coefficient CGT0 when
they are transformed by setting ties with weights greater than 0 to

2 These findings are based on ensembles of classical random networks with 50,
100, 200, 400, 800, and 1600 nodes and an average degree of 10. Each ensemble
contains 1000 realizations. The four methods for defining triplet values did not lead
eometric mean
√

2 × 2 = 2
√

1 × 3 = 1.73
aximum max(2, 2) = 2 max(1, 3) = 3
inimum min(2, 2) = 2 min(1, 3) = 1

. Generalized clustering coefficient

We can generalize the clustering coefficient, C, to take weights
f ties into consideration, by rewriting Eq. (1) in terms of a triplet
alue, ω. To this end, it is vital to choose an appropriate method
or defining the triplet value as this impacts on the value of the
oefficient. The method should be chosen based on the research
uestion, and should reflect the way in which the weights of ties
re defined. First, the triplet value, ω, can be defined as the arith-
etic mean of the weights of the ties that make up the triplet. This is

he simplest method of calculating the triplet value. However, this
ethod does not take into account differences between weights,

nd is not robust against extreme values of weights. Second, ω can
e defined as the geometric mean of the weights of ties. This method
vercomes some of the sensitivity issues of the arithmetic mean. A
riplet made up of a tie with a low weight value and a tie with a high
eight value will have a lower value when the geometric mean is
sed than would be the case if the arithmetic mean were used.
hird, ω can be defined as the maximum or minimum value of the
eights of the ties. These two methods, however, represent extreme

nes. On the one hand, using the maximum weight makes ω insen-
itive with respect to small weights. As a result, two triplets, one
ith a strong tie and a weak tie and the other with two strong ties,
ay well be assigned the same value. Conversely, using the min-

mum weight makes ω insensitive with respect to large values of
eights. In this case, two triplets, one consisting of a strong tie and
eak tie and the other of two weak ties may well be assigned the

ame value. The advantages and shortcomings of each of these four
ethods should be evaluated based on the type of network dataset

t hand. For example, in a network where the weights corresponds
o the level of flow, and a weak tie would act as a bottleneck, the

inimum method might be most appropriate to use. By contrast,
hen ties are weighted in terms of costs or time, it may be more

uitable to apply the maximum method so as not to underestimate
he values of triplets. Table 1 highlights the differences between the

ethods for defining triplet values. We will explore them further
t the end of Section 5.

Formally, we propose to generalize the clustering coefficient as
ollows:

ω = total value of closed triplets
total value of triplets

=

∑

��

ω

∑

�

ω
(2)

The generalized clustering coefficient produces the same result
s the standard version C when it is applied to a binary network.

his is because all triplets have the same value (ω = 1), irrespec-
ive of the method used to calculate triplet values. In addition, the
eneralized coefficient has the same properties as C. It still ranges
etween 0 and 1 because neither numerator nor denominator of the
raction can be negative. Moreover, all weights that are part of the
Fig. 1. Two weighted networks: (a) network where stronger triplets are closed and
(b) network where weaker triplets are closed.

numerator are also part of the denominator. In a completely con-
nected network, all triplets are closed as the third tie will always be
present (e.g., between node j and node k in Table 1). Therefore, the
same triplets are part of both the numerator and denominator, and
thus Cω = (1/1) = 1. To test whether Cω → 0 as the size of a classical
random network increases or, more specifically, whether Cω equals
the probability that two randomly chosen nodes are connected with
each other, we created a set of networks of different size, but with
a fixed average degree. Since classical random networks are binary,
we assigned to each tie a random weight between 1 and 10 to create
weighted random networks. We applied the generalized clustering
coefficient to these networks, and found that Cω → 0 as the net-
work size increases. In particular, we found that Cω is very close to
the probability of a tie in classical random networks.2 Furthermore,
to assess sensitivity with respect to weights, we tested the gener-
alized clustering coefficient on networks where the structure was
kept invariant, but where the weights were randomly assigned to
the ties. We found Cω ≈ CGT0, where CGT0 is C calculated on networks
dichotomized by setting equal to 1 all weights that are greater than
0.3

In this paper, we assume that weights can take on only positive
values. Moreover, we will use the absolute values of weights with-
out normalizing them (e.g., by dividing them by their maximum or
average) as this would have no effect on the results of our analysis.
This is due to the fact that in Eq. (2) the total value of closed triplets is
divided by the total value of all triplets. In addition, our generalizied
clustering coefficient is applicable primarily to networks in which
weights are measured on a ratio scale. When weights are measured
on an ordinal scale (e.g., in social networks where weights repre-
sent the ranks of different levels of friendship), special care should
be taken when assessing the value of the coefficient, because the
same differences between weights may not have the same mean-
ing. In this case, it would be advisable to transform the ordinal scale
into a ratio scale.

To illustrate the applicability of the generalized clustering coef-
ficient, Fig. 1 shows two sample networks, each with six nodes and
six weighted ties. In network a, the ties between the nodes that
to significantly different results.
3 This finding is based on the empirical networks presented in Section 5. For each

network, we reshuffled the weights among the ties (1000 realizations), and found
that Cω was not statistically significantly different from CGT0. CGT0 was calculated on
networks where all tie weights with positive values were set to present, i.e., equal
to 1.
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We now test the proposed generalization of clustering on a
number of network datasets. We also compare the generalized coef-
ficient with the standard one measured with different cut-offs.5

Table 3 summarizes the empirical results.

4 These findings are based on ensembles of classical random networks with 50,
100, 200, 400, 800, and 1600 nodes and an average degree of 10. Each ensemble
contains 1000 realizations. The four methods for defining triplet value were not
significantly different.

5 For the standard clustering coefficient, the networks are dichotomized with dif-
ferent values X of the cut-off. More specifically, CGTX refers to Eq. (1) where ties with
58 T. Opsahl, P. Panzarasa / Soc

resent:

GT0 = 3 × 1
9

= 0.33 (3)

However, if, for example, the two sample networks represented
ocial networks in which ties refer to friendship between individu-
ls, we believe that it would not be accurate to claim that both these
etworks show the same tendency of one’s friends to be friends
hemselves. Being friends refers to a social relationship that can
e assessed by using the same criteria (duration, emotional inten-
ity, intimacy, and exchange of services) that Granovetter (1973)
roposed for classifying tie weights. The generalized clustering
oefficient helps highlight the difference between the two sam-
le networks. More specifically, for networks a and b in Fig. 1, the
eneralized clustering coefficients obtained by using the geometric
ean method (gm) for defining triplet values are, respectively:

ω,gm = 0.44 (4a)

ω,gm = 0.23 (4b)

The difference in values stems from the fact that the general-
zed clustering coefficient captures more information than CGT0. In
articular, the difference between (4a) and (4b) reflects the differ-
nces in tie weights in the two sample networks. If, for example,
he tie weights in the sample networks were to represent duration,
e might reasonably argue that the nodes in network a are invest-

ng more time on interactions with other nodes that are themselves
onnected than is the case with network b.

Following Barrat et al. (2004), in our proposed generalization of
he clustering coefficient we do not take into account the weight of
he closing tie of a triplet. This is because the aim of the clustering
oefficient is to assess the likelihood of the occurrence of a tie that
loses a triplet, and not the strength of this tie. A triplet must be
reated prior to the closing tie. In other words, as networks evolve
ver time by the creation and removal of ties, clustering occurs
hen a triplet exists, and a newly created third tie closes the triplet.
evertheless, when we observe a triangle in a cross-sectional net-
ork dataset, we do not know which of the three triplets that
ake up the triangle occurred in the first place. In effect, this
eans that the weight of the closing tie of a triplet is taken into

ccount since it is part of the values of the other two triplets in the
riangle.

. Directed networks

In directed networks, connections between nodes are described
s ties that originate from one node and point toward another
Wasserman and Faust, 1994). The weight of a tie directed from
ode i to node j is expressed as xij . In a binary network, the weight
f a present tie is set equal to 1, whereas the weight of an absent
ie is 0. We define the triplet consisting of the two directed ties, xji

nd xik, as �ji,ik, and the value of this triplet as ωji,ik.
The standard clustering coefficient as stated in Eq. (1) cannot be

pplied to directed data. A more refined measure to calculate clo-
ure in directed networks is called transitivity, T (for a review, see

asserman and Faust, 1994, p. 243). Transitivity produces the same
esults as the standard clustering coefficient if applied to an undi-
ected network (Feld, 1981; Newman, 2003). It also shares the same
roperties. In fact, 0 ≤ T ≤ 1: in a completely connected network,
e have: T = 1; in a classical random network, T → 0 as the net-
ork size grows. T takes the direction of the ties between nodes into
onsideration by using a more sophisticated definition of a triplet.
triplet � centered on node i must have one incoming and one out-

oing tie, i.e., xki = xij = 1 or xji = xik = 1, as shown by the solid lines
n Fig. 2. Wasserman and Faust (1994) termed triplets that do not
ulfill the above condition as vacuous. These triplets are not part
Fig. 2. Non-vacuous triplets centered around node i.

of the numerator nor of the denominator of the fraction in Eq. (1).
More specifically, when we are dealing with directed data, there can
be four basic configurations of a triplet around an individual node
i: �ij,ik, �ij,ki, �ji,ik, and �ji,ki. The configurations �ji,ki and �ij,ik form,
respectively, an in- and out-star, and therefore are vacuous and not
part of the fraction in Eq. (1). Conversely, the configurations �ij,ki

and �ji,ik are non-vacuous. These triplets can be either transitive or
intransitive.

Triplets defined according to Wasserman and Faust (1994) form
chains of nodes. These triplets have been termed 2-path as they
form chains of two directed ties between three nodes (Luce and
Perry, 1949). A triplet is transitive if a tie is present from the first
node to the last node of the chain. For the two triplets shown in
Fig. 2, transitivity would imply xkj = 1 and xjk = 1, respectively.

Transitivity suffers from the same limitation as the standard
clustering coefficient in that it cannot be applied to networks where
the ties are weighted. To overcome this shortcoming, here we
extend our proposed generalization also to directed and weighted
networks by using the same definition of a triplet, �, as in transitiv-
ity. The triplet value, ω, is calculated by using the same methods as
stated in Section 3. This generalization produces the same results
as transitivity if applied to binary directed networks, and the
same results as the standard clustering coefficient if applied to
binary and undirected networks. Moreover, it still ranges between
0 and 1. In a completely connected network, we would still
obtain Cω = 1, whereas in a classical random network, Cω → 0 as
the network size grows. In particular, once again we found that
Cω approximated the probability of a tie in a classical random
network.4

To clarify which triplets are transitive and non-vacuous, Table 2
illustrates configurations of triplets centered on node i. The first four
rows show the basic configurations mentioned above. The remain-
ing rows show configurations of triplets where ties are reciprocated.
In these cases, each additional tie doubles the number of triplets.
Moreover, the table shows which triplets are transitive under dif-
ferent conditions, and which triplet values should be included in
the fraction of Eq. (2).

5. Empirical test of the generalized clustering coefficient
weights that are greater than X are set to present and ties with weights that are
lower than, or equal to, X are removed. Unless otherwise specified, ties are set to
present if their weights are greater than 0. Moreover, in our empirical analysis, we
adopt the generalized coefficient Cω,gm that uses the geometric mean method gm
for defining triplet value ω. A program to calculate the standard and generalized
clustering coefficients using R or Matlab is available upon request from the authors.
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Table 2
Triplets (�) and triplet values (ω) in a directed network (i /= j /= k).

Triplets Denominator of Eq. (2) Numerator of Eq. (2)

if wjk = 0, wkj = 0 if wjk > 0, wkj = 0 if wjk = 0, wkj > 0 if wjk > 0, wkj > 0

�ij,ik · · · · · · · · · · · · · · ·

�ij,ki ωij,ki 0 0 ωij,ki ωij,ki

�ji,ik ωji,ik 0 ωji,ik 0 ωji,ik

�ji,ki · · · · · · · · · · · · · · ·

�ij,ik · · · · · · · · · · · · · · ·
�ij,ki ωij,ki 0 0 ωij,ki ωij,ki

�ji,ik ωji,ik 0 ωji,ik 0 ωji,ik

�ji,ki · · · · · · · · · · · · · · ·

�ij,ik · · · · · · · · · · · · · · ·
�ji,ik ωji,ik 0 ωji,ik 0 ωji,ik

�ij,ki ωij,ki 0 0 ωij,ki ωij,ki

�ji,ki · · · · · · · · · · · · · · ·

�ij,ik · · · · · · · · · · · · · · ·
�ij,ki ωij,ki 0 0 ωij,ki ωij,ki

�ji,ik ωji,ik 0 ωji,ik 0 ωji,ik

�ji,ki · · · · · · · · · · · · · · ·

Table 3
Comparison between the generalized and the standard clustering coefficients.

Network Cω C

Cω,am Cω,gm Cω,min Cω,max CGT0 CGT2 CGT4 CGT6 CGT8 CGT10

Freeman EIES (time 1) 0.7702 0.7708 0.7722 0.7688 0.7627 0.4027
Freeman EIES (time 2) 0.8214 0.8218 0.8228 0.8204 0.8131 0.4275
Freeman EIES (messages) 0.7378 0.7332 0.7250 0.7411 0.6386 0.6251 0.5677 0.5631 0.5377 0.5031
Online community 0.0646 0.0638 0.0626 0.0653 0.0547 0.0360 0.0306 0.0269 0.0287 0.0298
Consulting (advice) 0.7130 0.7168 0.7271 0.7054 0.6932 0.5184 0.4398
Consulting (value) 0.6852 0.6857 0.6885 0.6827 0.6764 0.6466 0.5478
Research team (advice) 0.7127 0.7209 0.7383 0.7000 0.6848 0.5534 0.3730
Research team (awareness) 0.6957 0.6977 0.7064 0.6880 0.6785 0.6532 0.5970
101st US Congress 0.7630 0.7639 0.7639 0.7627 0.7219 0.4987 0.3649 0.2902 0.2760 0.3216
C. elegans’ neural network 0.2403 0.2210 0.2028 0.2518 0.1843 0.1357 0.1182 0.1785 0.1954 0.2936
US airport network 0.4765 0.5066 0.5366 0.4586 0.3514 0.4125 0.3969 0.3032 0.2940 0.1793

Due to a large range of tie weights in the US airport network, we have divided the tie weights by 100,000. This operation has no impact on the generalised coefficient, but it
enables us to conduct the sensitivity analysis (i.e., in the original dataset, the minimum tie weight is equal to 17, and therefore a sensitivity analysis with values of the cut-off
lower than 17 would be meaningless).
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The first dataset we consider is Freeman’s EIES networks
Freeman and Freeman, 1979), also used in Wasserman and Faust
1994). This dataset was collected in 1978 and contains three net-
orks of researchers working on social network analysis. The first

s an acquaintance network including 48 researchers, and in which
elationships were recorded at the beginning of the study (time 1).
he second network is similar, but the data were recorded at the
nd of the study (time 2). The third is a frequency matrix of the
umber of messages sent among 32 of the researchers that used an
lectronic communication tool. In the two acquaintance networks,
ll relationships have a weight between 0 and 4. 4 represents a close
ersonal friend of the researcher’s; 3 represents a friend; 2 repre-
ents a person the researcher has met; 1 represents a person the
esearcher has heard of, but not met; and 0 represents a person
nknown to the researcher. In the frequency matrix, the average tie
eight is 33.7 and the maximum weight is 559. The three networks

re highly connected, with densities of 0.34, 0.40, and 0.46, respec-
ively. They also exhibit a fairly large tendency toward clustering:
GT0 for the three networks is 0.7627, 0.8131, and 0.6386, respec-
ively. When the proposed generalization of clustering is applied
o the three networks, clustering increases. More specifically, Cω,gm

akes the value of 0.7708, 0.8218, and 0.7332, respectively. Thus, for
he acquaintance networks, clustering increases of 1.1%, whereas for
he frequency matrix it shows a relatively higher increase of 14.8%.

Fig. 3 shows Freeman’s third EIES network, in which the size

f a node is proportional to the number of messages sent by
he researcher, and the width of a tie between two nodes corre-
ponds to the number of messages exchanged between the two
esearchers. As shown in the figure, all researchers at the cen-

ig. 3. Freeman’s third EIES network. The size of a node is proportional to the total num
umber of messages exchanged among the two connected scientists. The scientists that a
tworks 31 (2009) 155–163

ter are connected with one another, whereas this is not the case
for researchers located in the outer ring. Moreover, the strongest
ties in the network tend to connect the researchers in the center
with one another and with nodes at the periphery. This implies
that stronger ties are more likely to be part of triangles than
weaker ties. For example, Nick Mullins is strongly connected to
Sue Freeman and Barry Wellman, who are in turn connected with
each other. By contrast, Phipps Arabie is weakly connected to
Ev Rogers and Carol Barner–Barry, who are not connected with
each other. This tendency of strongly connected researchers to
establish a tie with the same third party is responsible for the
increased value of clustering when measured with our generalized
coefficient.

The second dataset is a network created from an online com-
munity (Panzarasa et al., in press). This network dataset covers
the period from April to October 2004. It includes 1899 nodes
that represent students at the University of California, Irvine.
During the observation period, students sent a total number of
59,835 online messages. A directed tie is established from one
student to another if one or more messages have been sent from
the former to the latter. The weight of a tie is defined as the
number of messages sent. The maximum and average tie weight
are 98 and 2.95, respectively. This network exhibits a density
of 0.0056, and an average degree of 10.69. In this network, we
found C = 0.0547 and C = 0.0638. Thus, when the gen-
GT0 ω,gm

eralized coefficient is applied, there is an increase in clustering
of 16.8%.

The third dataset contains four organizational networks, two
from a consulting company and two from a research team in a

ber of messages sent by the corresponding scientist, and the width of a tie to the
re part of the largest clique are placed in the inner circle.
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more likely to be closed than weak triplets. More specifically, if
the generalized clustering coefficient is significantly higher than
the standard clustering coefficient, strong triplets are more likely
to be closed than weak ones, whereas if the reverse were the
T. Opsahl, P. Panzarasa / Soc

anufacturing company (Cross and Parker, 2004).6 The consult-
ng company had 46 employees that are the nodes in the first
wo networks. The ties in the first network are differentiated in
erms of frequency of information or advice requests, whereas the
ies in the second network are differentiated in terms of the value
laced on the information or advice received. In both these net-
orks, ties are weighted on a scale from 0 to 5. The company had

ffices both in Europe and in the US. The US employees were divided
nto two tightly knit groups, whereas this did not occur with the
uropean employees. The other two networks are concerned with
research team in a manufacturing company. The nodes in these
etworks are the 77 employees. The ties in the first network are
ifferentiated in terms of advice, whereas in the second network in
erms of the employees’ awareness of knowledge and skills. In both
hese networks, ties are weighted on a scale from 0 to 6. Moreover,
or both networks, data collection took place after an organiza-
ional restructuring operation that combined four separate units
n different European countries. The research team was partitioned
nto strong communities based on the employees’ previous geo-
raphical location (Cross and Parker, 2004, pp. 15–17). Thus, focus
onstraint might have been partly responsible for a high value of
lustering (Feld, 1981). All four networks do in fact exhibit a high
lustering coefficient: CGT0 ranges between 0.6764 and 0.6932, and
ω,gm between 0.6857 and 0.7209. The data thus exhibit an average

ncrease in clustering of 3.2% when the generalised coefficient is
pplied.

The fourth dataset is a network of political support in the
S Senate (101st Congress, 1989/1990; see Skvoretz, 2002).7 The
etwork includes 102 nodes that represent senators. Ties among
enators reflect co-sponsorship of bills. This network has a den-
ity of 0.58 and an average degree of 59. As the network is well
onnected, it is difficult to draw conclusions from CGT0. We found:
GT0 = 0.7219. Weights of ties represent the number of bills that
he connected senators have co-sponsored. The average tie weight
s 2.68 and the maximum weight is 29. The large difference between
he mean and the maximum weights signals that many of the
ies are relatively weak. This is an indication that a cut-off higher
han zero might be more appropriate for dichotomizing the net-
ork. In Table 3, we list CGTX calculated using different values
of the cut-off. When we applied the generalized coefficient,
e found: Cω,gm = 0.7639. This represents an increase in cluster-

ng of 5.8%. This increase in clustering is likely to be influenced
y the fact that party membership and ideologies place a con-
traint on the existence and strength of ties among senators. In
articular, senators belonging to different parties are likely to co-
ponsor a limited number of bills, which inevitably affects the
otal value of closed triplets connecting senators from different
arties.

The fifth dataset is the neural network of the Caenorhabditis ele-
ans worm. This network was studied in Watts and Strogatz (1998).8

he network contains 306 nodes that represent neurons. A tie joins
wo neurons if they are connected by either a synapse or a gap junc-
ion. The weight of a tie represents the number of these synapses
nd gap junctions. The average tie weight is 3.74, and the maximum
ie weight is 70. The density is 0.0253 and the average degree is 7.7.
e found: CGT0 = 0.1843, and Cω,gm = 0.2210. Thus, the generalized
oefficient is 19.9% higher than the standard one.

The sixth dataset is the network of the 500 busiest commer-
ial airports in the United States (Colizza et al., 2007; Opsahl et al.,

6 We thank Andrew Parker at Stanford University for supplying this dataset.
7 We thank John Skvoretz for making this dataset available to us.
8 This dataset was obtained from the Collective Dynamics Group’s (Duncan Watts)
ebsite: http://smallworld.sociology.columbia.edu/cdg/datasets/.
tworks 31 (2009) 155–163 161

2008).9 In this network, two airports are connected if a flight was
scheduled between them in 2002. The weight of a tie between two
airports corresponds to the number of seats available on the sched-
uled flights. Although air transportation networks are directed by
nature, they are also highly symmetric (Barrat et al., 2004). There-
fore, we analyse this network as an undirected one. On average,
each airport is connected to 11.92 other airports (i.e., density is
0.0239). For the average route, 152,320 seats were scheduled. In
this network, the standard and generalised clustering coefficients
were well above the randomly expected value: CGT0 = 0.3514 and
Cω,gm = 0.5066. The generalised coefficient is 44.16% larger than
the standard one. This suggests that airports with busy routes are
part of transitive triplets.

A number of observations are now in order. First, for all
the networks, the standard clustering coefficient, CGTX , generally
decreases as the value X of the cut-off increases. However, the
rate of decrease differs considerably among the networks. More-
over, for each network, there is variation in the rate of decrease
between different values of the cut-off. Despite an average decreas-
ing trend, we also found that, in certain networks, the clustering
coefficient increases in correspondence of increasing levels of the
cut-off. In addition, the reliability of the results when large cut-
offs are used should be questioned, for in the networks there
remain only few triplets and triangles when those cut-offs are
used. Thus, these findings from a sensitivity analysis of the stan-
dard clustering coefficient do not lend themselves to unequivocal
interpretation.

Second, there are variations in the values of the generalized
clustering coefficient, Cω , when different methods for defining the
triplet value ω are used. For most of the networks, the highest Cω is
obtained when the minimum method is used, whereas the lowest
outcome is obtained when the maximum method is used. Given
two triplets with the same average weight, the minimum method
assigns a lower value to the triplet with a higher dispersion of
weights than to the triplet with a lower dispersion. The reverse is
true for the maximum method. Since, for most networks, the min-
imum (maximum) method produces the highest (lowest) value of
clustering, the triplets consisting of ties with a lower (higher) vari-
ation in weight are more likely to be closed (open) than the triplets
with a larger (lower) variation. This means that triplets consisting
of two ties with approximately the same weight are likely to be
closed.10

Third, for all networks, the generalized clustering coefficient
is higher than the standard coefficient. When networks are
dichotomized by setting ties with weights greater than 0 to present,
the standard clustering coefficient can be used as a benchmark for
the generalized one. As shown by simulations in Section 3, when
the weights are reshuffled among the ties, Cω ≈ CGT0. Thus, by com-
paring Cω with CGT0, we can assess whether strong triplets are
9 We thank Vittoria Colizza for making this dataset available: http://cxnets.
googlepages.com/usairtransportationnetwork.

10 This observation does not apply to three of our networks: Freeman’s frequency
matrix, the online community, and C. elegans’ neural network. For these networks,
the maximum method is associated with the highest level of Cω , and vice versa. A
possible reason for this is that these networks have a relatively high variation of
tie weights. The fact that in these networks Cω,max is higher than Cω,min signals the
tendency of triplets with large variation in weights to be closed. Moreover, variation
in tie weights might translate into variation between triplet values, which makes
clustering sensitive to individual triplets. For example, in a network with a single
extremely strong triplet, the value of the generalized coefficient will depend heavily
on whether or not this triplet is closed.

http://smallworld.sociology.columbia.edu/cdg/datasets/
http://cxnets.googlepages.com/usairtransportationnetwork
http://cxnets.googlepages.com/usairtransportationnetwork
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with the ordinal scale: 0 (Do not know this person); 1 (Never); 2
(Seldom); 3 (Sometimes); 4 (Often); 5 (Very Often).12 In this case,
answers are inevitably subject to the bias that comes from the dif-
62 T. Opsahl, P. Panzarasa / Soc

ase, weak triplets would be more likely to be closed than strong
nes.

. Conclusions and discussion

Relationships among unique people are unique. We live in
n increasingly connected world with an increasing number of
ontacts to whom we relate in different ways, with different fre-
uencies, and for different reasons. Each social relationship bears
special meaning to us, and it would be overly simplistic and

rossly unfair to treat every contact in the same manner. There-
ore, it is important to capture differences among relationships
hen mapping and studying social networks. In particular, social
etwork measures should reflect the richness of the information
hat the weights of relationships convey. However, despite the
act that there are a large number of network datasets where
he weights of the relationships are recorded (see Section 5, but
lso Barrat et al., 2004; Ebel et al., 2002; Holme et al., 2004;
ossinets and Watts, 2006; Panzarasa et al., in press), only a lim-

ted number of measures take weights into account (among others,
arrat et al., 2004; Burt, 1992; Freeman et al., 1991; Nordlund,
007; Opsahl et al., 2008; Yang and Knoke, 2001). Therefore,
ost measures can only be calculated on network data that are

inary.
Among the measures that suffer from this shortcoming is the

lustering coefficient. In this paper, we focused on this measure,
nd offered a generalization that takes the weight of ties explic-
tly into account by attaching a value to each triplet. The standard
oefficient divides the number of closed triplets by the total num-
er of triplets, whereas the generalized coefficient divides the
otal value of the closed triplets by the total value of all triplets.
n particular, the generalized clustering coefficient produces the
ame result as the standard coefficient when applied to a binary
etwork.

We measured and compared the standard and generalized clus-
ering coefficients on a number of network datasets where the
eights of ties are recorded. First, we found that the value of

he standard coefficient generally decreases as the value of the
ut-off increases. However, as the rate of decrease varies across
atasets, it is difficult to interpret this result. Second, we found
hat there were differences among the outcomes when different

ethods for defining the triplet value were used. The general-
zed coefficient based on the minimum method yielded mostly the
ighest value, whereas when the maximum method was used, the

owest outcome was generally attained. This suggests that simi-
arity in tie weights in a triplet increases the chance of closure
f that triplet. Third, we found that, in all social networks stud-
ed, the value of the generalized coefficient was greater than the
alue of the standard one. These findings thus provide support in
avour of Granovetter’s (1973) claim that in social networks strong
ies are more likely to be part of transitive triplets than weak
nes.

Being able to produce values of clustering that are positively
ffected by the tendency of strong ties to be part of transitive triplets
s a distinct property of our method as well as an advantage over
lternative methods for applying binary measures to weighted net-
orks. For example, we adopted Ahnert et al.’s (2007) method for

onverting a weighted network into an ensamble of binary net-
orks, and calculated the average standard clustering coefficient

n these networks. Drawing on Freeman’s third EIES network (see

ig. 3), we produced 1000 binary networks in which the probabil-
ty of a tie was obtained by dividing its weight by the maximum

eight in the network. The average standard clustering coefficient
ound on this ensamble is 0.1288. This value is not only much lower
han the one found with our method (i.e., 0.7332), but also lower
tworks 31 (2009) 155–163

than the value obtained with CGT0 (i.e., 0.6386).11 Thus, despite the
fact that, as suggested by Fig. 3, in Freeman’s third EIES network,
strong ties tend to be part of transitive triplets, the results obtained
by using Ahnert et al.’s method would in fact suggest the opposite.

Our generalized clustering coefficient is consistent with the
local weighted clustering coefficient proposed by Barrat et al.
(2004). For example, in the US airport network, both measures pro-
duce values that are higher than the values of the corresponding
binary measures. However, the weighted local clustering coeffi-
cient is inevitably biased by the fact that it builds explicitly on
the local binary coefficient. This is likely to constrain the mea-
sure in two ways. First, as the binary measure, the weighted one
is not applicable to directed networks. Second, it still suffers from
negative correlation between the degree of nodes and their like-
lihood of being embedded in closed triplets. For example, in the
US airport network, we found a negative correlation of –0.24
between node degree and weighted local clustering. Unlike our
global measure, the weighted local clustering coefficient is there-
fore affected by the way degrees are distributed across the nodes in a
network.

One of the advantages of the generalized clustering coefficient
is also a limitation. Unlike what is normally done with the stan-
dard clustering coefficient, our measure does not require ties in
weighted networks to be transformed. This becomes an issue when
all possible ties within a network are assigned a weight, even a
very small one. In these circumstances, the network is fully con-
nected, and the generalized clustering coefficient is 1. The standard
clustering coefficient does not have this shortcoming as ties with
a small weight are set to absent and, therefore, the network does
not become fully connected. An example of a weighted, fully con-
nected network is a network consisting of cities, where the ties
between cities are assigned a weight that reflects the distance
between the two connected cities. Here, all possible ties are present
and assigned a weight. The standard clustering coefficient over-
comes this issue by setting weak relations, i.e., those characterized
by long distances, to absent. A possible solution when applying
the generalized coefficient, which does not normally transform the
data, is to carry out precisely this transformation and filter the data
by setting weak relations, with distances smaller than a fixed cut-
off, to absent. However, the suitability and appropriateness of this
solution depends on the data, the context in which the data were
collected, and the research question.

More generally, researchers should operationalize variables
with care when dealing with research questions concerned with
tie weights. Marsden and Campbell (1984) conducted a compar-
ative analysis of Granovetter’s (1973) four criteria for defining tie
weights. They found that emotional intensity was a better indicator
of strength of friendship than the other three criteria. Researchers
should choose the appropriate measures of tie strength depend-
ing on the nature of the nodes and ties and, more generally, on the
context of the research setting. In addition, the scale of the weights
should be carefully defined. The scale should be consistent with the
chosen criteria. For example, a typical network question often used
in studies of advice networks is:

Please indicate how often you have turned to this person for infor-
mation or advice on work-related topics in the past three months.
11 This might be due to the fact that the average density of the binary networks
tends to be much smaller than the density of the weighted network.

12 Cross and Parker (2004) used this question to create the advice network in the
consulting company used in Section 5.
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erent ways in which different people assess duration and define
he meaning of the time-related scale. One way to overcome this
roblem is to transform the ordinal scale into a ratio scale that
escribes reality more consistently across people. For example, a
ore appropriate scale for the above network question could be:
(Never); 1 (Once); 3 (Monthly); 6 (Fortnightly); 12 (Weekly). In

urn, this scale, when compared to the former, is likely to yield a
etwork dataset that is richer in information, more robust against
otential inaccuracies emanating from subjective judgments, and
ore suitable to investigations that rely on generalized measures,

uch as our proposed clustering coefficient.
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