CSI 445/660 - Network Science - Fall 2015 Homework VI

Date given: Nov. 25, 2015
Due date: Dec. 8, 2015

Instructions: All students must do Problems 1 and 2. Undergraduate and graduate students in Computer Science must also do Problem 3.

Problem 1: The underlying graph of a deterministic synchronous dynamical system (SyDS), where each node has a state value from $\{0,1\}$, is shown below. Assume that this is also a progressive system; that is, once a node reaches the state 1 , it stays in that state for ever.

It is known that the local function associated with each of the nodes 1 through 4 is the 1-threshold function. It is also known that the local functions associated with nodes 5 and 6 are threshold functions; however, we don't know the corresponding threshold values.

Recall that a configuration specifies the state value of each node. Since the graph has 6 nodes, we specify each configuration of the system as a vector with 6 components which represent the states of nodes 1 through 6 in that order. Observations of the system indicate the following.
(i) The configuration ($0,0,0,0,0,0$) is a fixed point of the system.
(ii) When the system is started in the configuration ($0,1,0,1,0,0$), the configuration at the next time step is $(1,1,1,1,1,0)$.
(iii) When the system is started in the configuration ($0,1,0,1,1,0$), the configuration at the next time step is $(1,1,1,1,1,1)$.

Using these observations, find the threshold values of nodes 5 and 6 of the system. Be sure to indicate how you arrived at your solution.

Problem 2: Consider the 2-player game given by the following payoff matrix.

Note that there are six combinations of the strategies by the two players. For each combination, indicate whether or not it is a pure Nash equilibrium. For each combination that is not a pure Nash Equilibrium, indicate which player has an incentive to switch and to which strategy.

Problem 3: Prove that there is no mixed Nash equilibrium for the following game when the probability values are required to be strictly between 0 and 1 .

