CSI 445/660 - Network Science - Fall 2015 Homework V

Date given: Nov. 17, 2015
Due date: Nov. 24, 2015

Instructions: All students must do Problems 1 and 2. Undergraduate and graduate students in Computer Science must also do Problem 3. Problem 1(b) is optional for all students.

Problem 1: Let G be a connected undirected graph with 100 nodes such that the degree of each node in G is at least 50. Find the largest possible value for the farness centrality of a node of G. Be sure to explain how you arrived at your answer.

Problem 1(b) (optional - for extra credit): Suppose the answer you arrived at for Problem 1 is α. Find a graph G which has 100 nodes and in which each node has a degree of at least 50 such that the farness centrality of every node in G is exactly α.

Your answer for Problem 1(b) must include a clear description of the graph (and not a drawing of the graph) along with an explanation of why the farness centrality of each node is α.

Problem 2: The underlying graph of a deterministic synchronous dynamical system (SyDS), where each node has a state value from $\{0,1\}$, is shown below. Assume that the system is progressive; that is, once a node reaches the state 1 , it remains in that state forever.

The local function associated with each node is the 2 -threshold function. Recall that a configuration specifies a state value for each node. This problem has two parts.
(a) Suppose the system starts at time 0 in the configuration where nodes 1,6 and 7 are in state 1 while the other nodes are in state 0 . Show the successive configurations of the system until the system reaches a fixed point.
(b) Find an initial configuration with the smallest number of nodes in state 1 such that the system reaches the fixed point where every node is in state 1. Be sure to indicate how you arrived at your solution.

Problem 3: Before trying to solve this problem, you may want to review the the definitions of an affiliation network and its projected network.

Let $G(V, E)$ be the projected network of an affiliation network G_{A}. Suppose G is connected and there is an independent set of size α in G. (In other words, G contains a set V^{\prime} with α nodes such that there is no edge between any pair of nodes in V^{\prime}.) Prove or disprove: The number of focal points in G_{A} is at least α.

