CSI 445/660 — Network Science — Fall 2015

Homework I1
Date given: Sep. 22, 2015 Due date: Oct. 1, 2015

Instructions:

(a) All students must do Problems 1 and 2. Undergraduate and graduate students in Computer
Science must also do Problem 3. Problem 4 is optional; however, Computer Science students
are urged to give it a try.

(b) For all problems below, assume that the graphs are simple (i.e., they don’t have multi-edges
or self-loops).

(c) For Problems 3 and 4, bear in mind that when a node in an undirected graph has degree 0 or
1, the clustering coefficient of the node is not defined. (Thus, in those cases, the clustering
coefficient is not zero.)

Problem 1: This problem has two parts.

(a) Consider a class of elementary school students consisting of 9 boys and 12 girls. Suppose a
social network on this group exhibits extreme gender homophily; that is, it has no cross-gender
edges. Compute the mazimum number of possible edges in the social network.

(b) Consider a set of high school students consisting of 120 girls and 80 boys. A social network on
this set has a total of 1000 edges. Suppose the number of cross-gender edges in this network
is exactly 40% of the value predicted by the random mixing model discussed in class. Find
the number of cross-gender edges in the network.

Problem 2: Recall that an affiliation network is a bipartite graph with two sets of nodes: one
set P represents people and the other set F' represents focal points. Further, each edge is between
a node in P and one in F. Also recall that given an affiliation network G 4, one can construct a
projected network Gp of G4 as follows: the set of nodes for Gp is P itself and Gp has an edge
between a pair of nodes x and y in P if and only if  and y have at least one common focal point
in F. This problem has two parts.

(a) Show two different affiliation networks G and G% such that the projected networks for the
two are identical (i.e., the two projected networks have the same set of edges).
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(b) Consider the following social network G. Construct an affiliation network G 4 such that G is
the projected network of G4. The network G 4 must use at most 4 focal points.
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Problem 3: For any positive integer n, prove that there is an undirected graph with N > n nodes
and 2(N?) edges such that the clustering coefficient of each node is zero. (An undirected graph G
with N nodes is said to be dense if the number of edges in G is Q(N?). This problem points out
that dense graphs may have small clustering coefficients.)

Problem 4: Let n be an even positive integer. Suppose G is an undirected graph with n nodes
such that each node of G has a clustering coefficient of zero. Prove that the number of edges in G

is at most n?/4.



