CSI 445/660 - Network Science - Fall 2015

Handout 7.4: An Algorithm for Generating Watts-Strogatz Graphs

Ref: R. Albert and A. Barabasi, "Statistical Mechanics of Complex Networks", Reviews of Modern Physics, Vol. 74, Jan. 2002, pp. 47-97. (See also Chapter 20 of the text by Easley \& Kleinberg.)

Note: The following algorithm creates an undirected graph which has a number of properties including the "small world" property.

Input: Integers n (number of nodes) and K (assumed to be an even positive integer); a probability value β. The nodes are numbered 0 through $n-1$. (It is assumed that $n \gg K>\ln n>1$.)

Output: An undirected graph with n nodes and $n K / 2$ edges such that the average distance between any pair of nodes is $\ln (n) / \ln (K)$ with high probability.

Steps of the algorithm:

1. Start with the following graph: Arrange the node set $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ around a circle; each node v_{i} is adjacent to the $K / 2$ nodes that precede or follow v_{i} in the circle. (Formally, edge $\left\{v_{i}, v_{j}\right\}$ is in the graph if and only if $|i-j| \equiv r(\bmod n)$ for some $r \in[1 . . K / 2]$.)

Note: An example of the starting graph with $n=8$ and $K=4$ is shown below.
2. for each edge $\left\{v_{i}, v_{j}\right\}$ in the graph created in Step 1 do

Rewire edge $\left\{v, v_{j}\right\}$ with probability β. (Note: The rewiring should not introduce self loops or multi-edges.)
3. Output the resulting undirected graph $G(V, E)$.

An example of a stating graph in Step 1: $\quad(n=8$ and $K=4)$

