Handout 7.4: An Algorithm for Generating Watts-Strogatz Graphs

Ref: R. Albert and A. Barabasi, "Statistical Mechanics of Complex Networks", *Reviews of Modern Physics*, Vol. 74, Jan. 2002, pp. 47–97. (See also Chapter 20 of the text by Easley & Kleinberg.)

Note: The following algorithm creates an undirected graph which has a number of properties including the "small world" property.

Input: Integers n (number of nodes) and K (assumed to be an even positive integer); a probability value β . The nodes are numbered 0 through n-1. (It is assumed that $n \gg K \gg \ln n \gg 1$.)

<u>Output:</u> An undirected graph with n nodes and nK/2 edges such that the average distance between any pair of nodes is $\ln(n)/\ln(K)$ with high probability.

Steps of the algorithm:

1. Start with the following graph: Arrange the node set $V = \{v_0, v_1, \ldots, v_{n-1}\}$ around a circle; each node v_i is adjacent to the K/2 nodes that precede or follow v_i in the circle. (Formally, edge $\{v_i, v_j\}$ is in the graph if and only if $|i - j| \equiv r \pmod{n}$ for some $r \in [1 \dots K/2]$.)

Note: An example of the starting graph with n = 8 and K = 4 is shown below.

2. for each edge $\{v_i, v_j\}$ in the graph created in Step 1 do

Rewire edge $\{v_i, v_j\}$ with probability β . (Note: The rewiring should not introduce self loops or multi-edges.)

3. Output the resulting undirected graph G(V, E).

An example of a stating graph in Step 1: (n = 8 and K = 4)

