Handout 6.1 – Outline of a Simple Algorithm for Computing Betweenness

Notes:

- (a) The outline and running time analysis discussed below are based on the material in Slides 6-37 through 6-43.
- (b) In the description of the algorithm, we use "BFS subgraph" of a connected graph G(V, E) to mean the following. Recall that doing a breadth-first-search (BFS) on G results in a spanning tree T of G. The BFS subgraph contains all the edges of T along with all the edges of G that join nodes in *successive* levels. Thus, this subgraph contains all the edges of G except those that join nodes at the same level in T. (Given the starting node s for a BFS, the BFS subgraph is unique; this subgraph is needed to ensure that the number of shortest paths from s to the other nodes of G are correctly computed.)
- (c) It is straightforward to modify the algorithm for BFS so that it produces the BFS subgraph of G(V, E) in O(|V| + |E|) time.

Input: A connected undirected graph G(V, E) without edge weights.

Output: The betweenness centrality value $\beta(v)$ for each node $v \in V$.

Steps of the Algorithm:

- 1. for each node $s \in V$ do
 - (a) Construct the BFS subgraph of G rooted at s.
 - (b) For each node $t \in V \{s\}$, compute the value σ_{st} , that is, the number of s-t shortest paths.
- 2. for each node $v \in V$ do
 - (a) Construct graph G_v from G by deleting v and all the edges incident on v.
 - (b) for each node $s \in V \{v\}$ do
 - i. Construct the BFS subgraph of G_v rooted at s.
 - ii. For each node $t \in V \{v, s\}$, compute the value σ_{st} (i.e., the number of s-t shortest paths) in G_v . (Note that this gives the number of s-t shortest paths that don't pass through v in G.)
- 3. Using the values computed in Steps 1 and 2 above, compute the value of $\beta(v)$ for each $v \in V$.

Running Time Analysis:

• As discussed in the slides, the running time for Steps 1 and 2 are respectively O(|V|(|V|+|E|))and $O(|V|^2(|V|+|E|))$.

- In Step 3, for each node v, finding the value of $\beta(v)$ requires the computation of the sum of $O(|V|^2)$ values. So, the time for computing the $\beta(v)$ values for all the nodes is $O(|V|^3)$.
- The overall running time, which is dominated by Step 2, is $O(|V|^2(|V| + |E|))$.
- This running time is $O(|V|^4)$ for **dense** graphs and $O(|V|^3)$ for **sparse** graphs.