
CSI 445/660 – Network Science – Fall 2015

Handout 6.1 – Outline of a Simple Algorithm for Computing Betweenness

Notes:

(a) The outline and running time analysis discussed below are based on the material in Slides 6-37
through 6-43.

(b) In the description of the algorithm, we use “BFS subgraph” of a connected graph G(V,E) to
mean the following. Recall that doing a breadth-first-search (BFS) on G results in a spanning
tree T of G. The BFS subgraph contains all the edges of T along with all the edges of G
that join nodes in successive levels. Thus, this subgraph contains all the edges of G except
those that join nodes at the same level in T . (Given the starting node s for a BFS, the BFS
subgraph is unique; this subgraph is needed to ensure that the number of shortest paths from
s to the other nodes of G are correctly computed.)

(c) It is straightforward to modify the algorithm for BFS so that it produces the BFS subgraph
of G(V,E) in O(|V |+ |E|) time.

Input: A connected undirected graph G(V,E) without edge weights.

Output: The betweenness centrality value β(v) for each node v ∈ V .

Steps of the Algorithm:

1. for each node s ∈ V do

(a) Construct the BFS subgraph of G rooted at s.

(b) For each node t ∈ V − {s}, compute the value σst, that is, the number of s-t shortest
paths.

2. for each node v ∈ V do

(a) Construct graph Gv from G by deleting v and all the edges incident on v.

(b) for each node s ∈ V − {v} do

i. Construct the BFS subgraph of Gv rooted at s.

ii. For each node t ∈ V −{v, s}, compute the value σst (i.e., the number of s-t shortest
paths) in Gv. (Note that this gives the number of s-t shortest paths that don’t pass
through v in G.)

3. Using the values computed in Steps 1 and 2 above, compute the value of β(v) for each v ∈ V .

Running Time Analysis:

• As discussed in the slides, the running time for Steps 1 and 2 are respectively O(|V |(|V |+|E|))
and O(|V |2(|V |+ |E|)).

1

• In Step 3, for each node v, finding the value of β(v) requires the computation of the sum of
O(|V |2) values. So, the time for computing the β(v) values for all the nodes is O(|V |3).

• The overall running time, which is dominated by Step 2, is O(|V |2(|V |+ |E|)).

• This running time is O(|V |4) for dense graphs and O(|V |3) for sparse graphs.

2

