CSI 445/660 - Network Science - Fall 2015

Handout 6.1 - Outline of a Simple Algorithm for Computing Betweenness

Notes:

(a) The outline and running time analysis discussed below are based on the material in Slides 6-37 through 6-43.
(b) In the description of the algorithm, we use "BFS subgraph" of a connected graph $G(V, E)$ to mean the following. Recall that doing a breadth-first-search (BFS) on G results in a spanning tree T of G. The BFS subgraph contains all the edges of T along with all the edges of G that join nodes in successive levels. Thus, this subgraph contains all the edges of G except those that join nodes at the same level in T. (Given the starting node s for a BFS, the BFS subgraph is unique; this subgraph is needed to ensure that the number of shortest paths from s to the other nodes of G are correctly computed.)
(c) It is straightforward to modify the algorithm for BFS so that it produces the BFS subgraph of $G(V, E)$ in $O(|V|+|E|)$ time.

Input: A connected undirected graph $G(V, E)$ without edge weights.
Output: The betweenness centrality value $\beta(v)$ for each node $v \in V$.

Steps of the Algorithm:

1. for each node $s \in V$ do
(a) Construct the BFS subgraph of G rooted at s.
(b) For each node $t \in V-\{s\}$, compute the value $\sigma_{s t}$, that is, the number of $s-t$ shortest paths.
2. for each node $v \in V$ do
(a) Construct graph G_{v} from G by deleting v and all the edges incident on v.
(b) for each node $s \in V-\{v\}$ do
i. Construct the BFS subgraph of G_{v} rooted at s.
ii. For each node $t \in V-\{v, s\}$, compute the value $\sigma_{s t}$ (i.e., the number of $s-t$ shortest paths) in G_{v}. (Note that this gives the number of s - t shortest paths that don't pass through v in G.)
3. Using the values computed in Steps 1 and 2 above, compute the value of $\beta(v)$ for each $v \in V$.

Running Time Analysis:

- As discussed in the slides, the running time for Steps 1 and 2 are respectively $O(|V|(|V|+|E|))$ and $O\left(|V|^{2}(|V|+|E|)\right)$.
- In Step 3, for each node v, finding the value of $\beta(v)$ requires the computation of the sum of $O\left(|V|^{2}\right)$ values. So, the time for computing the $\beta(v)$ values for all the nodes is $O\left(|V|^{3}\right)$.
- The overall running time, which is dominated by Step 2, is $O\left(|V|^{2}(|V|+|E|)\right)$.
- This running time is $O\left(|V|^{4}\right)$ for dense graphs and $O\left(|V|^{3}\right)$ for sparse graphs.

