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Abstract—Networks are an effective abstraction for represent-
ing real systems. Consequently, network science is increasingly
used in academia and industry to solve problems in many fields.
Computations that determine structure properties and dynamical
behaviors of networks are useful because they give insights into
the characteristics of real systems. We introduce a newly built and
deployed cyberinfrastructure for network science (CINET) that
performs such computations, with the following features: (i) it
offers realistic networks from the literature and various random
and deterministic network generators; (ii) it provides many
algorithmic modules and measures to study and characterize
networks; (iii) it is designed for efficient execution of complex
algorithms on distributed high performance computers so that
they scale to large networks; and (iv) it is hosted with web
interfaces so that those without direct access to high performance
computing resources and those who are not computing experts
can still reap the system benefits. It is a combination of appli-
cation design and cyberinfrastructure that makes these features
possible. To our knowledge, these capabilities collectively make
CINET novel. We describe the system and illustrative use cases,
with a focus on the CINET user.

I. INTRODUCTION

A. Motivation

Network science research has been expanding at an ever
quickening pace since the mid 1990s, as indicated by the
numbers of publications related to complex networks [1].
This is not surprising, as the list of application areas em-
ploying graph abstractions, theory, and algorithms, or (agent-
based) modeling and simulation, includes biology [18], ecol-
ogy [4], cell immunology [16], social sciences (e.g., collective
action, mass movements, revolutions, repression, emotions,
technology adoption, drug use, drinking, obesity) [27], [20],
[13], [33], health sciences [35], economics [10], computer
networks [30], epidemiology [31], statistical physics [6],
and language evolution [5]. Network science is useful for
understanding system properties and behaviors within these
domains. Hence, software and infrastructure that can perform
graph-based computations is of great value. In this paper, we
describe a free, newly released, web-based cyberinfrastructure
for network science (CINET) for performing graph-based
computations.
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Fig. 1. High level overview of CINET system components and interactions.

B. System Overview

Fig. 1 describes the system at a high level. A web portal
supports the complete set of user tasks related to cyberin-
frastructure (CI) content and resources. The system has two
components: the infrastructure component and the application
component. The application component contains two classes
of computations. First, the Granite system (with GaLib and
NetworkX computation engines) generates graphs, computes a
host of graph measures, and finds subgraph motifs. It has over
60 such network analysis operations. Many realistic graphs
(e.g., those mined from domain data) from literature are also
provided. Second, the graph dynamical systems calculator
(GDSC) system (with the GDSC compute engine) computes
dynamics on networks. The CI, or infrastructure component,
is represented by the rest of Fig. 1 and includes the web-
based user interface (UI), a digital library (DL), and a multi-
component backend (e.g., job request server, blackboard, data
broker, and execution broker) for job and content management
and high performance computing (HPC). Both the applications
and the CI are described later in more detail. This system is
hosted by Virginia Tech and is free for public use.
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C. Example Use Cases

Two use cases are presented that illustrate the utility of
CINET. A user here may be a student, teacher, researcher,
or practitioner. In both cases, a user has logged into CINET
via the Internet.
Case 1: A user selects a pre-existing graph and a group of
graph measures, e.g., distributions of all-pairs shortest paths
and of clustering coefficient and finding pentagon subgraphs
in the graph. The user clicks a submit button, and CINET pro-
vides status updates and notifications as computations progress
and complete. Depending on measures selected, graphs may
be up to a few billion nodes in size. Output is given in
two forms: (i) the raw data (e.g., textual distributions and
counts) and (ii) plots (e.g., *.pdf or *.eps files). Data and
plots are displayed on-screen and may be downloaded to a
user’s machine.
Case 2: A user is interested in dynamics on a graph. The user
selects a type of graph (e.g., circle or lattice) and number
of nodes in the network. She then specifies a local function
(such as the nor function) that describes how nodes change
state based on influence from adjacent (neighboring) nodes.
The state of a node can be either 0 or 1. A choice of update
sequence is made; all nodes execute their local functions
simultaneously or sequentially. The sequential option is chosen
and the submit button is clicked. All user inputs (except
number of nodes) are specified from drop-down lists. Job
status is displayed as GDSC computes all state transitions.
Results are details of the long-term graph dynamics, and these
data can be viewed on-screen and downloaded as a text file.

D. Contributions

The major contributions of this work are as follows.

1. A free web-based HPC large-graph analysis tool. We
envision a user base that includes students, teachers, domain
experts, and investigators who do not have the means to
build such systems, lack access to HPC resources for large
graph analyses, or have no need to concern themselves with
computational details. Properties of pre-existing and user-
generated graphs can be computed, as can dynamics on
selected graphs. Particularly with Granite, large graphs (i.e.,
those with billions of nodes) can be analyzed. The system
is intended to significantly reduce the turn-around time for
computing answers to questions and the technical expertise
required to use the applications.

2. Extensible applications. For the Granite system, mined
or realistic networks can be added by the user community.
Software to compute new graph measures and new graph
generators can be added (by users). For the GDSC system,
new local functions that describe dynamics can be added, as
can additional node update schemes, and state spaces. (For
GDSC functionality, system administrators must currently add
new features, but the system is designed for such enhance-
ments.) These application-based extensions are made with no
alterations in the infrastructure.

3. Extensible cyberinfrastructure. The CI is extensible in
many dimensions. We separate this extensibility contribution
from those for applications to emphasize that the infrastructure
(i.e., UI, DL, and backend) is designed to handle multiple
(distributed) applications. Hence, new applications can be sup-
ported by the CI without compromising existing ones. Beyond
leveraging this functionality and code base, another practical
benefit is that a user need only learn the CINET web-based
UI because a new application is, from a user’s perspective, a
blackbox (just as Granite and GDSC are blackboxes). There
are other avenues for extending the CI, e.g., adding computing
resources and adding DL features.

4. Promotion of remote interdisciplinary collaboration. Users
from different geographic regions can collaborate within and
contribute to CINET. Moreover, this tool facilitates investi-
gations by multi-disciplinary teams whose areas of exper-
tise often reside in different organizations. The DL provides
collaboration-supporting services.

5. Common repository. As explained above, the network
science-related literature spans many fields. As this trend is
expected to continue, it becomes increasingly more difficult
for researchers to keep abreast of advancing software and
methodologies. Tools such as CINET offer a common site
where people can go to produce and share graphs and results,
as well as contribute software and functionality that benefits
the user community.

Organization. The remainder of the paper is organized as
follows. Related work is addressed in Section II. The system
architecture is explained in Section III, which ties together
all subsequent sections. Granite and GDSC applications are
described in Section IV. Two of the three main components
of CI, the UI and DL, are described in Sections V and VI,
respectively. Owing to space limitations, the low-level details
of the third CI component, the backend infrastructure, are
omitted. However, a high level treatment is provided in the
system architecture description. Section VII concludes the
paper.

II. RELATED WORK

Several network analysis tools exist, including the Stanford
Network Analysis Project (SNAP) [24], which is a general
purpose network analysis and graph mining library. SNAP
is also available through NodeXL, a graphical front-end that
integrates network analysis into Microsoft Office and Excel.
Another toolkit, Network Workbench [28], has been used
for biomedical, social science, and physics research. Net-
work Workbench provides an online portal for researchers,
educators, and practitioners. PEGASUS [11] is a peta-scale
distributed graph mining system that runs on clouds. PE-
GASUS also provides large scale algorithms for important
graph mining tasks. Pajek [34] is a tool for the analysis
and visualization of networks having thousands or millions of
vertices. NetworkX [15] is an open source software package
for the generation and study of complex networks. NetworkX
contains a large collection of graph algorithms. PEGASUS and



Galib have parallel implementations of some graph algorithms,
while others implement sequential algorithms only. However,
PEGASUS has very few graph algorithms.

From a dynamics perspective, [36] provides a web-based
tool for computing trajectories and phase spaces and is similar
to GDSC. Local functions can be combinations of logical and,
or, and not, and can also be additive and multiplicative.

Numerous workflow management systems exist to perform
functions such as executing an experiment, e.g., Taverna [29]
and Pegasus [8]. However, these systems do not provide the
full range of functionality and coordination requried in this
context.

Existing digital library packages are not capable of sup-
porting large-scale scientific research environments. Scientific
digital libraries are an emerging approach related to modeling,
managing, analyzing, supporting, and understanding scientific
research systems. The eScience and cyberinfrastructure re-
search communities are actively attempting to improve sci-
entific data management practices. Examples of scientific data
management projects include earthquake simulation reposito-
ries [17], embedded sensor network DLs [3], community earth
systems [9], D4Science II [23], mathematical-based retrieval
[37], chemistry systems [25], national research data plans [19],
and science portals [26]. However, existing systems do not
provide the types of services required to support modeling and
simulation. These inadequacies motivated the development of
our simulation-supporting digital library.

Overall, at the CI level, few systems can match CINET in
provided HPC resources, contributor-based content, software
environment, and collaboration-supporting services. We are
not aware of any system that supports compute-intensive
domains such as network science in all of these dimensions.
At the application level, we know of no network science appli-
cation suite that provides high performance distributed algo-
rithms, a wide range of algorithmic modules and measures, and
graph dynamics functionality. Furthermore, public availability
allows domain analysts to benefit automatically from provided
HPC resources. In contrast, to exploit other publicly available
software, users currently must have privileges to install new
software on contributed HPC machines.

III. SYSTEM ARCHITECTURE

CINET is a distributed system that constitutes a set of well-
defined processes and services that coordinate to fulfill a given
request and perform its associated tasks. CINET embraces a
JavaSpaces-based architecture that relies on persistent object
exchange for loosely-coupled coordination among services.
This supports extensibility and component change-out. Fig. 1
depicts the high-level architecture of the CINET framework
with key components that are discussed in this and the
following sections in greater detail.

A. Blackboard
The blackboard is the central communication and coordi-

nation mechanism for CINET. It is currently implemented
with a JavaSpace. It provides asynchronous, loose coupling

of system components. Components do not need to be aware
of the existence of the other components in the system. They
simply put requests onto the blackboard and wait for them to
be fulfilled.

Requests are Java objects that contain details about how they
are to be fulfilled, in the form of an embedded workflow. These
are active requests, not simply collections of data. For instance,
an analysis request contains not only the parameters to run the
analysis but also a runner object that contains the workflow
to run the analysis, including pre- and post-processing and
validation of the output produced.

B. Brokers
A broker is a component that is responsible for providing a

service. It does this by monitoring the blackboard for specific
requests that it can fulfill. It takes these requests from the
space and executes the workflow embedded in the request. In
the process of executing the workflow, it may put requests for
other services onto the blackboard for other brokers to fulfill.
The CINET framework has the following primary brokers.

• Execution Broker: The execution broker is responsible for
identifying execution requests and running each on a spe-
cific machine. It does this by constructing system-specific
job submission scripts and monitoring the progress of the
execution. Results generated by execution are typically
transferred with the help of the data (management) broker.

• Data (Management) Broker: A data manager is respon-
sible for managing the data resources that reside on a
system. A resource may be a path to a file, or a “fully
qualified” database (DB) query. The data manager will
also request the transfer of non-local datasets, and the
creation of non-existent datasets. It also may make deci-
sions about transfer versus regeneration, purging unused
datasets, prefetching data, etc.

• Digital Library Broker: The DL broker is
responsible for communicating with DLs and
fetching appropriate information that is required
for the end-to-end execution of an analysis request.
Some of the core functions include: add/remove
graph(s)/measure(s), add/retrieve/update information
about graph(s)/measure(s), and add/retrieve/remove
execution results. The DL also performs higher-
level services such as searching, memoizing results,
incentivizing contributions, metadata indexing, and
curating. The DL is described more fully in Section VI.

C. CINET Interface
The CINET Interface consists of user interfaces and web

applications that enables a user to submit analysis requests,
add graph measure software, add graphs, and/or perform
administrative tasks. The CINET interface is discussed in
Section V.

D. Compute Resource
Compute resources are the physical resources on which jobs

are executed. Current resources are two HPC Linux clusters at



TABLE I
NUMBER OF GALIB AND NETWORKX MODULES IN CINET

Type GaLib NetworkX
Graph Generator 11 11

Centrality 14 11
Shortest path and connectivity 15 8

Subgraph/motif counting 8 2
Others 15 3

Total measures 63 35

Virginia Tech. Potential compute resources include traditional
HPC clusters, compute grids (e.g., Open Science Grid) and
clouds (e.g., Amazon Web Services), volunteer computing
platforms (e.g., BOINC), or dedicated servers. A typical
compute resource runs NetworkX and GaLib components
(which constitute the Granite compute engine) and the GDSC
engine. These components contain the binaries for performing
graph analyses. Also, execution and data management brokers
run on compute resources to supervise the generation and
management of results.

E. Applications
Current applications are in the network science domain, i.e.,

Galib, NetworkX, and GDSC.

IV. GRAPH ANALYSIS AND MODELING

In this section, we overview the application component
capabilities for producing and evaluating structure properties
of graphs and for modeling dynamics on graphs. Galib and
GDSC were developed by the Network Dynamics and Simu-
lation Science Laboratory at Virginia Tech.

A. Graph Algorithms for Static Analysis of Networks
Static analyses are meant to compute various static mea-

sures associated with networks; e.g., the number of triangles,
diameter, and breadth-first search (BFS) tree. GaLib and
NetworkX are the computation engines that provide CINET
with necessary capabilities for analyzing network structures
and determining various metrics of interest associated with
real-world and artificial networks.

GaLib is a Graph Algorithm Library written in C++. There
are other existing graph algorithm libraries such as NetworkX
[15], SNAP [24], Pajek [34], Network Workbench [28] and
PEGASUS [11]. All of these graph libraries are useful as
they contain different sets of graph algorithms (although there
are algorithms common to them) and different libraries have
different beneficial features. GaLib has about 60 parallel and
sequential graph algorithms implemented (see Table I). Cur-
rently, CINET includes algorithms from GaLib and NetworkX.
We plan to incorporate these other graph libraries into CINET
in the future. (Contribution (3) of Section I-D will facilitate
these additions.)

GaLib is specifically designed to deal with very large
networks, focusing on the challenges arising from working
with emerging massive networks. These large networks de-
mand new capabilities and considerations. GaLib’s carefully-
designed data structures allow us to work with networks
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TABLE II
PERFORMANCE COMPARISON BETWEEN GALIB AND NETWORKX FOR
THREE MEASURES ON AN ERDÖS-RÉNYI RANDOM GRAPH WITH 500K

NODES AND AVERAGE DEGREE 20.

Measures Runtime (sec) Memory (GB)
GaLib NetworkX GaLib NetworkX

Single Source Shortest Path 12 275 0.22 3.6
Check Connectivity 14 360 0.22 3.6
Counting Triangles 20 480 0.22 3.6

containing up to 100 million nodes for sequential algorithms
and up to 2 billion nodes for some parallel algorithms. In
addition to the carefully-designed data structures and par-
allel algorithms, GaLib employs other techniques, such as
streaming, external memory algorithms, and sampling-based
approximation. Some results of analyses generated with GaLib
on two networks, Miami [2] and LiveJournal [24], with 2.1
million and 4.8 million nodes, respectively, are shown in
Figs. 2 and 3.

NetworkX [15] is an open source software package written
in Python, developed at Los Alamos National Laboratory, and
was first released in 2005 for public use. NetworkX does
not scale well to large networks—a performance comparison
of some NetworkX algorithms with those of GaLib is given
in Table II. However, NetworkX has some attractive features
that makes it very useful. It has several hundreds of graph
algorithms implemented (currently 35 of them are included
in CINET as shown in Table I). Further, Python is a very
powerful language with a large number of built-in data struc-
tures supporting rapid prototyping. NetworkX provides various
primitive functions for graph algorithms that make it simple
and flexible to use for the representation and manipulation of
many complex networks, including directed, undirected, and
multi-graphs in different data formats. In addition, NetworkX’s
graph drawing features make it useful for classroom use and
studying newly developed algorithms.

B. GDS Calculator
1) Social Sciences As A Case Study: We use social sciences

to demonstrate features of the GDSC. Often in the social
sciences, human populations are represented as graphs, where
vertices (nodes) denote agents and edges correspond to inter-
actions between them. Threshold systems have been used for
decades to model collective action and the influence of one
(human) agent on another [14], [32], [7]. In its most basic
form, in a two-state system, an agent v will change from the



non-participating state (e.g., state 0) to the participating state
(e.g., state 1) when a threshold ✓

v

number of its neighbors are
in the participating state.

2) Illustrative Results: Selected inputs and outputs are
displayed graphically in Fig. 4 for the BITHRESHOLD vertex
function and {0, 1} vertex state space, where for each vertex
v in a population, ✓

v,up

= 1 and ✓

v,down

= 3. Thus, for
v in state 0, if at least ✓

v,up

neighbors are in state 1, then
v transitions to state 1; otherwise v’s state x

v

remains 0.
For v in state 1, if less than ✓

v,down

vertices in its closed
neighborhood (i.e., including the state of v) are in state 1, then
v will transition to state 0; otherwise it remains in state 1. The
graph X , at the left side of Fig. 4, is a 4-vertex square, known
formally as Circle-4 (Circ4). The right graphic is the phase
space (i.e., all 16 system state transitions) for synchronous
vertex (or local) function update; i.e., all vertices update their
states simultaneously. There are three 2-cycles in the phase
space (identified by the green arrows). Suppose we have a
system conforming to these conditions, where a vertex in
state 0 means that the agent is not participating in a revolt,
and state 1 means that an agent is participating. Then there are
many interesting observations to be made about this system,
but we give only one. For any initial system state other than
(0, 0, 0, 0) or (1, 1, 1, 1), the three 2-cycles indicate that in the
long term, two agents will be participating at any one time
(i.e., exactly two vertices have states of 1 on the 2-cycles).
In GDSC, a user may select from different graph classes
and numbers of vertices, vertex functions, and vertex function
update schemes.
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Fig. 4. (Left) graph Circ4; and (right) phase space for the synchronous
BITHRESHOLD GDS map with 2-cycles shown in green.

V. USER INTERFACE

Owing to space constraints, we describe here only the
Granite UI. The Granite system includes a CI web application
that supports the interactive UI. It allows users to work with
a wide range of graphs and measures. The objective of this
system is to move beyond the traditional database and informa-
tion management system to integrate content, community, and
services. The Granite system interacts with the user through
a tab-based interface as shown in Fig. 5. Smart GWT is used
for Granite development. The following is a brief description
of the Granite UI.

A. Workspace Tab
The workspace tab allows a user to select one or more

graphs within CINET. These include instances of random
networks (RN), social networks (SN) generated by various
groups, and several of the networks from the SNAP repository
[24]. Also, the workspace tab provides a list of available
measures that can be applied to the selected networks.

B. Results Tab
Once the user clicks on the analyze button, the system will

start to process the requested jobs. The results tab shows the
progress of each job and allows the user to view output.

C. Add New Graph Tab
The UI for adding new graphs provides for a two-step

process. A user needs to upload a graph and then needs to
complete a metadata form for the new graph. After uploading a
graph, automated subservices (graph conversion, graph consis-
tency checking, and basic metadata extraction) are sequentially
initiated and performed. The new graph is converted to all
other available graph formats, and then a GaLib measure
is used to check graph consistency. If a graph fails the
consistency check, the system rejects the graph and informs
the user with error messages returned by the GaLib measure.
Otherwise, the system automatically extracts basic properties
of the graph, which are normally called degree statistics, such
as numbers of nodes and edges, degree distribution, etc., and
then transfers the graph file to the production repository to
make it available in the list of graphs of the main Granite UI.

D. Add Measure Tab
The Add Measure service provides a UI to add a new

measure and associated information to CINET. See Fig. 6.
By “adding a new measure,” we mean adding an executable
to CINET, along with a schema of the required parameters. To
add a measure, a user needs to insert information for measure
name, description, tool type (e.g., GaLib or NetworkX), output
files name(s), executable file name, measure parameter, and
runtime information of the measure. Based on the user input,
the system dynamically creates different types of widgets to
collect information about parameters and output file names.
It allows a user to insert information about parameter type,
name, and value. Also, several data validation checks are
performed by this service. If a measure is successfully added
to the system, it will appear in the measure list. Currently,
this service is only available for administrative users. This is to
ensure that new measure codes are validated and not malicious
before being exposed to the user community.

VI. DIGITAL LIBRARY

Digital libraries (DLs) have greatly advanced since the
community was formed in the early 1990s. However, efforts
to support scientific and simulation-based research have been
minimal until now. As a part of CINET, we have developed
a simulation-supporting digital library (SimDL) [21], [22].
SimDL is a framework for producing DL instances that



Fig. 5. Granite system user interface showing available large networks and scalable analysis measures.

Fig. 6. UI for acquiring new network analysis measures.

support large-scale simulation-based infrastructures. Formal
definitions using the 5S formal framework [12] were produced
that precisely describe the services required to support this
community and identify functionality absent in current open-
source DL software. See Fig. 7 for the metamodel produced
by these formalizations. From these functional definitions, the
minimal set of simulation-supporting services was identified
and implemented to produce a software toolkit. The final

result is a software package that may be deployed in various
simulation research infrastructures.

A. Core Functionality

The SimDL instance utilized in this work includes core
information storage and retrieval services to manage graphs,
measures, and results, as well as higher-level simulation sup-
porting services to support infrastructure and scientific tasks,
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Fig. 7. Metamodel leading to SimDL’s architectural design.

TABLE III
PRIMARY METADATA OF EACH MAJOR DATA TYPE.

Graph Measure CINET logic User
Name Name Network tool ID

Description Description supportability Real name
Number of nodes Parameters Estimated running Group
Number of edges Command time based on Password

File path Category graph size
Network type
Graph format

Date of addition
Owner-right

Source

as shown in Fig. 1. CINET uses the metadata provided by the
DL to create job requests which are compositions of graphs,
measures, and resource information in the form of shell scripts.
The system also receives decisions of tool support abilities
based on sizes and estimated running times of graphs and
measures selected by users.

Table III shows the primary metadata for each major data
type used by the CINET system. These are the fundamental
data used by the core DL services mentioned above and the
simulation supporting services described in the next section.

B. Simulation Supporting Services

Simulation supporting services aim to provide incentives for
using the system and efficient data management services for
infrastructure components. Each of these services described
here was designed and implemented to provide scalable
functionality appropriate for highly numeric, data-intensive
scientific content. While other DL systems often provide these
services in other contexts, e.g., full-text publications, existing
implementations do not scale well for automatic indexing
and support of large quantities of simulation-produced digital
objects. SimDL utilizes the DL broker to communicate with
other CI components, e.g., UIs, HPC systems, and simulation
models. Through this broker, other components can contribute,
register, and query collections of new datasets, simulation
studies, metadata records, etc. The broker also is utilized to

process requests for the set of simulation-specific DL service
implementations. The formal definitions leading to the design
of high-level services are overviewed in Fig. 8.
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Fig. 8. Formalisation of the minimal simulation-supporting digital library.

To incentivize researchers and educators to contribute to
and utilize CINET, components log the submission and usage
of graphs, measures, HPC systems, and user behaviors. Thus,
we have a logging system that tracks what types of activities
and data products are related to users. A DL incentivization
service then generates reports detailing statistics for each class
of user, e.g., content provider, software provider, student, and
HPC system administrator. The memoization service maintains
existing simulation results and returns these to the UI if
a deterministic simulation study is designed and submitted
multiple times. This minimizes unnecessary workloads on
contributed systems and provides quicker access time to end-
users. The curation service recommends when digital objects
should be archived, preserved, migrated, and deleted from the
DL based on administrator-defined rules. Additional services
execute query searches, filter content lists, support automated
metadata indexing, and track provenance through the simula-
tion workflow. This set of minimal SimDL services supports
UIs, workflows, HPC systems, simulation models, and user
tasks using automated, scalable, and domain-free software
implementations.

VII. CONCLUSIONS

We have described CINET, a cyberinfrastructure for network
science and analysis of large graphs. The CI provides a
middleware platform connecting high performance compute
engines on the back end (that run on HPC clusters) with a
SimDL instance and data managers that generate, decide the
routing of, and control the flow of job submissions made by
users through the UI portal. Currently, this CI supports two
applications: (i) Granite and (ii) GDSC. The system–both the
CI infrastructure and the applications–is extensible in many
ways. For example, the CI can support other applications,
and the Granite application can incorporate new algorithms
provided by the user community. Some algorithms scale to
billion-node graphs and some of the technologies to support
these have been mentioned. Representative results and perfor-
mance data on large real networks have been provided. The
system is designed to track use of different features so that
proper public credit can be given to those contributing data



and methods. Free for public use, the system is intended to
foster (remote, interdisciplinary) collaboration and provide a
common repository for network science research and for users
to share data and analysis methods.

Granite and GDSC can be accessed by clicking the “Net-
work Analysis” button on the CINET website (http://ndssl.
vbi.vt.edu/cinet). The site provides all information related
to the CINET project. The website also acts as an online
repository for educational materials related to network science
that includes courses and notes, presentations, and survey
papers.
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[12] M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. A. Kipp. Streams,
structures, spaces, scenarios, societies (5S): A formal model for digital
libraries. ACM Trans Inf Syst, 22(2):270–312, 2004.

[13] S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. The
Dynamics of Protest Recruitment Through an Online Network. Nature
Scientific Reports, pages 1–7, 2011. DOI: 10.1038/srep00197.

[14] M. Granovetter. Threshold Models of Collective Behavior. American J.
Sociology, 83(6):1420–1443, 1978.

[15] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the
7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena,
CA, USA, Aug. 2008.

[16] B. Hancioglu, D. Swigon, and G. Clermont. A dynamical model of
human immune response to influenza A virus infection. Journal of
Theoretical Biology, 246(1):70–86, 2007.

[17] T. H. Jordan. SCEC 2009 Annual Report. Southern California
Earthquake Center, 2009.

[18] U. Karaoz, T. Murali, S. Letovsky, Y. Zheng, C. Ding, C. Cantor, and
S. Kasif. Whole-genome annotation by using evidence integration in
functional-linkage networks. Proceedings of the National Academy of
Sciences, 101(9):2888–2893, 2004.

[19] S. Kethers, X. Shen, A. E. Treloar, and R. G. Wilkinson. Discovering
Australia’s research data. In Proc. JCDL 2010, pages 345–348, 2010.

[20] C. Kuhlman, V. Kumar, M. Marathe, S. Ravi, D. Rosenkrantz, S. Swarup,
and G. Tuli. Inhibiting the Diffusion of Contagions in Bi-Threshold
Systems: Analytical and Experimental Results. In Proceedings of the
AAAI Fall 2011 Symposium on Complex Adaptive Systems (CAS-AAAI
2011), pages 91–100, November 2011.

[21] J. Leidig, E. Fox, M. Marathe, and H. Mortveit. Epidemiology
experiment and simulation management through schema-based digital
libraries. In Proceedings of the 2nd DL.org Workshop at ECDL, pages
57–66, 2010.

[22] J. Leidig, E. A. Fox, K. Hall, M. Marathe, and H. Mortveit. SimDL:
A Model Ontology Driven Digital Library for Simulation Systems. In
ACM/IEEE Joint Conference on Digital Libraries, JCDL ’11. ACM,
2011.

[23] P. P. Leonardo Candela, Donatella Castelli. D4Science: an e-
infrastructure for supporting virtual research. In Proceedings of IRCDL
2009 - 5th Italian Research Conference on Digital Libraries, pages 166–
169, 2009.

[24] J. Leskovec. Stanford Network Analysis Project. http://snap.stanford.
edu/, 2009. [Online; accessed 17-July-2012].

[25] N. Li, L. Zhu, P. Mitra, K. Mueller, E. Poweleit, and C. L. Giles.
oreChem ChemXSeer: a semantic digital library for chemistry. In Proc.
JCDL 2010, pages 245–254, 2010.

[26] R. W. Moore, A. Rajasekar, M. Wan, Y. Katsis, D. Zhou, A. Deutsch, and
Y. Papakonstantinou. Constraint-based Knowledge Systems for Grids,
Digital Libraries, and Persistent Archives: Yearly Report. In SDSC TR-
2005-5, 2005.

[27] D. J. Myers and P. E. Oliver. The opposing forces diffusion model: the
initiation and repression of collective violence. Dynamics of Asymmetric
Conflict, 1:164–189, 2008.

[28] NWB Team. Network Workbench Tool. Indiana University, Northeastern
University, and University of Michigan. http://nwb.cns.iu.edu, 2006.
[Online; accessed 17-July-2012].

[29] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in
creating a workflow environment for the life sciences. In Concurrency
and Computation: Practice and Experience, volume 18, pages 1067–
1100, 2006.

[30] R. Puzis, M. Tubi, Y. Elovici, C. Glezer, and S. Dolev. A Decision
Support System for Placement of Intrusion Detection and Prevention
Devices in Large-Scale Networks. ACM Transactions on Modeling and
Computer Simulation, 22:1–2, 2011.

[31] T. C. Reluga, J. Medlock, and A. S. Perelson. Backward bifurcations
and multiple equilibria in epidemic models with structured immunity.
Journal of Theoretical Biology, 252:155–165, 2008.

[32] T. Schelling. Micromotives and Macrobehavior. W. W. Norton and
Company, 1978.

[33] J. Tsai, E. Bowring, S. Marsella, and M. Tambe. Empirical evaluation
of computational emotional contagion models. In Proceedings of the
11th International Conference on Intelligent Virtual Agents (IVA 2011),
2011.

[34] B. V. and M. A. Pajek - Program for Large Network Analysis.
Connections, 21(2):47–57, 1998.

[35] T. W. Valente. Social Networks and Health: Models, Methods, and
Applications. Oxford University Press, 2010.

[36] H. Vastani, N. Eriksson, R. Laubenbacher, A. Jarrah, B. Stigler, and
F. Hinkelmann. Discrete Visualizer of Dynamics (DVD) v1.0. http://dvd.
vbi.vt.edu/cgi-bin/git/dvd.pl, 2012. [Online; accessed 17-July-2012].

[37] J. Zhao, M.-Y. Kan, and Y. L. Theng. Math information retrieval: user
requirements and prototype implementation. In Proceedings of JCDL
’08, pages 187–196, 2008.


