
Updated April 24, 2024

Homework problems for AMAT 327 (Elementary Abstract Algebra), Spring 2024. Over the
course of the semester I’ll add problems to this list, with each problem’s due date specified.
Each problem is worth 2 points.

Solutions will be gradually added (and may be hastily written without proofreading).

——————————–

(These first three problems are just to make sure everyone’s on the same page with proof
techniques and so forth.)

Problem 1 (due Thurs 1/25): Let f : A → B and g : B → C be functions. Prove that if f
and g are one-to-one then so is g ◦ f .

Solution: Let a, a′ ∈ A such that g(f(a)) = g(f(a′)). Since g is injective, f(a) = f(a′). Then
since f is injective, a = a′. We conclude that g ◦ f is injective. �

Problem 2 (due Thurs 1/25): Use proof by contradiction to prove that the intersection
{28a− 21b | a, b ∈ Z} ∩ {7c+ 1 | c ∈ Z} is empty.

Solution: Suppose it is non-empty, say x is an element of both sets. Then x = 28a− 21b for
some a, b ∈ Z, and x = 7c+1 for some c ∈ Z. Thus 28a−21b = 7c+1, so 1 = 7(4a−3b− c),
which contradicts that 7 does not divide 1. �

Problem 3 (due Thurs 1/25): Use mathematical induction to prove that n2 − n is even for
all n ∈ N. (Don’t just split into the cases when n is even/odd, actually use induction.)

Solution: Base case n = 1: We check that 12−1 = 0 is even. Now suppose n ≥ 2, and assume
that (n−1)2−(n−1) is even, say it equals 2k for some k ∈ Z. Then n2−2n+1−n+1 = 2k,
so n2 − n = 2k + 2n− 2 = 2(k + n− 1) is even. �

—————————————–

Problem 4 (due Thurs 2/1): Compute the inverse of σ ∈ S6 = Sym({1, 2, 3, 4, 5, 6}), where
σ is expressed in cycle notation as σ = (1 4 5)(2 6). (Write your answer in cycle notation.)

Solution: It’s (1 5 4)(2 6).

Problem 5 (due Thurs 2/1): Let R = {(x, y) ∈ R2 | y ≥ |x|}. Prove that R has exactly two
symmetries (the identity and one other symmetry).

Solution: The identity and the reflection across the y-axis are two symmetries. To see that
these are the only ones, note that any symmetry must fix the origin since that’s the only
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point in R that does not lie in the interior of a line segment contained in R (and isometries
of R must take line segments to/from line segments). This implies that every symmetry of
R is induced by an isometric linear transformation R2 → R2 (so rotations and reflections),
and it is easy to see that none of these take R bijectively to R except the identity and the
y-axis reflection. �

Problem 6 (due Thurs 2/1): Let σ, τ ∈ S5 such that σ and τ are both 3-cycles. Prove that
if σ ◦ τ = τ ◦ σ then either σ = τ or σ = τ−1. [Hint: The contrapositive might be easier.
(Maybe.)]

Solution: Suppose σ 6= τ and σ 6= τ−1. Say without loss of generality that σ = (1 2 3), and
say τ = (a b c) for some a < b < c in {1, . . . , 5}. Our hypotheses ensure that a ≤ 3 and
c ≥ 4, so in particular σ(a) 6= a and σ(c) = c. Now observe that σ ◦ τ(c) = σ(a) 6= a, and
τ ◦ σ(c) = τ(c) = a, so σ ◦ τ 6= τσ. �

—————————————–

Problem 7 (due Thurs 2/8): Which elements of Z12 are zero divisors? Which are invertible?
For those that are invertible, compute their inverses.

Solution: You can compute that 2, 3, 4, 6, 8, 9, and 10 are zero divisors mod 12, and 1, 5,
7, and 11 are invertible mod 12, in fact they are each their own inverses mod 12.

Problem 8 (due Thurs 2/8): Prove that the set N with the product (m,n) 7→ lcm(m,n)
(meaning least common multiple) is not a group.

Solution: Suppose it is a group, and let e be the identity element. Then lcm(e, 1) = 1, so 1 is
a multiple of e, which implies e = 1. But now if n is the inverse of 2, we have lcm(2, n) = 1,
but 1 is not a multiple of 2, so this is a contradiction. �

Problem 9 (due Thurs 2/8): Let φ : G → H be an isomorphism of groups. Prove that the
inverse φ−1 : H → G is also an isomorphism.

Solution: It is clearly bijective, so we need to prove it is a homomorphism. Let h, h′ ∈ H.
Let g = ψ−1(h) and g′ = ψ−1(h′). Then ψ−1(hh′) = ψ−1(ψ(g)ψ(g′)) = ψ−1(ψ(gg′)) = gg′ =
ψ−1(h)ψ−1(h′). Since h and h′ were arbitrary, ψ−1 is a homomorphism. �

—————————————–

Problem 10 (due Thurs 2/15): Let G and H be groups, with identity elements 1G and 1H
respectively. Let φ : G→ H be a homomorphism. Prove that φ(1G) = 1H .

Solution: We have φ(1G) = φ(1G · 1G) = φ(1G) · φ(1G), so multiplying by φ(1G)−1 we get
1H = φ(1G). �



Problem 11 (due Thurs 2/15): Write down an isomorphism from S3 to the group G of
symmetries of an equilateral triangle.

Solution: Number the vertices 1,2,3, and now any symmetry of the triangle induces a per-
mutation of {1, 2, 3}. You can write down the correspondence, like reflecting through the
line connecting 3 to the midpoint of the edge from 1 to 2 corresponds to (1 2), and so forth.
(Easy to draw, hard to type.) �

Problem 12 (due Thurs 2/15): Let ψ : G → H be a homomorphism. Let K = {g ∈ G |
ψ(g) = 1H}. Prove that K is a subgroup of G. [Hint: You can use the “easy subgroup
criterion” that I forgot to mention in class today but will hopefully remember to mention on
Tuesday.]

Solution: Since ψ(1G) = 1H , we know 1G ∈ K. Now let g, g′ ∈ K, so ψ(g) = ψ(g′) = 1H .
Then ψ(g−1g′) = ψ(g)−1ψ(g′) = 1H · 1H = 1H . We conclude that g−1g′ ∈ K. �

—————————————–

Problem 13 (due Thurs 2/22): Let H = {σ ∈ Sn | σ(1) = 1}. Prove that H is a subgroup of
Sn.

Solution: Since id(1) = 1 we know id ∈ H. Now let σ, τ ∈ H, so σ(1) = 1 and τ(1) = 1.
Then (σ−1 ◦ τ)(1) = σ−1(1) = 1, so σ−1 ◦ τ ∈ H. �

Problem 14 (due Thurs 2/22): Let ψ : G → H be a homomorphism. Let K = {g ∈ G |
ψ(g) = 1H}. Prove that if K = {1} [oops should have written K = {1G}, hopefully this was
clear] then ψ is injective.

Solution: Let g, g′ ∈ G such that ψ(g) = ψ(g′). Then ψ(g−1g′) = ψ(g)−1ψ(g′) = 1H , so
g−1g′ ∈ K. But K = {1G}, so g−1g′ = 1G, i.e., g = g′. �

Problem 15 (due Thurs 2/22): Let G be a group and Hα ≤ G a family of subgroups, indexed
by some α ∈ I. Prove that the intersection

⋂
α∈I

Hα is a subgroup of G.

Solution: Since 1 ∈ Hα for all α (by virtue of each Hα being a subgroup), we have that 1 is
in this intersection. Now let g and g′ be in the intersection, so g, g′ ∈ Hα for all α. Since
each Hα is a subgroup, g−1g′ ∈ Hα for all α, and so g−1g′ is in the intersection. �

—————————————–

Problem 16 (due Thurs 2/29): Compute the order of [1265]2024 in Z2024. [Hint: The relevant
prime factorizations are 1265 = 5 · 11 · 23 and 2024 = 2 · 2 · 2 · 11 · 23.]

Solution: It’s 2024/gcd(2024, 1265) = 2024/(11 · 23) = 8.



Problem 17 (due Thurs 2/29): Let G be a group and S ⊆ G a subset such that st = ts for
all s, t ∈ S. Prove that the subgroup 〈S〉 ≤ G is abelian.

Solution: Let x, y ∈ 〈S〉, say x = sε11 · · · sεnn and y = tδ11 · · · tδmm for some si, ti ∈ S and εi, δi ∈
{1,−1}. We know that sitj = tjsi for all i, j, and multiplying this equation by appropriate
s−1i and t−1j on either side, we get sit

−1
j = t−1j si, s

−1
i tj = tjs

−1
i , and s−1i t−1j = t−1j s−1i as well.

Now in the product xy we can move every t
δj
j to the left of every sεii , one at a time, until

xy = yx. �

Problem 18 (due Thurs 2/29): Let φ : G→ H be a group homomorphism. Let S ⊆ G. Prove
that φ(〈S〉) = 〈φ(S)〉.

Solution: (⊆): Let h ∈ φ(〈S〉), say h = φ(g) for g ∈ 〈S〉. Write g = sε11 · · · sεnn for some
si ∈ S and εi ∈ {1,−1}. Now h = φ(g) = φ(sε11 · · · sεnn ) = φ(s1)

ε1 · · ·φ(sn)εn , so h ∈ 〈φ(S)〉.
(⊇): Let h ∈ 〈φ(S)〉, say h = φ(s1)

ε1 · · ·φ(sn)εn . Then h = φ(g) for g = sε11 · · · sεnn , so
g ∈ 〈S〉, which shows that h ∈ φ(〈S〉). �
—————————————–

Problem 19 (due Thurs 3/7): Let G be an abelian group. Prove that every subgroup H ≤ G
is normal.

Solution: For any g ∈ G we have gHg−1 = {ghg−1 | h ∈ H} = {hgg−1 | h ∈ H} = H. �

Problem 20 (due Thurs 3/7): Let φ : Z12 → Z9 be the homomorphism φ([a]12) := [3a]9.
(Note that this is well defined, since if a− b is a multiple of 12 then 3a− 3b is a multiple of
9.) Compute the kernel of φ.

Solution: Applying φ to each element of Z12, we see that the ones that map to [0]9 are
{[0]12, [3]12, [6]12, [9]12}.

Problem 21 (due Thurs 3/7): Let H ≤ Sn be the subgroup from homework problem #13.
Prove that if n ≥ 3 then H is not a normal subgroup.

Solution: Let σ = (2 3) ∈ H and let τ = (1 2). Then τστ−1 = (1 2)(2 3)(1 2) = (1 3) 6∈
H. �

—————————————–

Problem 22 (due Thurs 3/14): For m ≤ n, view Sm as a subgroup of Sn via Sm = {σ ∈ Sn |
σ(i) = i for all m < i ≤ n}. Compute the index [Sn : Sm].

Solution: Since the groups involved are finite, the index is the quotient of the orders, i.e.,
[Sn : Sm] = |Sn|/|Sm| = n!/m!.



Problem 23 (due Thurs 3/14): View S4 as a subgroup of S5 as above, so S4 = {σ ∈ S5 |
σ(5) = 5}. Let T = {id, (1 5), (2 5), (3 5), (4 5)}. Prove that every coset of S4 in S5 contains
an element of T .

Solution: Let σS4 be a coset. Set i = σ(5), and we claim that (i 5) ∈ σS4 (if i = 5 this means
id ∈ σS4). It suffices to prove that σ−1(i 5) ∈ S4. Indeed, σ−1(i 5) sends 5 to σ−1(i) = 5, so
σ−1(i 5) ∈ S4. �

Problem 24 (due Thurs 3/14): Let G be a group and N a normal subgroup of G. Prove that
if G is abelian then the quotient group G/N is abelian. Give an example to show that the
converse is false.

Solution: Suppose G is abelian. Let gN, hN ∈ G/N . Then (gN)(hN) = (gh)N = (hg)N =
(hN)(gN), so G/N is abelian. For the converse being false, let G = N = S3 (or any
non-abelian group), so G is non-abelian but G/N is trivial, hence abelian. �

—————————————–

Problem 25 (due Thurs 4/4): Let A and B be abelian groups. Prove that the direct product
G = A×B is abelian.

Solution: Let (a, b), (a′, b′) ∈ A×B. Then (a, b)(a′, b′) = (aa′, bb′) = (a′a, b′b) = (a′, b′)(a, b).
�

Problem 26 (due Thurs 4/4): Prove that for any non-trivial subgroups A and B of Q (this
is the group of rational numbers with operation +), the intersection A ∩ B is non-trivial.
Explain why this proves that Q cannot be isomorphic to any direct product of non-trivial
groups.

Solution: Let 0 6= m
n
∈ A and 0 6= p

q
∈ B. Since A is closed under addition, adding m

n

to itself np times yields mp ∈ A. Similarly, adding p
q

to itself qm times yields mp ∈ B.

Since m 6= 0 and p 6= 0 we have 0 6= mp ∈ A ∩ B. As for why this shows Q cannot be
isomorphic to a direct product of non-trivial groups, it is enough to argue that Q cannot be
written as a non-trivial internal direct product, btu this is clear since in an internal direct
product Q = M × N , the intersection M ∩ N would be trivial, and we just showed this is
impossible. �

Problem 27 (due Thurs 4/4): Let G be a group. Let H ≤ G be a subgroup and N / G a
normal subgroup. Let HN := {hn | h ∈ H and n ∈ N} ⊆ G. Prove that HN is a subgroup
of G. [Hint: The proof should look like, “Let hn, h′n′ ∈ HN . Then blah blah blah hence
(hn)−1(h′n′) ∈ HN .”]

Solution: Let hn, h′n′ ∈ HN . Then (hn)(h′n′) = (hh′)((h′)−1nh′)n′, and since N is normal
this lies in HN . Moreover, (hn)−1 = n−1h−1 = h−1(hn−1h−1), and since N is normal this lies



in HN . This shows HN is closed under mutliplication and inversion, and clearly 1 ∈ HN
since 1 ∈ H, 1 ∈ N , and 1 · 1 = 1, so we are done. �

—————————————–

Problem 28 (due Thurs 4/11): Prove that S = {p(x) ∈ R[x] | p(2) = 0 and p(3) = 0} is a
subring of R[x].

Solution: Clearly the constant zero polynomial satisfies these rules, hence lies in S. Now let
p(x), q(x) ∈ S, so p(2) = q(2) = p(3) = q(3) = 0. We get (p−q)(2) = p(2)−q(2) = 0−0 = 0
and (p − q)(3) = p(3) − q(3) = 0 − 0 = 0, so p(x) − q(x) ∈ S. Similarly, (pq)(2) = 0 and
(pq)(3) = 0, so p(x)q(x) ∈ S. This shows that S is non-empty, closed under subtraction,
and closed under multiplication, hence is a subring. �

Problem 29 (due Thurs 4/11): Prove that S = {p(x) ∈ R[x] | p(2) = 0 or p(3) = 0} is not a
subring of R[x].

Solution: Note that (x− 2) ∈ S since it has a root at 2, and (x− 3) ∈ S since it has a root
at 3, but the sum (x − 2) + (x − 3) does not have a root at either 2 or 3 and so is not an
element of S. Thus, S is not closed under addition and so is not a subring. �

Problem 30 (due Thurs 4/11): Let R be a ring. Call an element a ∈ R idempotent if a2 = a.
Say R has characteristic 2 if a+ a = 0 for all a ∈ R. Prove that if R is a commutative ring
with characteristic 2, then the set of all idempotent elements forms a subring.

Solution: Let I be the set of idempotents. Since 02 = 0 we have 0 ∈ I, so I is non-empty.
Now let a, b ∈ I, so a2 = a and b2 = b. We get (a+ b)2 = a2 + ab+ ba+ b2, which since R is
commutative equals a2 + 2ab+ b2, and since R has characteristic 2 this equals a2 + b2. Since
a and b are idempotent, we conclude that (a+ b)2 = a+ b, so a+ b ∈ I. This shows that I
is closed under addition, and since R has characteristic 2 we know a = −a for all a ∈ R, so
I is closed under negation. Finally, for a, b ∈ I, we have (ab)2 = abab = aabb = ab thanks
to commutativity of R and idempotence of a and b, so ab ∈ I. This shows I is closed under
multiplication, and we are done. �

—————————————–

Problem 31 (due Tues 4/23): Let R be an abelian group. View R as a ring by declaring
the multiplication operation is ab = 0 for all a, b ∈ R. Prove that every subgroup S ≤ R is
actually an ideal.

Solution: Since we’re told it’s a subgroup, we just need to prove it “absorbs” multiplication.
Let r ∈ R and s ∈ S. Then rs = sr = 0 ∈ S, so indeed it does. �



Problem 32 (due Tues 4/23): Let R be a commutative ring and M2(R) the ring of 2-by-2
matrices with entries in R (with the usual matrix addition and multiplication). Prove that
if I is an ideal in R then M2(I) is an ideal in M2(R).

Solution: Clearly 0 ∈ M2(I). Let A,B ∈ M2(I), so every entry of A and B lies in I. Then
every entry of A − B lies in I since subtraction is entrywise, so A − B ∈ M2(I). Finally,
let A ∈M2(I) and B ∈M2(R). I don’t feel like typing out matrix multiplication, but every
entry of AB or BA is a sum of products of something in I times something in R, hence in
I, so AB,BA ∈M2(I). �

Problem 33 (due Tues 4/23): Let R be a commutative ring with multiplicative identity 1 6= 0.
Call an ideal I in R prime if for any x, y ∈ R with xy ∈ I, we must have either x ∈ I or
y ∈ I. Prove that if I is not prime, then there exists an ideal J of R with I ( J ( R.
[Hint: Saying I is not prime means there exist x, y ∈ R such that xy ∈ I but x, y 6∈ I. Now
set J = I + xR and prove that I 6= J and J 6= R.]

Solution: Suppose I is not prime, so there exist x, y ∈ R such that xy ∈ I but x, y 6∈ I. Now
set J = I+xR. We first claim I 6= J . Suppose I = J , so I = I+xR. Thus, x = 0+x ·1 ∈ I,
a contradiction. We conclude I 6= J . Now we claim J 6= R. Suppose J = R, so 1 ∈ J , say
1 = i + xr for some i ∈ I and r ∈ R. Then y = yi + yxr, and since R is commutative this
equals yi+xyr. Since xy ∈ I and I is an ideal, yi+xyr ∈ I. Thus y ∈ I, a contradiction. �

—————————————–
End of homework.


