Second Midterm for AMAT 327 (Elementary Abstract Algebra), Spring 2024. Thursday 3/14/24.

30 points total.

Name: _____

Problem 1: Complete the following definitions:

1a (2 points): We say that a subgroup H of a group G is normal if $gHg^{-1} = H$ for all $g \in G$.

1b (2 points): The *kernel* of a homomorphism $\phi: G \to H$ is $\{g \in G \mid \phi(g) = 1\}$.

1c (2 points): For G a group and $S \subseteq G$, the subgroup generated by S, denoted by $\langle S \rangle$, is defined to be $\{s_1^{\epsilon_1} \cdots s_n^{\epsilon_n} \mid s_i \in S, \epsilon_i \in \{1, -1\}\}$.

1d (2 points):

The order of an element g of a group G is the order of $\langle g \rangle$.

Problem 2: Say whether the statement is true or false. You don't need to formally prove anything but **justify your answer**.

2a (3 points): True or false: The permutation $(1\ 2\ 5\ 6)(2\ 3\ 7)(4\ 5\ 6\ 7)$ in S_7 is even. True: it decomposes as (12)(25)(56)(23)(37)(45)(56)(67)), which is a product of an even number (eight) of 2-cycles.

2b (3 points): True or false: A group of order 2024 can have a subgroup isomorphic to \mathbb{Z}_3 .false: 3 does not divide 2024, so Lagrange's Theorem says false.

Problem 3 (6 points): Let $\psi \colon G \to H$ be a homomorphism of groups. Prove that if ker (ψ) is trivial then ψ is injective.

Solution: Suppose ker $(\psi) = \{1\}$. Let $g, g' \in G$ with $\psi(g) = \psi(g')$. Then $\psi(g^{-1}g') = 1$, so $g^{-1}g' \in \text{ker}(\psi)$, i.e., $g^{-1}g' = 1$. Thus, g = g'.

Problem 4 (6 points): Let G be a group. The center Z(G) of G is the subset

$$Z(G) := \{ z \in G \mid zg = gz \text{ for all } g \in G \},\$$

i.e., the subset of all elements that commute with every element. Prove that Z(G) is a subgroup, and in fact a normal subgroup, of G. [For context, this is very similar to your homework problem proving that every subgroup of an abelian group is normal.]

Solution: Since 1g = g1 for all $g \in G$, $1 \in Z(G)$. Now let $z, z' \in Z(G)$, so zg = gz and z'g = gz' for all $g \in G$. Rewriting zg = gz to $gz^{-1} = z^{-1}g$, we get $(z^{-1}z')g = z^{-1}gz' = g(z^{-1}z')$ for all $g \in G$, which shows that $z^{-1}z' \in Z(G)$. Hence Z(G) is a subgroup. Finally, $gzg^{-1} = zgg^{-1} = z$ for all $g \in G$, so $gZ(G)g^{-1} = Z(G)$, so Z(G) is normal.

Problem 5 (4 points): Let $G = \mathbb{R}$ with the group operation +, and let H be any subgroup of G containing 1 and π . Prove that H is not cyclic. [Hint: Since the operation is +, the notation $\langle a \rangle$ means $\{na \mid n \in \mathbb{Z}\}$.]

Solution: Suppose H is cyclic, say $H = \langle a \rangle$. Since 1 and π lie in H, we have 1 = na and $\pi = ma$ for some $n, m \in \mathbb{Z}$. Thus, $\pi = m/n$ is rational, a contradiction.

BONUS (+2 points): Prove that the only normal subgroups of S_5 are {id}, A_5 , and S_5 .this is actually pretty hard/tedious, not going to type it all out!