First Midterm for AMAT 327 (Elementary Abstract Algebra), Spring 2024. Thursday 2/15/24.

30 points total.
Name: \qquad
Problem 1: Complete the following definitions:
1a (2 points):
The order of a group is its cardinality.
1b (2 points):
A permutation of a set X is a bijection from X to itself.
1c (2 points):
A group is abelian if every pair of elements commute.
1d (2 points):
We say that a subset H of a group G is a subgroup if $1 \in H$ and for all $h, h^{\prime} \in H, h^{-1} h^{\prime} \in H$.
Problem 2: Say whether the statement is true or false. You don't need to formally prove anything but justify your answer.
2a (3 points): True or false: The elements (12)(34) and (1234) of S_{4} commute.false: (12)(34)(1234) fixes 1 but (1234)(12)(34) sends 1 to 3 , so they cannot be equal.

2b (3 points): True or false: The element $[8]_{2024}$ is a zero divisor in \mathbb{Z}_{2024}.true: 8 times 253 is zero $\bmod 2024$.

Problem 3 (6 points): Let $\phi: G \rightarrow H$ be an isomorphism of groups. Prove that $\phi^{-1}: H \rightarrow G$ is an isomorphism. [Take for granted that it's a bijection, so you only have to prove that it's a homomorphism.]
Solution: Let $h, h^{\prime} \in H$. By surjectivity we can choose $g, g^{\prime} \in G$ such that $\phi(g)=h$ and $\phi\left(g^{\prime}\right)=h^{\prime}$. Now $\phi^{-1}\left(h h^{\prime}\right)=\phi^{-1}\left(\phi(g) \phi\left(g^{\prime}\right)\right)=\phi^{-1}\left(\phi\left(g g^{\prime}\right)\right)=g g^{\prime}=\phi^{-1}(h) \phi^{-1}\left(h^{\prime}\right)$.

Problem 4 (6 points): Prove that \mathbb{N} with the product $(m, n) \mapsto \operatorname{gcd}(m, n)$ is not a group. (Careful, this is "greatest common divisor", not "least common multiple" like on the homework.)
Solution: Suppose it is a group, say n is the identity element. then $\operatorname{gcd}(m, n)=m$ for all $m \in \mathbb{N}$, so every m is a divisor of n. But such an n does not exist.
Problem 5 (4 points): A monoid is just like a group except we don't require the "inverses" axiom (so, just associativity and identity). Recall the power set $\mathcal{P}(X)$ of a set X is the set of all subsets of X. Prove that $\mathcal{P}(X)$ with the product $(A, B) \mapsto A \cup B$ is a monoid. Is it a group? Prove or disprove.
Solution: Associativity is clear since $(A \cup B) \cup C=A \cup(B \cup C)$. The identity element is \emptyset since $A \cup \emptyset=\emptyset \cup A=A$ for all A. It is not a group (unless $X=\emptyset$) since $A \cup B=\emptyset$ is only possible when $A=\emptyset$.

BONUS (+2 points):
Let $\phi: G \rightarrow H$ be a homomorphism of groups. Let $K=\{g \in G \mid \phi(g)=1\}$. Prove that if $K=\{1\}$ then ϕ is injective.Solution: see problem 3 on exam 2

