Problem 1: Define what it means for a topological space to be second countable.
 Solution: Admits a countable basis.

Problem 2: Give an example of a space that is connected but not path connected (you don’t have to rigorously prove it, but give a rough explanation of why it’s connected and not path connected).
 Solution: Topologist’s sine curve (can google).

Problem 3: Let X be a locally compact Hausdorff space and $Y = X \cup \{\infty\}$ its one-point compactification. Let C be a closed subspace of X. Explain why $C \cup \{\infty\}$ is compact.
 Solution: Since C is closed in X, $X \setminus C$ is open in X. The topology on Y is such that $X \setminus C$ is also open in Y, hence $Y \setminus (X \setminus C) = C \cup \{\infty\}$ is closed in Y. Since Y is compact this implies $C \cup \{\infty\}$ is compact. □

Do one of 4a or 4b, you don’t have to do both. If you do both for some reason, indicate which one you actually want me to grade and I’ll ignore the other one.

Problem 4a: Sketch a proof that every compact Hausdorff space is normal.
 Solution: Given disjoint closed A and B, fix $a \in A$. Separate a from each element of B with disjoint open neighborhoods. These cover B, which is compact, so we only need finitely many of them, and intersecting the finitely many corresponding open neighborhoods of a separates a from B (so now the space is regular). Now do a similar trick letting a vary, intersect finitely many open nbds of B, and end up with disjoint open nbds of A and B. □

Problem 4b: Sketch a proof that every metric space is normal.
 Solution: Given disjoint closed A and B, around each $a \in A$ fit a small ball disjoint from B. Around each $b \in B$ fit a small ball disjoint from A. Replace each ball with one half the radius (same center). Now the first batch of balls covers A and the second covers B, and the triangle inequality says each ball of the first kind is disjoint from each ball of the second kind. So the unions of these balls separate A and B. □

Do one of 5a or 5b, you don’t have to do both. If you do both for some reason, indicate which one you actually want me to grade and I’ll ignore the other one.

Problem 5a: Let $f, g: S^1 \to S^1$ be $f(x, y) = (x, y)$ and $g(x, y) = (x, -y)$. Show that f and g are not homotopic.
 Solution: Note that f_* is the identity on $Z = \pi_1(S^1)$, and g_* is not since, e.g., $g_*([\omega_1]) = [\omega_{-1}]$, so f and g are not homotopic. □
Problem 5b: Let \(f, g : [0, 1] \to S^1 \times S^1 \) be loops in the torus with the same basepoint. Show that \(f \ast g \ast \tilde{f} \ast \tilde{g} \) is nullhomotopic.

Solution: Since \(\pi_1(S^1 \times S^1) \cong \pi_1(S^1) \times \pi_1(S^1) \cong \mathbb{Z}^2 \) is abelian, \([f \ast g \ast \tilde{f} \ast \tilde{g}] = [f] \ast [g] \ast [\tilde{f}] \ast [\tilde{g}] = [f] \ast [\tilde{f}] \ast [g] \ast [\tilde{g}] = 1.\)

Bonus: The Klein bottle \(K \) is the quotient of \([0, 1] \times [0, 1]\) by the identifications \((x, 0) \sim (x, 1)\) for all \(x\) and \((0, y) \sim (1, 1 - y)\) for all \(y\). Prove that \(K \) is not homotopy equivalent to the torus \(S^1 \times S^1 \).

Solution: It suffices to show \(\pi_1(K) \) is non-abelian. The construction shows that \(\pi_1(K) = \langle a, b \mid aba^{-1} = b^{-1} \rangle \), which is non-abelian.