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1. Introduction

The first thing to introduce in this talk is the notion of a 2-Segal space, or if we
consider the discrete case (which we mostly do in this talk), a 2-Segal set.

Informally, a 1-Segal set behaves like a category : it has objects, morphisms, and
a unique composition law which is associative. A 2-Segal set encodes something
weaker: its composition may or may not exist, or be unique when it does, but it is
nonetheless associative.

Our goal today is to look more closely at the precise structure of a 2-Segal set,
and then see how such structures arise in algebraic K-theory. In particular, we will
give some conjectured relationships with some of the structures which appeared in
Inna’s talk.

2. Simplicial sets and 1-Segal sets

To get to a precise definition of 2-Segal sets, we first need to review the notion
of a simplicial set. Recall that the category ∆ has objects the finite ordered sets

[n] = {0 ≤ 1 ≤ · · · ≤ n}
for each n ≥ 0, and morphisms the order-preserving maps. Its opposite category
∆op has the same objects but all the arrows reversed.

Definition 2.1. A simplicial set is a functor K : ∆op → Sets.

The “downward” arrows [n]→ [n− 1] are called face maps and can be thought
of like the maps of the same name in a simplicial complex. The “upward” maps
[n] → [n + 1] are called degeneracy maps and can be thought of as a means of
thinking of a simplex of a given dimension as a degenerate simplex of a higher
dimension.

Example 2.2. Let C be a small category. Its nerve is a simplicial set with 0-
simplices the objects of C, 1-simplices the morphisms of C, 2-simplices given by
composable pairs of morphisms, namely elements of

mor(C)×ob(C) mor(C),
and similarly n-simplices are given by chains of n composable morphisms of C.

Definition 2.3. A 1-Segal set is a simplicial set K such that, for any n ≥ 2, there
is an isomorphism

Kn
∼= K1 ×K0

· · · ×K0
K1.

The maps giving these isomorphisms are defined as follows. Consider the inclu-
sion

G(n) := (• → • → · · · → •) ↪→ ∆[n].
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Mapping into a fixed simplicial set K, we get

Kn = Hom(∆[n],K)→ Hom(G(n),K) = K1 ×K0
· · · ×K0

K1.

Observe that a 1-Segal set coincides exactly with the nerve of a category. Compo-
sition can be defined via

K1 ×K0 K1

∼=← K2 → K1.

3. 2-Segal sets

The generalization to 2-Segal sets is due to Dyckerhoff and Kapranov, and in-
dependently by Gálvez-Carrillo, Kock, and Tonks, under the name of (discrete)
decomposition space.

If we think of G(n) as a “triangulation” of a line segment, then we could move
up a dimension and look at triangulations of regular polygons. There are two
triangulations of a square:

T1 : 3 2oo T2 : 3 2oo

0

OO

//

@@

1

OO

0

OO

// 1.

OO__

Each gives two faces of the boundary of a 3-simplex ∆[3].
Take these two inclusions of simplicial sets and map into a simplicial set K:

Hom(T1,K) ∼= K2 ×K1
K2

K3
∼= Hom(∆[3],K)

(d1,d3)
44

(d0,d2)

**
Hom(T2,K) ∼= K2 ×K1

K2.

Definition 3.1. A 2-Segal set is a simplicial set K such that for every n ≥ 3 and
every triangulation of a regular (n + 1)-gon, the induced map

Kn → K2 ×K1 · · · ×K1 K2︸ ︷︷ ︸
n−1

is an isomorphism.

A 2-Segal set still has objects K0 and morphisms K1 but no guaranteed compo-
sition, since the left-going map in

K1 ×K0
K1 ← K2 → K1

need not be an isomorphism. We can define a composition by taking a pre-image
and then pushing forward. Inspecting the maps coming from the two triangula-
tions of a square above, we can see that this composition must still be associative,
however.
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4. The discrete S• construction

A natural question is then whether there are natural examples of 2-Segal sets.
Dyckerhoff and Kapranov, as well as Gálvez-Carrillo, Kock, and Tonks, showed
that 2-Segal spaces arise from applying Waldhausen’s S•-construction to an exact
category. Here, we’ll look at a discrete version.

The idea is to look at diagrams

∗ �
� // a01

� � //

����

a02
� � //

����

· · · �
� // a0n

����
∗ �
� // a12

� � //

����

· · · �
� // a1n

����

∗
. . .

...

����
∗

with distinguished horizontal and vertical morphisms and “bicartesian” squares.
What is the minimum necessary input for such a diagram to make sense?

We claim that the desired structure is that of a pointed stable double category.

• A double category consists of objects, horizontal morphisms (↪→), vertical
morphisms (�), and squares

• �
� //

����

•

����
• �
� // •.

• Being pointed means that there is an object ∗ which is initial in the hori-
zontal category and terminal in the vertical category.
• Being stable means that any span

• �
� //

����

•

•
or any cospan

•

����
• �
� // •

uniquely determines a square.

Theorem 4.1. (B-Osorno-Ozornova-Rovelli-Scheimbauer) The discrete S•-construction
defines an equivalence of categories between pointed stable double categories and re-
duced 2-Segal sets.

Here, “reduced” means that K0 = ∗. This result has two generalizations:

• We can replace “pointed” with “augmented” to get all 2-Segal sets, not just
reduced ones.
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• (Reduced) 2-Segal spaces correspond to pointed stable double Segal spaces,
via a Quillen equivalence of model categories.

Let us look at why we would expect S•(D) to be 2-Segal, for D a pointed stable
double category. The map

(d0, d2) : S3(D)→ S2(D)×S1(D) S2(D)

is associated to:
∗ �
� // a01

� � //

����

((
a02
� � //

����

a03

����
∗ �
� // ((

a12
� � //

����

a13

����

��

∗ �
� // a23

����
∗.

However, it is not 1-Segal, since the diagram

∗ �
� // a01

����
∗ �
� // a12

����
∗

need not have a completion to a square in the upper-right corner.

5. Connections with CGW categories

Pointed stable double categories seem very similar to CGW categories, as defined
in Inna’s talk.

• They are pointed double categories.
• There, stablility holds up to unique isomorphism (with the reverse direction

of “vertical” arrows).

In joint work with Zakharevich, we conjecture that CGW categories correspond
to pointed stable double Segal groupoids. A natural question we wish to answer is
what abelian CGW categories correspond to. We could then ask whether we can
go back and forth between the two contexts with results and examples.
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