
 BEYOND FORMAT BASICS

1

ORIGINALLY A WORKSHOP PRESENTATION

TOO MANY TOPICS FOR 45 MINUTES

OVERVIEW (WHAT MOST USERS KNOW)

NEW POSSIBILITIES

SPECIFIC EXAMPLES

 BEYOND FORMAT BASICS

2

provide information
about the values of
variables ...

proc format;
value $gender
'1' = 'MALES'
'2' = 'FEMALES'
;
run;

group observations
based on values of
variables ...

proc format;
value age
low-18 = '<19'
19-64 = '19-64'
65-high = '65+'
;
run;

BASICS

 BEYOND FORMAT BASICS

3

BEYOND BASICS

CREATE FORMATS FROM DATA SETS

CNTLIN ... 'CONTROL IN' DATA SET

CREATE DATA SETS FROM FORMATS

CNTLOUT ... 'CONTROL OUT' DATA SET

PUTN AND PUTC FUNCTIONS VERSUS PUT

SELECT A FORMAT FOR USE IN A FUNCTION AT
EXECUTION TIME BASED ON VALUE OF ONE OR
MORE VARIABLES IN A DATA SET

 BEYOND FORMAT BASICS

4

SELECT OBSERVATIONS AND/OR ADD VARIABLES
TO A DATA SET

USE FORMATS IN PLACE OF DATA STEP MERGE
OR PROC SQL

NESTED FORMATS

USE 'RULES' FROM ONE FORMAT AS THE
PORTION OF THE 'RULES' IN ANOTHER FORMAT
... OR, THE FORMATTED VALUE OF A VARIABLE
IS ANOTHER FORMAT)

 BEYOND FORMAT BASICS

5

PRELOADED FORMATS

USE LEVELS OF A FORMAT TO CONTROL
PROCEDURE OUTPUT RATHER THAN THE
RANGE OF VALUES OF VARIABLES IN A DATA
SET ... PROCS MEANS/SUMMARY, TABULATE,
REPORT

MULTI-LABEL FORMATS

USE OVERLAPPING RANGES OF VALUES

DOES FORMAT STATEMENT LOCATION MATTER

BEGINNING VERSUS END OF A DATA STEP

 BEYOND FORMAT BASICS

6

EXAMPLE #1

USE A DATA SET TO CREATE A FORMAT ...

SIMPLE PROBLEM ... 5 CODES, 5 LABELS ... MANUALLY
ENTER SAS CODE ...

proc format;
value $drg
'001' = 'CRANIOTOMY AGE >17 EXCEPT FOR TRAUMA'
'002' = 'CRANIOTOMY FOR TRAUMA AGE >17'
'004' = 'SPINAL PROCEDURES'
'005' = 'EXTRACRANIAL VASCULAR PROCEDURES'
other = 'UNKNOWN';
;
run;

 BEYOND FORMAT BASICS

7

HOWEVER ... 600+ 'RULES' ...

001 CRANIOTOMY AGE >17 EXCEPT FOR TRAUMA
002 CRANIOTOMY FOR TRAUMA AGE >17
004 SPINAL PROCEDURES

 <635 MORE DRGS AND LABELS>

807 COMBINED ANTERIOR/POSTERIOR SPINAL FUSION
W/O CC

808 PERCUATANEOUS CARDIOVASCULAR PROC W
AMI,HEART FAILURE OR SHOCK

809 OTHER CARDIOTHORACIC PROC W PDX
CONGENITAL ANOMALY

 BEYOND FORMAT BASICS

8

COMMON PROBLEM ... CODES AND LABELS IN A RAW
DATA FILE OR IN A DATA SET ... HOW TO CREATE A
FORMAT ...

ANSWER ... CNTLIN DATA SET

MINIMUM CONTENT ... 3 VARIABLES

FMTNAME (VALUE)

START (VALUE RANGE, LEFT SIDE OF =S)

LABEL (FORMATTED VALUE, RIGHT SIDE OF =S)

 BEYOND FORMAT BASICS

9

data drg_fmt;
retain fmtname '$drg; =
infile "k:\workshops\hw08\drgs.dat";
input start $3. +1 label $70.; =
run;

proc format cntlin=drg_fmt; =
select $drg; =
run;

 BEYOND FORMAT BASICS

10

 BEYOND FORMAT BASICS

11

WHAT HAPPENS IF A CODE IS FOUND THAT IS NOT IN
THE VALUE RANGE ... ADD AN 'OTHER' CONDITION ...

data drg_fmt;
retain fmtname '$drg'; =
infile "k:\workshops\hw08\drgs.dat" end=last; =
input start $3. +1 label $50.;
output; =
if last then do; =
 hlo = 'o'; =
 label = 'UNKNOWN'; =
 output; =
end;
run;

 BEYOND FORMAT BASICS

12

 BEYOND FORMAT BASICS

13

lifetime warranty question ... we keep all our information
about screening clinics in an Access database ... how can
we always use the latest information from that file ...

good application for a
CNTLIN data set

example on the right
contains hospital codes
and hospital names

 BEYOND FORMAT BASICS

14

libname x access path="k:\monsug\codes.mdb"; =

data fmt;
retain fmtname '$hosp2name';
set x.hospitals (rename=(code=start name=label)) =
 end=last;
output;
if last then do;
 hlo = 'o';
 label = 'UNKNOWN';
 output;
end;
run;

proc format cntlin=fmt;
run;

libname x clear; =

 BEYOND FORMAT BASICS

15

EXAMPLE #2

USE A PUTN AND PUTC FUNCTIONS TO ADD
VARIABLES TO A DATA SET ...

FIRST ... SIMPLE EXAMPLE ... DATA SET CONTAINS THE
VARIABLE BMI ... IS A PERSON NORMAL, AT RISK, OR
OVERWEIGHT

ASSUME RANGES FOR ALL THREE CATEGORIES ARE
THE SAME REGARDLESS OF AGE ... USE A FORMAT
PLUS A PUT FUNCTION TO CREATE A NEW VARIABLE

 BEYOND FORMAT BASICS

16

proc format;
value bmi2group
low - 17.9 = 'normal'
18 - 19.0 = 'risk'
19.1 - high = 'overweight'
;
run;

data bmi;
input age_group : $1. bmi @@;
bmi_group = put(bmi,bmi2group.);
datalines;
2 17.8 5 16.7 2 18.6 3 17.6 4 17.0 3 18.2 4 18.0
;
run;

 BEYOND FORMAT BASICS

17

ANOTHER LIFETIME WARRANTY QUESTION ... THE
RULES FOR BMI VARY BY AGE GROUP ...

proc format;
value age2_ low-17.9='normal' 18.0-19.0='at risk'
 19.1-high='overweight';

value age3_ low-17.1='normal' 17.2-18.1='at risk'
 18.2-high='overweight';

value age4_ low-16.7='normal' 16.8-17.9='at risk'
 18.0-high='overweight';

value age5_ low-16.7='normal' 16.8-18.1='at risk'
 18.2-high = 'overweight';
run;

 BEYOND FORMAT BASICS

18

data bmi;
length bmi_group $10; =
input age_group : $1. bmi @@;

* PUTN accepts a variable as the 2nd argument;
* format varies by age group;

bmi_group=putn(bmi,cat('age',age_group,'_')); =

datalines;
2 17.8 5 16.7 2 18.6 3 17.6 4 17.0
3 18.2 4 18.0
;
run;

 BEYOND FORMAT BASICS

19

WHY THE LENGTH STATEMENT ...

VARIABLE CREATED WITH A PUT FUNCTION IS A
CHARACTER VARIABLE WITH A LENGTH EQUAL TO
THE LENGTH OF THE LONGEST LABEL IN THE
FORMAT USED AS THE 2ND ARGUMENT

VARIABLE CREATED WITH A PUTN FUNCTION IS A
CHARACTER VARIABLE WITH A LENGTH OF 200

WHY THE CAT FUNCTION ...

ELIMINATES THE NEED TO CREATE A NEW
VARIABLE THAT CONTAINS THE FORMAT NAME

 BEYOND FORMAT BASICS

20

PASS / FAIL GRADES VARY BY YEAR ...

proc format;
value $FR 'A'-'D' = 'PASS' other = 'FAIL';
value $SO 'A'-'C' = 'PASS' other = 'FAIL';
value $JR 'A'-'B' = 'PASS' other = 'FAIL';
value $SR 'A' = 'PASS' other = 'FAIL';
run;

data students;
length pass_fail $4.; =
input class : $2. grade : $1. @@;
pass_fail = putc(grade,cat('$',class)); =
datalines;
FR D SO A SO D JR B JR C SR A SR B
;
run;

 BEYOND FORMAT BASICS

21

WHY THE LENGTH STATEMENT ...

VARIABLE CREATED WITH A PUTC FUNCTION IS A
CHARACTER VARIABLE WITH A LENGTH EQUAL TO
THE LENGTH OF THE VARIABLE USED AS THE 1ST
ARGUMENT

NOTE: DIFFERENT LENGTHS THAT RESULT FROM
PUT, PUTN, AND PUTC

WHY THE CAT FUNCTION ...

ELIMINATES THE NEED TO CREATE A NEW
VARIABLE THAT CONTAINS THE FORMAT NAME

 BEYOND FORMAT BASICS

22

EXAMPLE #3

NESTED FORMATS ... OR USE A PRE-EXISTING
FORMAT AS A LABEL IN ANOTHER FORMAT ...

THE PRE-EXISTING FORMAT CAN BE USER-WRITTEN
OR IT CAN BE SAS-SUPPLIED ...

 BEYOND FORMAT BASICS

23

ASSUME THAT YOU HAVE A FORMAT LIBRARY ... IT
CONTAINS A FORMAT NAMED $NUM2NAM ... THAT
FORMAT HAS HOSPITAL CODES AND HOSPITAL
NAMES ...

YOU HAVE ONE ADDITION (A NEW HOSPITAL) AND ONE
CHANGE (ONE HOSPITAL HAS CLOSED) ... YOU DO
NOT WANT TO MODIFY THE FORMAT IN THE FORMAT
LIBRARY

 BEYOND FORMAT BASICS

24

USE A FORMAT NAME AS THE LABEL FOR OTHER ...

proc format;
value $numplus =
'0004' = 'MEMORIAL HOSPITAL'
'0016' = 'CATHOLIC MED CTR (***CLOSED***)'
other = [$num2nam35.] =
;
run;

 BEYOND FORMAT BASICS

25

TASK ... ALL DATES WITH A GIVEN RANGE ARE TO BE
LABELED AS 'OK' ... ALL OTHER DATES SHOULD BE
DISPLAYED WITH A DATE9. FORMAT ...

proc format;
value chk_date '01FEB1999'd - '31JUL1999'd = 'OK'
 other = [date9.];
run;

 BEYOND FORMAT BASICS

26

EXAMPLE #4

SAS PROCS ONLY COUNT "WHAT'S THERE" ... THEY DO
NOT PRODUCE COUNTS OF "WHAT'S NOT THERE" ...

... YOU CAN FORCE PROCS TO CREATE TABLES
BASED ON FORMAT VALUES, NOT JUST ON DATA
CONTENTS ...

USE DATA SET SASHELP.CLASS ... THERE ARE NO
FEMALES AGE 16+ IN THE DATA SET ...

 BEYOND FORMAT BASICS

27

proc format;
value age low-15 = '<16' 16-high = '16+';
run;

proc means data=sashelp.class mean maxdec=1;
var weight;
class sex age;
format age age.;
run;

 BEYOND FORMAT BASICS

28

proc means data=sashelp.class mean maxdec=1
 completetypes; =
var weight;
class sex age / preloadfmt; =
format age age.;
run;

 BEYOND FORMAT BASICS

29

EXAMPLE #5

RANGES THAT OVERLAP NORMALLY CAUSE ERRORS
IN PROC FORMAT ... HOWEVER, YOU CAN CREATE
FORMATS WITH RANGES THAT OVERLAP USING THE
MULTILABEL OPTION ...

 BEYOND FORMAT BASICS

30

proc format;
value age (multilabel notsorted) =
11 - 13 = '11-13'
11 = ' 11'
12 = ' 12'
13 = ' 13'
14 - 16 = '14-16'
14 = ' 14'
15 = ' 15'
16 = ' 16'
low - high = 'TOTAL'
;
run;

MULTILABEL
OPTION TELLS
PROC FORMAT
THAT RANGES
OVERLAP

NOTSORTED
OPTION
PREVENTS
SORTING OF
THE FORMAT IN
RANGE ORDER
(DEFAULT)

 BEYOND FORMAT BASICS

31

proc means data=sashelp.class mean maxdec=1;
var weight;
class age /mlf preloadfmt order=data; =
format age age.;
run;

 BEYOND FORMAT BASICS

32

data results;
format answer $answer.;
input answer : $1. @@;
datalines;
1 2 3 4
;
run;

data results;
input answer : $1. @@;
format answer $answer.;
datalines;
1 2 3 4
;
run;

LAST ... DOES LOCATION OF THE FORMAT STATEMENT
IN A DATA STEP MATTER ...

proc format;
value $answer '1' = "YES" '2' = "NO"
 '3' = "DON'T KNOW" '4' = "OTHER";
run;

 BEYOND FORMAT BASICS

33

FORMAT PRIOR TO INPUT ...

FORMAT AFTER INPUT ...

ONLY A CONCERN WITH CHARACTER VARIABLES

 BEYOND FORMAT BASICS

34

PAPER ON WEB SITE HAS HYPERLINKS TO OTHER
FORMAT RELATED PAPERS

ALL SAS CODE FROM PAPER ON THE WEB SITE

