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TS-230

Dealing with Numeric Representation Error in SAS Applications

Abstract

One issue a programmer will most likely have to face at some time is the issue of numeric representation 
error. All numeric values in an application must be represented in some form. The potential for numeric 
representation error occurs even in seemingly simple applications. Although many SAS applications can be 
written without any special attention paid to numeric representation, there are certain circumstances where 
it must be addressed. This article describes the problem of numeric representation, how the problem 
manifests itself, and gives some ideas on how to handle the problem in SAS applications. 

Introduction

Numeric representation is a problem that particularly affects computer applications because of hardware 
limitations. The problem arises because any particular hardware configuration can only represent a finite 
amount of numbers. The real number system that we are familiar with is infinite. Ideally, there would be a 
way to represent each one of the real numbers in a unique way. This is not practical with the current 
hardware available. Instead, a finite set of numbers must be used to represent the infinite real number 
system. 

A few definitions

Before proceeding, consider the following terms: 

PRECISION: The accuracy with which a number can be represented. 

--- 

SIGNIFICANT DIGITS: A measure of the correctness of the numeric value being used. Note that the upper 
limit on the number of significant digits available in a representation is determined by the precision of the 
representation. 

LOSS OF SIGNIFICANCE: The affect of an operation which reduces the number of significant digits in a 
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numeric value. 

MAGNITUDE: A measure of quantity. In this discussion it is expressed as a multiple of the base number 
system. Number systems used in this article are: Base 2 (binary) 

               Base 10 (decimal)
               Base 16 (hexadecimal)

Floating point representation

Floating point representation is one method computers use to store numeric values. The SAS system uses 
this method for all numeric variables. Floating point numbers are usually written using scientific notation. 
Using scientific notation, the basic parts of a floating point number can be identified as follows: 

   sm           se
   |            |
                -5
   +0.12345 * 10
        |     |  |
        m     b  e

m - mantissa or fraction portion
sm - sign for mantissa
b - base
e - exponent
se - sign for exponent 

The process of taking a numeric value and storing it in floating point representation is basically the same on 
all the platforms under which the SAS system runs. For example, consider a platform where the floating 
point representation has these specifications: 

Length: 2 bytes
Sign for mantissa: 1 bit
Exponent: 7 bits
Mantissa: 8 bits
Base: 16
Bias for exponent: 64 (decimal), 40 (hexadecimal) 

The bias for the exponent makes it possible to store both positive and negative exponents without an 
additional sign bit. A bias of 64 means that to get the true exponent value you must subtract a hexadecimal 
40 from the stored exponent. The upcoming example demonstrates this method. With these specifications, 
our floating point numbers have a form like this: 

SEEEEEEE MMMMMMMM 
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byte 1 byte 2 

Where 'S' represents the sign bit, 'E' represents bits for the exponent, and 'M' represents bits for the 
mantissa. 

Suppose you want to store a variable with a decimal value of 12.5. Since the base is 16, you must first 
convert the value to hexadecimal. First convert the integer part. The decimal 12 is simply a hexadecimal C. 
Second, convert the fraction portion, as follows: 

.5 (decimal) = 1/2 = 8/16 = .8 (hexadecimal) 

The converted value is: 

12.5 (decimal) = C.8 (hexadecimal) 

Next, put the value into scientific notation form with the mantissa between 0 and 1. 

C.8 * 16**0 = .C8 * 16**1 

The exponent for the value is 1. To determine the actual exponent that will be stored, take the exponent 
value and add the bias to it. 

True Exponent + Bias = 1 + 40 = 41 = Stored Exponent 

The final portion to be determined is the sign of the mantissa. By convention, the sign bit for positive 
mantissas is 0, and the sign bit for negative mantissas is 1. 

The stored value now looks like this: 

01000001 11001000 (binary) -or- 41 C8 (hexadecimal) 

Different host computers can have different specifications for floating point representation. All platforms 
on which the SAS system runs use 8 bytes for floating point numbers. The number of bits allotted to the 
exponent and the base chosen for the exponent, determines the range of magnitude that system can 
accommodate. After the exponent bits have been allotted, one more bit is designated for the sign of the 
mantissa. The remaining bits are used for the mantissa and determine the precision that is available. 

Now that you know how numbers are stored, you can understand how floating point representation can 
introduce error. Integers up to a certain magnitude can be represented exactly. After a certain magnitude, 
the number of digits exceeds the the precision of the mantissa. At this point, specific integers occur which 
cannot be represented. To determine the highest integer such that all integers between it and its negative 
can be represented exactly, use the following formula: 

max_int = base ** max_num_digits 

file:///I|/TS-DOC%20TS-230%20-%20Dealing%20wit...entation%20Error%20in%20SAS%20Applications.htm (3 of 29) [10/11/02 3:59:05 PM]



TS-DOC: TS-230 - Dealing with Numeric Representation Error in SAS Applications

where max_num_digits is the maximum number of digits available in the mantissa for the base being used. 
To illustrate this, apply this formula to the specifications listed earlier. 

max_int = base ** max_num_digits = 16 ** 2 = 256 

To see how this value is stored, convert it as follows: 

256 (decimal) = 100 * 16**0 (hexadecimal) = .100 * 16**3 = 4310 

Above this value, there will be some integers which require more digits for their representation than the 
mantissa has available. An example is the decimal number 257. Using the earlier specifications, 

257 (decimal) = 101 * 16**0 (hexadecimal) = .101 * 16**3 = 4310 

Since there is room for only 2 hexadecimal digits in the mantissa, a convention must be adopted on how to 
handle the third (and all subsequent) digits. One convention is to truncate the value at the length that can be 
stored. This is the convention that is used here. Another alternative is to round the value based on the digits 
which cannot be stored. Although it can be argued that one convention is better than the other, neither 
convention results in an exact representation of the value. 

Although there is a maximum integer which can be stored confidently, this does not mean that all integers 
above this value cannot be represented. For example: 

512 (decimal) = 200 * 16**0 (hexadecimal) = .200 * 16**3 = 4320 

Like integers, some fractions can be represented exactly. However, there are also a number of fractions that 
cannot be represented. Unlike integers, the magnitude does not determine whether the number can be 
represented. There are many examples of fractional values that cannot be represented even though they are 
not considered an extreme magnitude. As a consequence, you are more likely to run into representation 
problems when working with fractional values. To demonstrate this, use the representation specified 
earlier. A fractional value that can be represented exactly is .5 (decimal). 

.5 (decimal) = .8 * 16**0 (hexadecimal) = 4080 

However, consider a value such as .1 (decimal). After the experience with integers, your first guess would 
probably be that this value could also be represented exactly, since it is the same magnitude of .5 (decimal). 
However, the value .1 (decimal) cannot be represented in hexadecimal; it results in an infinite series. The 
conversion is as follows: 

.1 (decimal) = .199999... * 16**0 (hexadecimal) = 4019 

Like the integer 257 (decimal) above, there are more hexadecimal digits than you have room for in the 
mantissa. The digits you do not have room for are truncated. A similar problem occurs when you attempt to 
represent the fraction 1/3 in decimal. The decimal representation of the fraction 1/3 results in the infinite 
series of .333333... An infinite series can never be represented exactly in a finite numerical representation. 

file:///I|/TS-DOC%20TS-230%20-%20Dealing%20wit...entation%20Error%20in%20SAS%20Applications.htm (4 of 29) [10/11/02 3:59:05 PM]



TS-DOC: TS-230 - Dealing with Numeric Representation Error in SAS Applications

Why use floating point?

There are other representations used to store numbers on computers. Each of these representations has 
advantages and disadvantages. Since the SAS system can be used for a wide variety of applications, a good 
general purpose representation is needed. Floating point representation provides the best compromise 
between precision and magnitude. Floating point representation is also the most flexible of the methods 
available. Here is an overview of alternative methods: 

●     INTEGER: Obviously this would not be sufficient for a general purpose numeric representation 
since it cannot accommodate fractional values. The maximum space available for an integer on most 
hardware platforms is a fullword (4 bytes or 32 bits). Since the 32 bits used for an integer is less 
than the mantissa for all systems, all numbers that can be stored in an integer can also be stored in 
floating point. 

●     DECIMAL or PACKED DECIMAL: Decimal is a better choice than integer as a general purpose 
representation. One advantage is that fractional values can be stored in a decimal representation. 
Since no explicit decimal point is stored in the representation, the application must be written to 
keep up with the decimal point. Another advantage is that within its range, decimal representation 
can store decimal numbers exactly. Values that cannot be represented as decimal numbers will have 
the same representation problem seen with floating point representation. Hardware platforms which 
allow decimal representation limit them to a maximum of 16 bytes in length. This length allows up 
to 31 digits to be represented. Decimal representation does not have a separate exponent and 
mantissa. This means that for any particular value to be stored, there will be a tradeoff between 
magnitude and precision. To demonstrate this, consider the following specifications for a packed 
decimal representation. 

Length: 3 bytes
Sign: 1/2 byte
Number of digits: 5 

This representation has the form: 

DD DD DS
bytes - 1 2 3 

A value of decimal 12345 can be stored exactly as 

12 34 5+ 

with the implied decimal point following the last digit. A value of decimal .0012345 would be represented 
as 

00 12 3+ 

with the implied decimal point before the first digit. Because the magnitude has changed, some precision is 
lost. 
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Decimal representation has other disadvantages. Computers are more efficient performing arithmetic 
operations on binary numbers. Decimal arithmetic operations require additional overhead. Some hardware 
platforms do not even provide decimal arithmetic instructions. Performing decimal arithmetic on these 
platforms would require expensive software emulation of the mathematical operations. 

●     FLOATING POINT BINARY: Floating point binary appears to be the best choice for a general 
numeric data type. Floating point binary can handle fractional values as well as integer values. Since 
it has both an exponent and a mantissa, it provides the most flexibility. The exponent allows very 
large magnitudes to be represented as well as very small magnitudes, and the mantissa provides a 
consistent number of digits for precision, regardless of the magnitude. The consistent number of 
digits means that any representation error tends to be small in a relative sense. To demonstrate this, 
define absolute error as follows: 

true_value - approximate_value = absolute_error 

and relative error as follows: 

(true_value - approximate_value) / true_value = relative_error 

Using the floating point specifications established earlier, test a couple of values to see how they work. The 
decimal value 264 is represented as 256 in this representation. The absolute error for the stored value is: 

264 - 256 = 8 

and the relative error is: 

(264 - 256) / 264 = 0.03030303... 

The decimal value .1 is represented as 0.09765625 in this representation. The absolute error for the stored 
value is: 

.1 - 0.09765625 = 0.00234375 

and the relative error is: 

(.1 - 0.09765625) / .1 = 0.0234375 

These two values show the absolute measure of representation error can vary considerably, but the relative 
error seems fairly close. Although these are only two examples, this small relative error holds across the 
range of values between the maximum and minimum numbers you can represent. For a formal proof see 
Chapter 1, "Floating Point Arithmetic," in Numerical Computing: An Introduction by Lawrence F. 
Shampine and Richard C. Allen Jr. 

When is representation error a problem?

file:///I|/TS-DOC%20TS-230%20-%20Dealing%20wit...entation%20Error%20in%20SAS%20Applications.htm (6 of 29) [10/11/02 3:59:05 PM]



TS-DOC: TS-230 - Dealing with Numeric Representation Error in SAS Applications

Floating point representation has been chosen as the best alternative, but has the known disadvantage of 
representation error. This brings up the need to determine when representation error will be a problem in 
your applications. Since integer numbers up to a certain magnitude can be represented exactly, you will not 
encounter the problem when working with these numbers. This could include operations like control 
counters, frequency counters, and other math operations which involve whole numbers. Representation 
error is also not a problem if it is expected and accounted for in the application. Most of the published 
algorithms for numerical analysis are designed to account for and minimize the effect of representation 
error. 

However, representation error does become a problem if it is unexpected and unaccounted for. One of the 
more common problems that unwary programmers encounter is comparisons that do not seem correct. For 
example, the following expression is a known mathematical truth: 

0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 1 

and can be coded in a SAS DATA step as follows: 

       data _null_;
           x=0;
           do i = 1 to 10;
              x+0.1;
              end;
           if x = 1 then put 'x is equal to 1';
                    else put 'what happened?';
           run;

If you execute this DATA step the string 'what happened?' is written to the log. So what did happen? To 
understand why the value in the variable X is not equal to 1, calculate the value using the floating point 
specifications discussed earlier. The first step is to convert the decimal value 0.1 to hexadecimal: 

0.1 (decimal) = .199999... (hexadecimal) 

As shown earlier, the best representation of this number with these specifications is: 

40 19 (representation) 

The variable X is initialized to the value of 0 and the first iteration of the DO loop will add the 0.1 value to 
X. So now the variable X contains an inexact representation of the decimal fraction one tenth. As the DO 
loop executes further iterations the value in X is accumulated as follows: 

2nd iteration: .19 (hex) + .19 (hex) = .32 (hex) 3rd iteration: .32 (hex) + .19 (hex) = .4B (hex) 4th iteration: 
.4B (hex) + .19 (hex) = .64 (hex) 

....
10th iteration: .E1 (hex) + .19 (hex) = .FA (hex) 
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This yields the following representation in the variable X after the final iteration of the DO loop: 

40 FA (representation) 

Finally, compare the value in the variable X to the constant value 1, and see that the two are indeed not 
equal. 

40 FA ^= 41 10 

In fact, the values differ by .06 (hexadecimal). This example also demonstrates how representation error 
can propagate through expressions and produce inaccurate results. 

If representation error is not accounted for, the error can propagate and reduce the number of significant 
digits to an unacceptable level. Error propagation is not merely the sum of representation error for each 
component of an equation, but may turn out to exaggerate the representation error. For a further discussion, 
see Chapter 16, "Propagation of Rounding Error," in Elements of Numerical Analysis by Peter Henrici. 

Another type of error - Loss of significance

Another factor that may affect your calculations is loss of significance. Loss of significance is not directly 
related to representation error, but it is a subject that will also be of interest as you investigate numeric 
representation in your applications. If a representation has finite limits, there are only a finite number of 
significant digits available with that representation. You must construct equations carefully to preserve the 
available significant digits. Usually this loss of significance occurs when the magnitudes of values vary 
greatly during a calculation. This can be demonstrated easily with the earlier floating point specifications 
since the mantissa was defined large enough for only two hexadecimal digits. Consider the following 
expression that evaluates to a decimal value of 288: 

255 + 20 + 13 (all values in decimal) 

Now convert the values to their floating point representation: 

42 FF + 42 14 + 41 D0 

Adding the first two values produces the following results: 

42 FF + 42 14 = 43 11 3 = 43 11 (representation) 

The result of the addition needs 3 digits to be represented exactly. Since only 2 digits are available, some 
significance is lost in the representation. Add this result to the third value to get the final result. 

43 11 + 41 D0 = 43 11 D = 43 11 (representation) 

The same loss of significance occurs again. The final value is a decimal 272, not the expected 288. 
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However, changing the order in which the expression is evaluated, can produce the correct results. 

42 FF + ( 42 14 + 41 D0 ) = 42 FF + 42 21 = 43 12 = 288 (decimal) 

The fact that results of the expression changes as you reorder the operands can be disturbing. It appears that 
a fundamental mathematical law, the associative law, is breaking down. The associative law states the 
following: 

( x + y ) + z = x + ( y + z ) 

This example shows that reliance on the associative law breaks down when loss of significance can occur. 
For further information on this topic, see section 4.2.2, "Accuracy of Floating Point Arithmetic," in The Art 
of Computer Programming by Donald E. Knuth. 

How to know what you really have

Now that you know some of the issues involved with numeric representation, consider how these issues 
apply to SAS application programming. 

As stated earlier, all SAS numeric variables are stored as floating point binary numbers. Rarely, though, 
does the programmer display numeric values as such. Usually numeric values are printed using a SAS 
format. This makes the value more readable, but is it exactly what is stored in the variable? In many cases it 
is not. 

The only SAS format that displays the exact value of a variable is the HEX16. format. It displays the exact 
hexadecimal representation of the 8 byte floating point number. As shown in previous examples, this 
format is difficult to interpret, requiring you to manually convert the number from hexadecimal to decimal. 
Fortunately in many cases you do not need to know the value; only how it compares with other known 
values. The following example will demonstrate the use of the HEX16. format. This example uses the same 
floating point specifications as earlier examples, except that the number of bits in the mantissa is now 56. 

           x=0;
           do i = 1 to 10;
              x+0.1;
              end;
           if x = 1 then put 'x is equal to 1';
                    else put 'x is not equal to 1';

When the value in the variable X is compared to a constant with a value of 1, it fails to match. The first step 
in investigating the difference is to write both the value of X and the constant 1 using the HEX16. format, 
producing the following results: 

                1 = 4110000000000000
                X = 40FFFFFFFFFFFFFA
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After printing the values, you can tell that the comparison should not match and that the values are off by a 
slight amount. It is not necessary to actually convert the displayed values to their decimal equivalent. 

All other SAS formats used to display numeric values will round. {FOOTNOTE: one exception to this is 
the PICTURE formats created by PROC FORMAT. These formats truncate by default.} Since the formats 
round, it is easier to write reports without having to worry about representation error. If you are trying to 
determine the exact value of a variable, the rounding can become an obstacle. In the previous example, the 
two values can be written using the standard numeric format of 32.30: 

              1 = 1.000000000000000000000000000000
              X = 1.000000000000000000000000000000

This format appears to display many significant digits, but there is still no difference in the values. In fact, 
however, the format is actually rounding the value in the variable X to display it as 1. 

Ways to handle the problem

Once you understand the basics of numeric representation, and can recognize when it is causing a problem, 
you can begin to discover ways of handling the problem. Unfortunately there is no one method that best 
handles the problems caused by numeric representation error. What is a perfectly good solution for one 
application may drastically affect the performance and results of another application. There is usually one 
method, however, that is best suited for each application. Earlier in this article, situations were defined in 
which numeric representation error is not a problem. If you have an application that is encountering a 
problem with representation error, the key is to transform the problematic area of the application into a 
situation where the error is not a problem. To do this, you can either avoid the problem or manage it where 
it occurs. You can avoid the problem by using integers for the numeric values so they can be represented 
exactly. There are also ways that you can account for representation error in your application. One method 
is to round your numeric values at various points in the application. Another method is to introduce some 
type of 'fuzzing' when doing numeric comparisons that might be exposed to representation error. The 
following sections describe some of these methods in more detail. 

Using integers

At first glance, using integers does not appear to be a viable alternative for many applications. Further 
investigation however, reveals that this alternative might actually cover a larger number of applications. 
The key to this method is to store the entire numeric value as an integer. If values are integers to start with, 
it's easy, but even in cases where you must begin with fractions, using this method may still be possible. 
Financial applications is one such example. These applications frequently store values as dollars with the 
cents portion stored as a fraction. Instead of storing values this way, you can store the values as cents, 
thereby storing the entire value as an integer. Here are some examples of how values would be stored: 

           Value            would be stored as
           -----            ------------------
             25›                  25
             $5                  500
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Once the values are stored as integers, the expressions in the application can be written to work with the 
integer values. You would perform integer arithmetic in the expressions, and as long as you did not exceed 
the maximum continuous integer value (see above for calculating this) all our values would be represented 
exactly. 

One potential problem area with using this method is reading the values into SAS variables as integers. If 
values are entered manually, they can be entered as integers. If you are reading them from an external file 
using an implicit decimal point, you can adjust the decimal specification on the informat to read the values 
as integers. An example of this is the PD. informat for packed decimal fields. If you had previously used 
the PD4.2 informat to read a value from a field, the value would have up to 5 decimal digits in front of the 
decimal point and 2 after the decimal point. Since there is not an explicit decimal point stored in packed 
decimal fields, you can read the number as an integer by using the PD4. informat. 

If the field in the external file has an explicit decimal point, you may be able to read the value as an integer 
using the COMMAX. informat. The primary use of the COMMAX. informat is to read values in the same 
manner as the COMMA. informat, except that it exchanges the normal roles of the comma and decimal 
point. As a consequence, any imbedded decimal points are ignored. Note that you cannot use the 
COMMAX. informat if the field also contains embedded commas. If none of the above options are usable 
with your data, you can multiply by a scale factor to shift the fraction to the integer portion. You can then 
apply the INT function to remove any representation error that was introduced by the fraction. 

Another potential problem area is printing the values. If you write the values to an external file into fields 
with implied decimal points, you can use the formats without a decimal specification. If you want to use the 
values in a report, you can use PROC FORMAT to define a new format that writes the value with the 
decimal in the correct place. The code to create this format is as follows: 

     PROC FORMAT;
        PICTURE PENNY LOW-HIGH = '000,000,009.99'
                (MULT=1 PREFIX='$');
        RUN;

This format writes values similar to the DOLLAR. format. Here are a few examples of values written with 
the PENNY. format: 

           Value          Output from PENNY. format
           -----          -------------------------
             1                    $0.01
           525                    $5.25
        103500                $1,035.00

If you cannot use either of these methods for writing your values, you need to divide the value by a scale 
factor and then output the value. 

Applications that work with percentages can be modified the same way. Instead of storing 25% as the value 
.25, you can store it as the integer 25. 

file:///I|/TS-DOC%20TS-230%20-%20Dealing%20wi...ntation%20Error%20in%20SAS%20Applications.htm (11 of 29) [10/11/02 3:59:05 PM]



TS-DOC: TS-230 - Dealing with Numeric Representation Error in SAS Applications

Rounding your numbers

Another option for handling representation error is to round numbers at selected points during the 
application. This allows you to determine how many significant digits you need for your application and 
get a consistent representation based on that number of significant digits. Note that if a value is rounded to 
a fractional value, then it is still subject to representation error. This technique is helpful when you want to 
evaluate an expression and then store a value that will be consistent based on a certain number of 
significant digits. An example similar to one used earlier will demonstrate this: 

           x=0;
           do i = 1 to y;
              x+1/y;
              end;

Without representation error, the final value in the variable X would be equal to 1 regardless of the value of 
Y. Since representation error does exist, however, different values of X are returned as the value of Y 
varies. Since the result requires only one significant digit, you can round the number to one significant digit 
to get a consistent result. Modify the example as follows: 

           x=0;
           do i = 1 to y;
              x+1/y;
              end;
           x=ROUND(x, 1);

The result is then rounded to one significant digit, and the result is consistent, regardless of the value of Y. 
Note that the 1 in the second argument to the ROUND function specifies that the value is rounded to the 
nearest integer. It is only by coincidence that we are also rounding to one significant digit. 

To use this technique in SAS applications, you need to know how the SAS ROUND function works. The 
SAS ROUND function does the following: 

1.  scales the value based on the round off unit. 
2.  if the value is positive, adds a constant of .500000000001 

and lowers the result to the nearest integer. 

3.  if the value is negative, subtracts constant of .500000000001 

and raises the result to the nearest integer. 

4.  scales the value back based on the round off unit. 

The following example demonstrates how this works using decimal numbers. Consider the following 
function call: 
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round( 9.876, .1 ) 

Step 1 multiplies the value by a scale factor of 10. This scale factor is based on the round off unit of .1, and 
causes all of the significant digits in the final result to be positioned to left of the decimal point. After Step 
1, the value is: 

9.876 * 10 = 98.76 

Since the value is positive, the constant is added, and the result is lowered to the nearest integer using the 
floor function. 

floor(98.76 + .500000000001) = floor(99.260000000001) = 99 

The final step is to scale the value back and return the result. 

99 / 10 = 9.9 

The resulting value is indeed the original value rounded to the nearest tenth. There is still one question to 
be answered though. Why is a constant of .500000000001 used instead of a simple .5? If values could be 
represented exactly, using .500000000001 wouldn't be needed, but values in floating point representation 
are subject to representation error. The .000000000001 added in with the .5 is a fuzz factor to account for 
representation error in the original value. This ensures that if a value is normally rounded up, but the 
representation error causes it to be slightly less, it will still be rounded up. 

One important point to note about this fuzz factor is that it does not vary based on the value to be rounded 
or the round off unit. If either one of these two parameters causes the scaled value to be of sufficient 
magnitude, the fuzz factor can be lost due to loss of significance. Without the fuzz factor, numbers may be 
rounded down that should be rounded up! 

Most SAS applications get acceptable results from the SAS ROUND function. If your applications need 
more control over rounding than is provided for in the round function, you must define your own rounding 
routine to be used instead of the SAS ROUND function. 

The key to defining your own rounding routine is to determine how much of a fuzz factor should be added 
in. You want to add enough of a fuzz factor so that values that should be rounded up are indeed rounded up, 
but you do not want to add such a large fuzz factor so that values that should be rounded down are rounded 
up instead. If the only error that will be present in your values will be representation error, then you will 
only need to add a binary 1 in the least significant bit of the representation. First, you must determine what 
the actual value of the fuzz factor should be. Although the least significant bit will always be the last bit in 
the representation, the value it represents changes based on the magnitude of the number being represented. 
As an example, the following is a representation of the decimal value 256.115 using the floating point 
specifications which contains 56 bits in the mantissa. 

256.115 (decimal) = 4310 01D7 0A3D 70A3 (representation) 
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The fuzz factor for this value would need to have the same exponent and the least significant bit set to '1'. 
This value is: 

fuzz_factor = 4300 0000 0000 0001 = 1*16**-11 (decimal) 

This is the smallest fuzz factor that can be added to 256.115 and it's significance not be lost. Now that the 
fuzz factor has been determined, it can be added to the variable value. The result is the value that will be 
rounded. The following DATA step illustrates how the fuzz factor can be added in: 

         data _null_;
            fuzz = 1*16**-11;
            x=256.115;
            y=round(x+fuzz, .01);
            put _all_;
            run;

The fuzz factor used in this example is a constant value. Using a constant fuzz factor is fine as long as the 
values to be rounded are all the same magnitude. Since this fuzz factor is dependent on the exponent, the 
fuzz factor needs to adjusted if the exponent of the value changes. Suppose the value to be fuzzed is 
4096.115 (decimal). 

4096.115 (decimal) = 4410 001D 70A3 D70A (representation) 

This value has a larger magnitude than the previous value. The fuzz factor for this value is: 

fuzz_factor = 4400 0000 0000 0001 = 1*16**-10 (decimal) 

If your application will be using values with different magnitudes, you may need to calculate the fuzz 
factor for each value based on the value's magnitude. The magnitude of a value can be determined with the 
LOG function. Once the magnitude is found, an appropriate fuzz factor can be calculated and added to the 
variable value. See the appendix for an example of a macro which implements this technique. 

The fuzz factors calculated previously have been sufficient to handle any representation error that might be 
present in a value. What if the value is not rounding correctly due to loss of significance? If there is error 
caused by loss of significance it will also be necessary to add a fuzz factor to cause values to round 
correctly. In this situation, the fuzz factor is based on the number of significant digits as well as the 
magnitude of the value. Use the fuzz factor calculated for representation error as a starting point. For a 
decimal value of 4096.115, the fuzz factor would be as follows: 

4096.115 (decimal) = 4410 001D 70A3 D70A (representation) 

fuzz_factor = 4400 0000 0000 0001 = 1*16**-10 (decimal) 

You now have a fuzz factor which is based on the magnitude of the value you are rounding. If you feel that 
the last two digits are not significant, you can then increase the magnitude of the fuzz factor by two digits. 
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           fuzz_factor = 4400 0000 0000 0001 = 1*16**-10 (decimal)
       new_fuzz_factor = 4400 0000 0000 0100 = 1*16**-8  (decimal)

Only increase the fuzz factor enough to handle the expected loss of significance. If the fuzz factor is too 
large, you will begin to round up values incorrectly. 

Once you have decided to use rounding in your application to handle representation error, the next question 
is: at what point in the application should you do the rounding? This requires careful consideration, since 
rounding can reduce the number of significant digits. A simple rule of thumb is to round at the point where 
representation causes a problem. Looking back at the earlier example 

           x=0;
           do i = 1 to y;
              x+1/y;
              end;

it is not necessary to round the intermediate values in the variable X. There were no problems in the 
application until the final result proved to be unexpected. Rounding the final number, produced the correct 
results. If your application is having trouble with a comparison operation because of representation, you 
should round at the comparison to correct the problem. If your problem is with representation error of 
intermediate values in an accumulation, then you can round while accumulating. 

Fuzz your comparisons

Another aspect of your application to consider is comparisons. Comparisons are significantly affected by 
representation error. When using the EQUAL operator in a comparison, the operands must be exactly equal 
for the comparison to be true. This makes the operator almost useless for comparing numeric operands 
where there might be some degree of representation error. Most of the time when doing these comparisons, 
we want the expression to be true when the values are the 'same', but that does not mean they have to be 
exactly equal. There are times when the values are close enough that they should be considered the 'same' 
even though they are not exactly equal. One way of achieving this is to round one or both of the operands 
in the comparison. An alternative is to have a way to specify that if the operands are close enough that they 
should be considered equal. This is called 'fuzzing' the comparison. To do this you must define a new 
operator. This example calls this operator the EQFUZZ operator. It returns a true value if two operands are 
equal within a certain tolerance. You can implement this operator in SAS applications as a macro. The first 
attempt to define such an operator might look like the following: 

          if abs(x-y) < 1e-12 then TRUE
                              else FALSE

The following macro implements this operator: 

      %macro eqfuzz(var1, var2, fuzz=1e-12);
          abs(&var1 - &var2) < &fuzz
      %mend;
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You can use this macro in an application as follows: 

      data _null_;
          x=0;
          do i = 1 to 10;
             x+0.1;
             end;
          y=1;
          if x eq y then put 'x exactly equal to y';
             else if %eqfuzz(x,y) then put 'x close enough to y';
                 else put 'x not even close to y';
          run;

Notice how the definition of the EQFUZZ operator is similar to the definition of absolute error discussed 
earlier. This is not surprising, since this operator is actually defining how much error will be allowed. 
Earlier, you also saw that the absolute measure of relative error will vary greatly depending on the 
magnitude of the value being represented. This suggests that an EQFUZZ operator based on relative error is 
more consistent across magnitudes. The macro definition for the improved operator would look like this: 

      %macro eqfuzz(var1, var2, fuzz=1e-12);
          abs((&var1 - &var2) / &var1) < &fuzz
      %mend;

Note that you may have to adjust the fuzz value to take into account that you are using relative error and 
not absolute error. 

Another area of SAS programming where comparisons for equality are done is in match merging. A 
MERGE statement with a BY statement will look for an exact match. If the BY variable in your application 
has representation error, you will need to use a different method to merge the data sets. The OUTER JOIN 
operation of PROC SQL performs similar to the DATA step MERGE. PROC SQL allows you to define the 
condition that is used to join the data sets. Here you can use the EQFUZZ operation defined earlier to 
specify that you want the data sets joined on a close match instead of an exact match. Suppose your 
application had a DATA step as follows: 

       data merged;
          merge ds1   /* contains variables b and x */
                ds2;  /* contains variables b and y */
            by b;
            run;

The following PROC SQL statements would give similar results and allow for representation error in 
variable B: 

       proc sql;
          create table joined as
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             select ds1.b, x, y
                from ds1 full join ds2
                   on %eqfuzz(ds1.b, ds2.b);

The main difference between a DATA step merge and a PROC SQL OUTER JOIN is what happens if there 
are multiple occurrences of the BY variable in both data sets. The DATA step MERGE will perform a 
match merge within the BY group. PROC SQL will return a cross product of all combinations within the 
BY group. If your application requires that multiple occurrences of the BY variable be treated in the same 
manner as the MERGE statement, this can be accomplished in a DATA step with multiple SET statements. 
The appendix contains an example of such a DATA step. 

Differences in floating point specifications

Numeric representation error will occur with all floating point representations. The specifications of the 
floating point representation being used will have an affect on the numeric representation problems 
encountered. As was seen earlier, the base and the number of bits in the mantissa determine the maximum 
integer that can be represented with confidence. The base and number of mantissa bits also determine the 
precision available. The number of exponent bits determine the magnitude of the numbers which can be 
represented. Whether a hardware platform truncates or rounds digits which cannot be stored will affect 
representation error on the platform. The table below summarizes some of the different platforms on which 
the SAS system runs. 

Platform            IBM mainframe       VAX/VMS        IEEE
Base                      16                2             2
Bias                      64              128          1023
Exponent bits              7                8            11
Number of digits
  in mantissa             14               56            53
Mantissa bits             56               56            53
Round or Truncate      Truncate          Round         Round

IBM mainframe platforms include the MVS, CMS, and VSE operating systems. The IEEE standard is used 
by the PC DOS, OS/2 and UNIX operating systems. Any programmer working with a variety of hardware 
might see slightly different results from one machine to the next. 

For a detailed discussion on the different floating point representations used by the platforms on which the 
SAS system runs, see the section "Numeric Values" in chapter 3, "Components of the SAS Language," in 
the SAS Language Reference. Additional information can be found in the SUGI paper "Numeric Precision 
Considerations in SAS Software" by Richard D. Langston. 

The SAS LENGTH statement will also have an affect on the numeric representations in SAS applications. 
The LENGTH statement can be used to reduce the number of bytes needed to store numeric variables in 
SAS data sets. It does this by reducing the number of bits in the mantissa of the representation. This 
reduces the precision available. The length of variables containing integer values can be reduced as long as 
there are enough bits in the mantissa to store each value exactly. For variables which contain fractional 
values, the reduced length will most likely increase the problem of representation error. For this reason, you 
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should not decrease the length of numeric variables, which may contain fractional values, from the default 
length of 8 bytes. 

Conclusion

By using a floating point binary representation to store numbers, you become vulnerable to representation 
error. Other numeric representations may not have the same problems with representation that floating 
point has, but they have other limitations that make them less than desirable for general purpose use. In 
most cases the representation error that may be present in a floating point number will not cause a problem 
to the SAS application programmer. If you recognize that representation error may affect an application, 
you can take steps to account for representation error and eliminate unexpected results. 
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 /*****************************************************************/
 /***  The following examples are provided to illustrate the    ***/
 /***  concepts discussed in this article                       ***/
 /*****************************************************************/
  /**************************************************************/
  /*    The following DATA step is a typical example of         */
  /*  unexpected results due to representation error. Note the  */
  /*  hex representations of the variable as it is accumulated. */
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  /**************************************************************/
data _null_;

   x=0;

   do i = 1 to 10;

      x+0.1;
      put x= hex16. '(hex) ' x= '(formatted dec)';
      end;
   if x = 1 then put 'x is equal to 1';
            else put 'what happened?';

   run;

  /**************************************************************/
  /*    This DATA step demonstrates how to calculate the        */
  /*  maximum integer that can be represented with confidence.  */
  /*  Set the BASE and MAX_DIGT variables based on the platform */
  /*  you are running on.                                       */
  /**************************************************************/
data _null_;

   base = 16;      /* 16 for IBM, 2 for VAX and IEEE      */
   max_digt = 14;  /* 14 for IBM, 56 for VAX, 53 for IEEE */

      /* Compute maximum integer and display */
   max_int = base ** max_digt;

   put @2 max_int=  hex16. '(hex) ' max_int  comma22. ' (dec)' ;

      /* This DO loop attempts to store the five integers before   */
      /* and after the maximum. Notice how some of the integers    */
      /* after the maximum cannot be stored exactly                */
   put / @2 'I'  @8 'MAX_INT + I (in hex)' @31 'MAX_INT + I (in dec)'
      / @1 '---' @8 '--------------------' @31 '--------------------';
   do i = -5 to 5;
      x = max_int + i;
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      put @1 i 2. @10 x hex16. @30 x comma22.;
      end;

   run;

  /**************************************************************/
  /*    This DATA step demonstrates how the order of operands   */
  /*  in an expression can result in loss of significance.      */
  /**************************************************************/
data _null_;

     /* the first expression does not result in a value of zero */
   x= -16 - 0.1 + 16 + 0.1; put x= hex16. x= ' <= expression 1'/;

     /* by breaking apart the expression you can see where      */
     /* representation error is introduced and where loss of    */
     /* significance occurs                                     */
   x= -16;                  put x= hex16. x=;
   x= x - 0.1;              put x= hex16. x= ' <= representation error';
   x= x + 16;               put x= hex16. x= ' <= loss of significance';
   x= x + 0.1;              put x= hex16. x= /;
     /* by changing the order of the operands the expression    */
     /* will evaluate correctly                                 */

   x= 16 - 16 + 0.1 - 0.1 ; put x= hex16. x= ' <= expression 2';
   run;

  /**************************************************************/
  /*    This DATA step demonstrates how the fuzz factor used in */
  /*  the ROUND function may lose significance. This loss of    */
  /*  significance may lead to some values being rounded        */
  /*  incorrectly. The point at which the loss of significance  */
  /*  occurs is based on the value to be rounded as well as the */
  /*  round off unit.                                           */
  /**************************************************************/
data _null_;
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   /* IBM systems */

   x=255.115;       x_rnd=round(x,.01);
   y=256.115;       y_rnd=round(y,.01);

   put @10 'IBM systems' / _all_ / ;

   /* VAX systems */

   x=4095.175;      x_rnd=round(x,.01);
   y=4096.175;      y_rnd=round(y,.01);

   put @10 'VAX systems' / _all_ / ;

   /* IEEE systems */

   x=255.155;       x_rnd=round(x,.01);
   y=256.155;       y_rnd=round(y,.01);

   put @10 'IEEE systems' / _all_ / ;

   run;

  /**************************************************************/
  /*    The following macro defines an EQFUZZ operator. The     */
  /*  subsequent DATA step demonstrates how this operator can   */
  /*  be used to test for equality within a certain tolerance.  */
  /**************************************************************/
%macro eqfuzz(var1, var2, fuzz=1e-12);
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    abs((&var1 - &var2) / &var1) < &fuzz
%mend;

data _null_;

   x=0;

   y=1;

   do i = 1 to 10;

      x+0.1;
      end;
   if x=y then put 'x exactly equal to y';
      else if %eqfuzz(x,y) then put 'x close to y';
            else put 'x nowhere close to y';

   run;

  /**************************************************************/
  /*    The following macro demonstrates how a rounding routine */
  /*  can be defined in an application. This rounding routine   */
  /*  adjusts the fuzz factor based on the magnitude of the     */
  /*  values to be rounded. The macro is named ROUND so that it */
  /*  may be easily incorporated into existing applications.    */
  /**************************************************************/
%macro round(var,unit,base=16,fz_digit=12);

       /*  macro parameters are as follows:                     */
       /*  var:   variable to be rounded                        */
       /*  unit:  round off unit                                */
       /*  base:  base used for numeric representation on the   */
       /*         platform being used                           */
       /*         (base 16 for IBM, base 2 for VAX and IEEE)    */
       /*  fz_digit: digit in representation where fuzz occurs  */
       /*         (for IBM: maximum value is 14                 */
       /*                   suggested value is 12               */
       /*          for VAX: maximum value is 56                 */
       /*                   suggested value is 50               */
       /*          for IEEE: maximum value is 53                */
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       /*                   suggested value is 48)              */
       /*         Note: suggested value is less than maximum    */
       /*         to allow for some loss of significance error  */
       /*         as well as representation error               */
       /*                                                       */
       /*  fuzz factor is computed as follows:                  */
       /*    The log in the base of the representation is       */
       /*    determined by taking the natural log of the value  */
       /*    and dividing it by the natural log of the base.    */
       /*    The resulting value is raised to the next integer  */
       /*    to determine the magnitude of the value. The       */
       /*    fz_digit parameter is subtracted from the magnitude*/
       /*    of the value to determine the magnitude of the fuzz*/
       /*    factor. The base is then raised to this magnitude  */
       /*    and multipled by the sign of the value to create   */
       /*    the actual fuzz factor. This fuzz factor is added  */
       /*    to the variable value and the ROUND function is    */
       /*    called.                                            */
round((&var+
      (sign(&var)*
      &base**(ceil(log(abs(&var))/log(&base))-&fz_digit))),
      &unit)

%mend round;

  /**************************************************************/
  /*    This DATA step demonstrates how the previously defined  */
  /*   ROUND macro can be used in your application.             */
  /**************************************************************/
data _null_;

   /* IBM systems */

   x=255.115;       x_rnd=%round(x,.01);
   y=256.115;       y_rnd=%round(y,.01);

   put @10 'IBM systems' / _all_ / ;
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   /* VAX systems */

   x=4095.175;      x_rnd=%round(x,.01);
   y=4096.175;      y_rnd=%round(y,.01);

   put @10 'VAX systems' / _all_ / ;

   /* IEEE systems */

   x=255.155;       x_rnd=%round(x,.01);
   y=256.155;       y_rnd=%round(y,.01);

   put @10 'IEEE systems' / _all_ / ;

   run;

 /*******************************************************************/
 /*   The following example is to demonstrate how a DATA step can   */
 /*  be written with multiple SET statements which will merge to    */
 /*  data sets and allow for inexact matches in the BY variable.    */
 /*******************************************************************/
   /***************************************************************/
   /*  The following macro defines an EQFUZZ operator that checks */
   /* for equality within a tolerance of 1E-3                     */
   /***************************************************************/
%macro eqfuzz(var1, var2, fuzz=1e-3);

    abs(&var1 - &var2) <= &fuzz

%mend;

 /*******************************************************************/

 /*   Variables in the input data sets are as follows:              */
 /*  BYVAL:  is the variable to merge the data sets by              */
 /*  A_VAL and B_VAL: is a character representation of the byval    */
 /*  A_GROUP and B_GROUP: show the data set, by group, and          */
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 /*     occurrence within the by group for each observation         */

 /*******************************************************************/
data a;

   input byval a_val $ a_group $;

cards;

1.0001 A1.0001 A-1-1

1.9999 A1.9999 A-2-1

4.0000 A4.0000 A-4-1

4.9999 A4.9999 A-5-1

5.0000 A5.0000 A-5-2

5.9999 A5.9999 A-6-1

6.0001 A6.0001 A-6-2

7.0000 A7.0000 A-7-1

7.0001 A7.0001 A-7-2

7.0001 A7.0001 A-7-3

;

data b;

   input byval b_val $ b_group $;

cards;

2.0001 B2.0001 B-2-1

3.0000 B3.0000 B-3-1

3.9999 B3.9999 B-4-1

4.0001 B4.0001 B-4-2
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4.0001 B4.0001 B-4-3

5.0000 B5.0000 B-5-1

5.0001 B5.0001 B-5-2

6.0000 B6.0000 B-6-1

8.0000 B8.0000 B-8-1

;

 /*******************************************************************/
 /*  The following DATA step does the merge                         */
 /*******************************************************************/
data c;

  length a_val b_val a_group b_group $ 8;

  /* get next by value from each data set */

  retain a_count b_count 1;

  if a_count <= a_nobs then

    set a(keep=byval rename=(byval=next_a)) point=a_count nobs=a_nobs;
  if b_count <= b_nobs then

    set b(keep=byval rename=(byval=next_b)) point=b_count nobs=b_nobs;

  /* determine which data set needs to be advanced to merge */
  /* current by group                                       */

  if %eqfuzz(next_a,next_b) then do;

     read_a = 1;
     read_b = 1;
     end;
  else if next_a < next_b then do;
          read_a = 1;
          read_b = 0;
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          end;
       else do;
          read_a = 0;
          read_b = 1;
          end;

  /* if the end of one of the data sets has been reached, then    */
  /* get the remaining observations from the other data set       */

  if a_count > a_nobs then do;

     read_a = 0;
     read_b = 1;
     end;
  if b_count > b_nobs then do;
     read_a = 1;
     read_b = 0;
     end;

  /* check for beginning of a new by group */

  if (read_a and not (%eqfuzz(next_a,byval))) or

     (read_b and not (%eqfuzz(next_b,byval)))
     then do;

       /* reset variables to missing */
       a_val = ' ';
       b_val = ' ';
       a_group = ' ';
       b_group = ' ';
       end;
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  /* advance data set and write merged observation */

  if read_a then do;

     set a;
     a_count+1;
     end;
  if read_b then do;
     set b;
     b_count+1;
     end;

  drop next_a next_b read_a read_b;

  run;

 /*******************************************************************/
 /*    The following DATA steps demonstrate the results of a MERGE  */
 /*  if the BY values matched exactly.                              */
 /*******************************************************************/
data a2;

  set a;

  byval=round(byval);

data b2;

  set b;

  byval=round(byval);

data c2;

  merge a2 b2;

  by byval;

  run;
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 /********************************************************************/
 /*    The following PROC SQL statements demonstrate how an OUTER    */
 /*  JOIN produces results similar to the DATA step MERGE. Note how  */
 /*  multiple occurrences of the BY variables are handled differently*/
 /********************************************************************/
proc sql;

   create table d as

       select a.byval, a_val, b_val, a_group, b_group
          from a full join b
             on %eqfuzz(a.byval,b.byval);
   create table d2 as
       select a2.byval, a_val, b_val, a_group, b_group
          from a2 full join b2
             on a2.byval = b2.byval;
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