Dealing with Numeric Representation Error in SAS Applications

Abstract

One issue a programmer will most likely have to face at some time is the issue of numeric representation error. All numeric values in an application must be represented in some form. The potential for numeric representation error occurs even in seemingly simple applications. Although many SAS applications can be written without any special attention paid to numeric representation, there are certain circumstances where it must be addressed. This article describes the problem of numeric representation, how the problem manifests itself, and gives some ideas on how to handle the problem in SAS applications.

Introduction

Numeric representation is a problem that particularly affects computer applications because of hardware limitations. The problem arises because any particular hardware configuration can only represent a finite amount of numbers. The real number system that we are familiar with is infinite. Ideally, there would be a way to represent each one of the real numbers in a unique way. This is not practical with the current hardware available. Instead, a finite set of numbers must be used to represent the infinite real number system.

A few definitions

Before proceeding, consider the following terms:

PRECISION: The accuracy with which a number can be represented.

SIGNIFICANT DIGITS: A measure of the correctness of the numeric value being used. Note that the upper limit on the number of significant digits available in a representation is determined by the precision of the representation.

LOSS OF SIGNIFICANCE: The affect of an operation which reduces the number of significant digits in a
numeric value.

MAGNITUDE: A measure of quantity. In this discussion it is expressed as a multiple of the base number system. Number systems used in this article are: Base 2 (binary)

Base 10 (decimal)
Base 16 (hexadecimal)

Floating point representation

Floating point representation is one method computers use to store numeric values. The SAS system uses this method for all numeric variables. Floating point numbers are usually written using scientific notation. Using scientific notation, the basic parts of a floating point number can be identified as follows:

```
sm      se
|       |
-5
+0.12345 * 10
|     |  |
m    b  e
```

m - mantissa or fraction portion
sm - sign for mantissa
b - base
e - exponent
se - sign for exponent

The process of taking a numeric value and storing it in floating point representation is basically the same on all the platforms under which the SAS system runs. For example, consider a platform where the floating point representation has these specifications:

Length: 2 bytes
Sign for mantissa: 1 bit
Exponent: 7 bits
Mantissa: 8 bits
Base: 16
Bias for exponent: 64 (decimal), 40 (hexadecimal)

The bias for the exponent makes it possible to store both positive and negative exponents without an additional sign bit. A bias of 64 means that to get the true exponent value you must subtract a hexadecimal 40 from the stored exponent. The upcoming example demonstrates this method. With these specifications, our floating point numbers have a form like this:

```
SEEEEEEE MMMMMMMM
```
Where 'S' represents the sign bit, 'E' represents bits for the exponent, and 'M' represents bits for the mantissa.

Suppose you want to store a variable with a decimal value of 12.5. Since the base is 16, you must first convert the value to hexadecimal. First convert the integer part. The decimal 12 is simply a hexadecimal C. Second, convert the fraction portion, as follows:

\[.5 \text{ (decimal)} = \frac{1}{2} = \frac{8}{16} = .8 \text{ (hexadecimal)} \]

The converted value is:

\[12.5 \text{ (decimal)} = \text{C.8 (hexadecimal)} \]

Next, put the value into scientific notation form with the mantissa between 0 and 1.

\[\text{C.8} \times 16^{0} = .\text{C8} \times 16^{1} \]

The exponent for the value is 1. To determine the actual exponent that will be stored, take the exponent value and add the bias to it.

True Exponent + Bias = 1 + 40 = 41 = Stored Exponent

The final portion to be determined is the sign of the mantissa. By convention, the sign bit for positive mantissas is 0, and the sign bit for negative mantissas is 1.

The stored value now looks like this:

\[01000001 \ 11001000 \text{ (binary)} - \text{or-} 41 \text{ C8 (hexadecimal)} \]

Different host computers can have different specifications for floating point representation. All platforms on which the SAS system runs use 8 bytes for floating point numbers. The number of bits allotted to the exponent and the base chosen for the exponent, determines the range of magnitude that system can accommodate. After the exponent bits have been allotted, one more bit is designated for the sign of the mantissa. The remaining bits are used for the mantissa and determine the precision that is available.

Now that you know how numbers are stored, you can understand how floating point representation can introduce error. Integers up to a certain magnitude can be represented exactly. After a certain magnitude, the number of digits exceeds the the precision of the mantissa. At this point, specific integers occur which cannot be represented. To determine the highest integer such that all integers between it and its negative can be represented exactly, use the following formula:

\[\text{max_int} = \text{base} \times \text{max_num_digits} \]
where max_num_digits is the maximum number of digits available in the mantissa for the base being used.

To illustrate this, apply this formula to the specifications listed earlier.

\[
\text{max_int} = \text{base}^{\text{max_num_digits}} = 16^{2} = 256
\]

To see how this value is stored, convert it as follows:

256 (decimal) = 100 \times 16^{0} (hexadecimal) = .100 \times 16^{3} = 4310

Above this value, there will be some integers which require more digits for their representation than the mantissa has available. An example is the decimal number 257. Using the earlier specifications,

257 (decimal) = 101 \times 16^{0} (hexadecimal) = .101 \times 16^{3} = 4310

Since there is room for only 2 hexadecimal digits in the mantissa, a convention must be adopted on how to handle the third (and all subsequent) digits. One convention is to truncate the value at the length that can be stored. This is the convention that is used here. Another alternative is to round the value based on the digits which cannot be stored. Although it can be argued that one convention is better than the other, neither convention results in an exact representation of the value.

Although there is a maximum integer which can be stored confidently, this does not mean that all integers above this value cannot be represented. For example:

512 (decimal) = 200 \times 16^{0} (hexadecimal) = .200 \times 16^{3} = 4320

Like integers, some fractions can be represented exactly. However, there are also a number of fractions that cannot be represented. Unlike integers, the magnitude does not determine whether the number can be represented. There are many examples of fractional values that cannot be represented even though they are not considered an extreme magnitude. As a consequence, you are more likely to run into representation problems when working with fractional values. To demonstrate this, use the representation specified earlier. A fractional value that can be represented exactly is .5 (decimal).

.5 (decimal) = .8 \times 16^{0} (hexadecimal) = 4080

However, consider a value such as .1 (decimal). After the experience with integers, your first guess would probably be that this value could also be represented exactly, since it is the same magnitude of .5 (decimal). However, the value .1 (decimal) cannot be represented in hexadecimal; it results in an infinite series. The conversion is as follows:

.1 (decimal) = .199999... \times 16^{0} (hexadecimal) = 4019

Like the integer 257 (decimal) above, there are more hexadecimal digits than you have room for in the mantissa. The digits you do not have room for are truncated. A similar problem occurs when you attempt to represent the fraction 1/3 in decimal. The decimal representation of the fraction 1/3 results in the infinite series of .333333... An infinite series can never be represented exactly in a finite numerical representation.
Why use floating point?

There are other representations used to store numbers on computers. Each of these representations has advantages and disadvantages. Since the SAS system can be used for a wide variety of applications, a good general purpose representation is needed. Floating point representation provides the best compromise between precision and magnitude. Floating point representation is also the most flexible of the methods available. Here is an overview of alternative methods:

- **INTEGER**: Obviously this would not be sufficient for a general purpose numeric representation since it cannot accommodate fractional values. The maximum space available for an integer on most hardware platforms is a fullword (4 bytes or 32 bits). Since the 32 bits used for an integer is less than the mantissa for all systems, all numbers that can be stored in an integer can also be stored in floating point.

- **DECIMAL or PACKED DECIMAL**: Decimal is a better choice than integer as a general purpose representation. One advantage is that fractional values can be stored in a decimal representation. Since no explicit decimal point is stored in the representation, the application must be written to keep up with the decimal point. Another advantage is that within its range, decimal representation can store decimal numbers exactly. Values that cannot be represented as decimal numbers will have the same representation problem seen with floating point representation. Hardware platforms which allow decimal representation limit them to a maximum of 16 bytes in length. This length allows up to 31 digits to be represented. Decimal representation does not have a separate exponent and mantissa. This means that for any particular value to be stored, there will be a tradeoff between magnitude and precision. To demonstrate this, consider the following specifications for a packed decimal representation.

 Length: 3 bytes
 Sign: 1/2 byte
 Number of digits: 5

 This representation has the form:

 DD DD DS
 bytes - 1 2 3

 A value of decimal 12345 can be stored exactly as

 12 34 5+

 with the implied decimal point following the last digit. A value of decimal .0012345 would be represented as

 00 12 3+

 with the implied decimal point before the first digit. Because the magnitude has changed, some precision is lost.
Decimal representation has other disadvantages. Computers are more efficient performing arithmetic operations on binary numbers. Decimal arithmetic operations require additional overhead. Some hardware platforms do not even provide decimal arithmetic instructions. Performing decimal arithmetic on these platforms would require expensive software emulation of the mathematical operations.

- FLOATING POINT BINARY: Floating point binary appears to be the best choice for a general numeric data type. Floating point binary can handle fractional values as well as integer values. Since it has both an exponent and a mantissa, it provides the most flexibility. The exponent allows very large magnitudes to be represented as well as very small magnitudes, and the mantissa provides a consistent number of digits for precision, regardless of the magnitude. The consistent number of digits means that any representation error tends to be small in a relative sense. To demonstrate this, define absolute error as follows:

\[
\text{true_value} - \text{approximate_value} = \text{absolute_error}
\]

and relative error as follows:

\[
\frac{\text{true_value} - \text{approximate_value}}{\text{true_value}} = \text{relative_error}
\]

Using the floating point specifications established earlier, test a couple of values to see how they work. The decimal value 264 is represented as 256 in this representation. The absolute error for the stored value is:

\[
264 - 256 = 8
\]

and the relative error is:

\[
\frac{264 - 256}{264} = 0.03030303...
\]

The decimal value .1 is represented as 0.09765625 in this representation. The absolute error for the stored value is:

\[
.1 - 0.09765625 = 0.00234375
\]

and the relative error is:

\[
\frac{.1 - 0.09765625}{.1} = 0.0234375
\]

These two values show the absolute measure of representation error can vary considerably, but the relative error seems fairly close. Although these are only two examples, this small relative error holds across the range of values between the maximum and minimum numbers you can represent. For a formal proof see Chapter 1, "Floating Point Arithmetic," in Numerical Computing: An Introduction by Lawrence F. Shampine and Richard C. Allen Jr.

When is representation error a problem?
Floating point representation has been chosen as the best alternative, but has the known disadvantage of representation error. This brings up the need to determine when representation error will be a problem in your applications. Since integer numbers up to a certain magnitude can be represented exactly, you will not encounter the problem when working with these numbers. This could include operations like control counters, frequency counters, and other math operations which involve whole numbers. Representation error is also not a problem if it is expected and accounted for in the application. Most of the published algorithms for numerical analysis are designed to account for and minimize the effect of representation error.

However, representation error does become a problem if it is unexpected and unaccounted for. One of the more common problems that unwary programmers encounter is comparisons that do not seem correct. For example, the following expression is a known mathematical truth:

\[0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 1 \]

and can be coded in a SAS DATA step as follows:

```sas
data _null_;
   x=0;
   do i = 1 to 10;
      x+0.1;
   end;
   if x = 1 then put 'x is equal to 1';
      else put 'what happened?';
run;
```

If you execute this DATA step the string 'what happened?' is written to the log. So what did happen? To understand why the value in the variable X is not equal to 1, calculate the value using the floating point specifications discussed earlier. The first step is to convert the decimal value 0.1 to hexadecimal:

0.1 (decimal) = .199999... (hexadecimal)

As shown earlier, the best representation of this number with these specifications is:

40 19 (representation)

The variable X is initialized to the value of 0 and the first iteration of the DO loop will add the 0.1 value to X. So now the variable X contains an inexact representation of the decimal fraction one tenth. As the DO loop executes further iterations the value in X is accumulated as follows:

2nd iteration: .19 (hex) + .19 (hex) = .32 (hex) 3rd iteration: .32 (hex) + .19 (hex) = .4B (hex) 4th iteration: .4B (hex) + .19 (hex) = .64 (hex)

....

10th iteration: .E1 (hex) + .19 (hex) = .FA (hex)
This yields the following representation in the variable X after the final iteration of the DO loop:

40 FA (representation)

Finally, compare the value in the variable X to the constant value 1, and see that the two are indeed not equal.

40 FA ^= 41 10

In fact, the values differ by .06 (hexadecimal). This example also demonstrates how representation error can propagate through expressions and produce inaccurate results.

If representation error is not accounted for, the error can propagate and reduce the number of significant digits to an unacceptable level. Error propagation is not merely the sum of representation error for each component of an equation, but may turn out to exaggerate the representation error. For a further discussion, see Chapter 16, "Propagation of Rounding Error," in Elements of Numerical Analysis by Peter Henrici.

Another type of error - Loss of significance

Another factor that may affect your calculations is loss of significance. Loss of significance is not directly related to representation error, but it is a subject that will also be of interest as you investigate numeric representation in your applications. If a representation has finite limits, there are only a finite number of significant digits available with that representation. You must construct equations carefully to preserve the available significant digits. Usually this loss of significance occurs when the magnitudes of values vary greatly during a calculation. This can be demonstrated easily with the earlier floating point specifications since the mantissa was defined large enough for only two hexadecimal digits. Consider the following expression that evaluates to a decimal value of 288:

255 + 20 + 13 (all values in decimal)

Now convert the values to their floating point representation:

42 FF + 42 14 + 41 D0

Adding the first two values produces the following results:

42 FF + 42 14 = 43 11 3 = 43 11 (representation)

The result of the addition needs 3 digits to be represented exactly. Since only 2 digits are available, some significance is lost in the representation. Add this result to the third value to get the final result.

43 11 + 41 D0 = 43 11 D = 43 11 (representation)

The same loss of significance occurs again. The final value is a decimal 272, not the expected 288.
However, changing the order in which the expression is evaluated, can produce the correct results.

\[42 \text{ FF} + (42 \text{ 14 } + 41 \text{ D0}) = 42 \text{ FF} + 42 \text{ 21} = 43 \text{ 12} = 288 \text{ (decimal)} \]

The fact that results of the expression changes as you reorder the operands can be disturbing. It appears that a fundamental mathematical law, the associative law, is breaking down. The associative law states the following:

\[(x + y) + z = x + (y + z) \]

This example shows that reliance on the associative law breaks down when loss of significance can occur. For further information on this topic, see section 4.2.2, "Accuracy of Floating Point Arithmetic," in The Art of Computer Programming by Donald E. Knuth.

How to know what you really have

Now that you know some of the issues involved with numeric representation, consider how these issues apply to SAS application programming.

As stated earlier, all SAS numeric variables are stored as floating point binary numbers. Rarely, though, does the programmer display numeric values as such. Usually numeric values are printed using a SAS format. This makes the value more readable, but is it exactly what is stored in the variable? In many cases it is not.

The only SAS format that displays the exact value of a variable is the HEX16. format. It displays the exact hexadecimal representation of the 8 byte floating point number. As shown in previous examples, this format is difficult to interpret, requiring you to manually convert the number from hexadecimal to decimal. Fortunately in many cases you do not need to know the value; only how it compares with other known values. The following example will demonstrate the use of the HEX16. format. This example uses the same floating point specifications as earlier examples, except that the number of bits in the mantissa is now 56.

```sas
x=0;
do i = 1 to 10;
    x+0.1;
end;
if x = 1 then put 'x is equal to 1';
    else put 'x is not equal to 1';
```

When the value in the variable X is compared to a constant with a value of 1, it fails to match. The first step in investigating the difference is to write both the value of X and the constant 1 using the HEX16. format, producing the following results:

\[
\begin{align*}
1 & = 4110000000000000 \\
X & = 40FFFFFFF00000000
\end{align*}
\]
After printing the values, you can tell that the comparison should not match and that the values are off by a slight amount. It is not necessary to actually convert the displayed values to their decimal equivalent.

All other SAS formats used to display numeric values will round. {FOOTNOTE: one exception to this is the PICTURE formats created by PROC FORMAT. These formats truncate by default.] Since the formats round, it is easier to write reports without having to worry about representation error. If you are trying to determine the exact value of a variable, the rounding can become an obstacle. In the previous example, the two values can be written using the standard numeric format of 32.30:

\[\begin{align*}
1 &= 1.000000000000000000000000000000 \\
X &= 1.000000000000000000000000000000
\end{align*}\]

This format appears to display many significant digits, but there is still no difference in the values. In fact, however, the format is actually rounding the value in the variable X to display it as 1.

Ways to handle the problem

Once you understand the basics of numeric representation, and can recognize when it is causing a problem, you can begin to discover ways of handling the problem. Unfortunately there is no one method that best handles the problems caused by numeric representation error. What is a perfectly good solution for one application may drastically affect the performance and results of another application. There is usually one method, however, that is best suited for each application. Earlier in this article, situations were defined in which numeric representation error is not a problem. If you have an application that is encountering a problem with representation error, the key is to transform the problematic area of the application into a situation where the error is not a problem. To do this, you can either avoid the problem or manage it where it occurs. You can avoid the problem by using integers for the numeric values so they can be represented exactly. There are also ways that you can account for representation error in your application. One method is to round your numeric values at various points in the application. Another method is to introduce some type of 'fuzzing' when doing numeric comparisons that might be exposed to representation error. The following sections describe some of these methods in more detail.

Using integers

At first glance, using integers does not appear to be a viable alternative for many applications. Further investigation however, reveals that this alternative might actually cover a larger number of applications. The key to this method is to store the entire numeric value as an integer. If values are integers to start with, it's easy, but even in cases where you must begin with fractions, using this method may still be possible. Financial applications is one such example. These applications frequently store values as dollars with the cents portion stored as a fraction. Instead of storing values this way, you can store the values as cents, thereby storing the entire value as an integer. Here are some examples of how values would be stored:

<table>
<thead>
<tr>
<th>Value</th>
<th>would be stored as</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (>)</td>
<td>25</td>
</tr>
<tr>
<td>$5</td>
<td>500</td>
</tr>
</tbody>
</table>
Once the values are stored as integers, the expressions in the application can be written to work with the integer values. You would perform integer arithmetic in the expressions, and as long as you did not exceed the maximum continuous integer value (see above for calculating this) all our values would be represented exactly.

One potential problem area with using this method is reading the values into SAS variables as integers. If values are entered manually, they can be entered as integers. If you are reading them from an external file using an implicit decimal point, you can adjust the decimal specification on the informat to read the values as integers. An example of this is the PD. informat for packed decimal fields. If you had previously used the PD4.2 informat to read a value from a field, the value would have up to 5 decimal digits in front of the decimal point and 2 after the decimal point. Since there is not an explicit decimal point stored in packed decimal fields, you can read the number as an integer by using the PD4. informat.

If the field in the external file has an explicit decimal point, you may be able to read the value as an integer using the COMMAX. informat. The primary use of the COMMAX. informat is to read values in the same manner as the COMMA. informat, except that it exchanges the normal roles of the comma and decimal point. As a consequence, any imbedded decimal points are ignored. Note that you cannot use the COMMAX. informat if the field also contains embedded commas. If none of the above options are usable with your data, you can multiply by a scale factor to shift the fraction to the integer portion. You can then apply the INT function to remove any representation error that was introduced by the fraction.

Another potential problem area is printing the values. If you write the values to an external file into fields with implied decimal points, you can use the formats without a decimal specification. If you want to use the values in a report, you can use PROC FORMAT to define a new format that writes the value with the decimal in the correct place. The code to create this format is as follows:

```
PROC FORMAT;
    PICTURE PENNY LOW-HIGH = '000,000,009.99'
                      (MULT=1 PREFIX='$');
RUN;
```

This format writes values similar to the DOLLAR. format. Here are a few examples of values written with the PENNY. format:

<table>
<thead>
<tr>
<th>Value</th>
<th>Output from PENNY. format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0.01</td>
</tr>
<tr>
<td>525</td>
<td>$5.25</td>
</tr>
<tr>
<td>103500</td>
<td>$1,035.00</td>
</tr>
</tbody>
</table>

If you cannot use either of these methods for writing your values, you need to divide the value by a scale factor and then output the value.

Applications that work with percentages can be modified the same way. Instead of storing 25% as the value .25, you can store it as the integer 25.
Rounding your numbers

Another option for handling representation error is to round numbers at selected points during the application. This allows you to determine how many significant digits you need for your application and get a consistent representation based on that number of significant digits. Note that if a value is rounded to a fractional value, then it is still subject to representation error. This technique is helpful when you want to evaluate an expression and then store a value that will be consistent based on a certain number of significant digits. An example similar to one used earlier will demonstrate this:

\[x=0; \]
\[do \ i = 1 \ to \ y; \]
\[\quad x+1/y; \]
\[\quad end; \]

Without representation error, the final value in the variable X would be equal to 1 regardless of the value of Y. Since representation error does exist, however, different values of X are returned as the value of Y varies. Since the result requires only one significant digit, you can round the number to one significant digit to get a consistent result. Modify the example as follows:

\[x=0; \]
\[do \ i = 1 \ to \ y; \]
\[\quad x+1/y; \]
\[\quad end; \]
\[x=ROUND(x, 1); \]

The result is then rounded to one significant digit, and the result is consistent, regardless of the value of Y. Note that the 1 in the second argument to the ROUND function specifies that the value is rounded to the nearest integer. It is only by coincidence that we are also rounding to one significant digit.

To use this technique in SAS applications, you need to know how the SAS ROUND function works. The SAS ROUND function does the following:

1. scales the value based on the round off unit.
2. if the value is positive, adds a constant of \(.500000000001 \)

\[\text{and lowers the result to the nearest integer.} \]

3. if the value is negative, subtracts constant of \(.500000000001 \)

\[\text{and raises the result to the nearest integer.} \]

4. scales the value back based on the round off unit.

The following example demonstrates how this works using decimal numbers. Consider the following function call:
round(9.876, .1)

Step 1 multiplies the value by a scale factor of 10. This scale factor is based on the round off unit of .1, and causes all of the significant digits in the final result to be positioned to left of the decimal point. After Step 1, the value is:

9.876 * 10 = 98.76

Since the value is positive, the constant is added, and the result is lowered to the nearest integer using the floor function.

floor(98.76 + .500000000001) = floor(99.260000000001) = 99

The final step is to scale the value back and return the result.

99 / 10 = 9.9

The resulting value is indeed the original value rounded to the nearest tenth. There is still one question to be answered though. Why is a constant of .500000000001 used instead of a simple .5? If values could be represented exactly, using .500000000001 wouldn't be needed, but values in floating point representation are subject to representation error. The .000000000001 added in with the .5 is a fuzz factor to account for representation error in the original value. This ensures that if a value is normally rounded up, but the representation error causes it to be slightly less, it will still be rounded up.

One important point to note about this fuzz factor is that it does not vary based on the value to be rounded or the round off unit. If either one of these two parameters causes the scaled value to be of sufficient magnitude, the fuzz factor can be lost due to loss of significance. Without the fuzz factor, numbers may be rounded down that should be rounded up!

Most SAS applications get acceptable results from the SAS ROUND function. If your applications need more control over rounding than is provided for in the round function, you must define your own rounding routine to be used instead of the SAS ROUND function.

The key to defining your own rounding routine is to determine how much of a fuzz factor should be added in. You want to add enough of a fuzz factor so that values that should be rounded up are indeed rounded up, but you do not want to add such a large fuzz factor so that values that should be rounded down are rounded up instead. If the only error that will be present in your values will be representation error, then you will only need to add a binary 1 in the least significant bit of the representation. First, you must determine what the actual value of the fuzz factor should be. Although the least significant bit will always be the last bit in the representation, the value it represents changes based on the magnitude of the number being represented. As an example, the following is a representation of the decimal value 256.115 using the floating point specifications which contains 56 bits in the mantissa.

256.115 (decimal) = 4310 01D7 0A3D 70A3 (representation)
The fuzz factor for this value would need to have the same exponent and the least significant bit set to '1'. This value is:

\[\text{fuzz}_\text{factor} = 4300\ 0000\ 0000\ 0001 = 1 \times 16^{-11} \] (decimal)

This is the smallest fuzz factor that can be added to 256.115 and its significance not be lost. Now that the fuzz factor has been determined, it can be added to the variable value. The result is the value that will be rounded. The following DATA step illustrates how the fuzz factor can be added in:

```sas
data _null_;
    fuzz = 1*16**-11;
    x=256.115;
    y=round(x+fuzz, .01);
    put _all_;
run;
```

The fuzz factor used in this example is a constant value. Using a constant fuzz factor is fine as long as the values to be rounded are all the same magnitude. Since this fuzz factor is dependent on the exponent, the fuzz factor needs to be adjusted if the exponent of the value changes. Suppose the value to be fuzzed is 4096.115 (decimal).

4096.115 (decimal) = 4410 001D 70A3 D70A (representation)

This value has a larger magnitude than the previous value. The fuzz factor for this value is:

\[\text{fuzz}_\text{factor} = 4400\ 0000\ 0000\ 0001 = 1 \times 16^{-10} \] (decimal)

If your application will be using values with different magnitudes, you may need to calculate the fuzz factor for each value based on the value's magnitude. The magnitude of a value can be determined with the LOG function. Once the magnitude is found, an appropriate fuzz factor can be calculated and added to the variable value. See the appendix for an example of a macro which implements this technique.

The fuzz factors calculated previously have been sufficient to handle any representation error that might be present in a value. What if the value is not rounding correctly due to loss of significance? If there is error caused by loss of significance it will also be necessary to add a fuzz factor to cause values to round correctly. In this situation, the fuzz factor is based on the number of significant digits as well as the magnitude of the value. Use the fuzz factor calculated for representation error as a starting point. For a decimal value of 4096.115, the fuzz factor would be as follows:

4096.115 (decimal) = 4410 001D 70A3 D70A (representation)

\[\text{fuzz}_\text{factor} = 4400\ 0000\ 0000\ 0001 = 1 \times 16^{-10} \] (decimal)

You now have a fuzz factor which is based on the magnitude of the value you are rounding. If you feel that the last two digits are not significant, you can then increase the magnitude of the fuzz factor by two digits.
fuzz_factor = 4400 0000 0000 0001 = 1*16**-10 (decimal)
new_fuzz_factor = 4400 0000 0000 0100 = 1*16**-8 (decimal)

Only increase the fuzz factor enough to handle the expected loss of significance. If the fuzz factor is too large, you will begin to round up values incorrectly.

Once you have decided to use rounding in your application to handle representation error, the next question is: at what point in the application should you do the rounding? This requires careful consideration, since rounding can reduce the number of significant digits. A simple rule of thumb is to round at the point where representation causes a problem. Looking back at the earlier example

x=0;
do i = 1 to y;
 x+1/y;
 end;

it is not necessary to round the intermediate values in the variable X. There were no problems in the application until the final result proved to be unexpected. Rounding the final number, produced the correct results. If your application is having trouble with a comparison operation because of representation, you should round at the comparison to correct the problem. If your problem is with representation error of intermediate values in an accumulation, then you can round while accumulating.

Fuzz your comparisons

Another aspect of your application to consider is comparisons. Comparisons are significantly affected by representation error. When using the EQUAL operator in a comparison, the operands must be exactly equal for the comparison to be true. This makes the operator almost useless for comparing numeric operands where there might be some degree of representation error. Most of the time when doing these comparisons, we want the expression to be true when the values are the 'same', but that does not mean they have to be exactly equal. There are times when the values are close enough that they should be considered the 'same' even though they are not exactly equal. One way of achieving this is to round one or both of the operands in the comparison. An alternative is to have a way to specify that if the operands are close enough that they should be considered equal. This is called 'fuzzing' the comparison. To do this you must define a new operator. This example calls this operator the EQFUZZ operator. It returns a true value if two operands are equal within a certain tolerance. You can implement this operator in SAS applications as a macro. The first attempt to define such an operator might look like the following:

if abs(x-y) < 1e-12 then TRUE
 else FALSE

The following macro implements this operator:

%macro eqfuzz(var1, var2, fuzz=1e-12);
 abs(&var1 - &var2) < &fuzz
%mend;
You can use this macro in an application as follows:

```sas
data _null_;
x=0;
do i = 1 to 10;
x+0.1;
end;
y=1;
if x eq y then put 'x exactly equal to y';
else if %eqfuzz(x,y) then put 'x close enough to y';
else put 'x not even close to y';
run;
```

Notice how the definition of the EQFUZZ operator is similar to the definition of absolute error discussed earlier. This is not surprising, since this operator is actually defining how much error will be allowed. Earlier, you also saw that the absolute measure of relative error will vary greatly depending on the magnitude of the value being represented. This suggests that an EQFUZZ operator based on relative error is more consistent across magnitudes. The macro definition for the improved operator would look like this:

```sas
%macro eqfuzz(var1, var2, fuzz=1e-12);
abs((&var1 - &var2) / &var1) < &fuzz
%mend;
```

Note that you may have to adjust the fuzz value to take into account that you are using relative error and not absolute error.

Another area of SAS programming where comparisons for equality are done is in match merging. A MERGE statement with a BY statement will look for an exact match. If the BY variable in your application has representation error, you will need to use a different method to merge the data sets. The OUTER JOIN operation of PROC SQL performs similar to the DATA step MERGE. PROC SQL allows you to define the condition that is used to join the data sets. Here you can use the EQFUZZ operation defined earlier to specify that you want the data sets joined on a close match instead of an exact match. Suppose your application had a DATA step as follows:

```sas
data merged;
merge ds1 /* contains variables b and x */
ds2; /* contains variables b and y */
by b;
run;
```

The following PROC SQL statements would give similar results and allow for representation error in variable B:

```sas
proc sql;
create table joined as
```
select ds1.b, x, y
from ds1 full join ds2
 on %eqfuzz(ds1.b, ds2.b);

The main difference between a DATA step merge and a PROC SQL OUTER JOIN is what happens if there are multiple occurrences of the BY variable in both data sets. The DATA step MERGE will perform a match merge within the BY group. PROC SQL will return a cross product of all combinations within the BY group. If your application requires that multiple occurrences of the BY variable be treated in the same manner as the MERGE statement, this can be accomplished in a DATA step with multiple SET statements. The appendix contains an example of such a DATA step.

Differences in floating point specifications

Numeric representation error will occur with all floating point representations. The specifications of the floating point representation being used will have an affect on the numeric representation problems encountered. As was seen earlier, the base and the number of bits in the mantissa determine the maximum integer that can be represented with confidence. The base and number of mantissa bits also determine the precision available. The number of exponent bits determine the magnitude of the numbers which can be represented. Whether a hardware platform truncates or rounds digits which cannot be stored will affect representation error on the platform. The table below summarizes some of the different platforms on which the SAS system runs.

<table>
<thead>
<tr>
<th>Platform</th>
<th>IBM mainframe</th>
<th>VAX/VMS</th>
<th>IEEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>16</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bias</td>
<td>64</td>
<td>128</td>
<td>1023</td>
</tr>
<tr>
<td>Exponent bits</td>
<td>7</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Number of digits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in mantissa</td>
<td>14</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>Mantissa bits</td>
<td>56</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>Round or Truncate</td>
<td>Truncate</td>
<td>Round</td>
<td>Round</td>
</tr>
</tbody>
</table>

IBM mainframe platforms include the MVS, CMS, and VSE operating systems. The IEEE standard is used by the PC DOS, OS/2 and UNIX operating systems. Any programmer working with a variety of hardware might see slightly different results from one machine to the next.

For a detailed discussion on the different floating point representations used by the platforms on which the SAS system runs, see the section "Numeric Values" in chapter 3, "Components of the SAS Language," in the SAS Language Reference. Additional information can be found in the SUGI paper "Numeric Precision Considerations in SAS Software" by Richard D. Langston.

The SAS LENGTH statement will also have an affect on the numeric representations in SAS applications. The LENGTH statement can be used to reduce the number of bytes needed to store numeric variables in SAS data sets. It does this by reducing the number of bits in the mantissa of the representation. This reduces the precision available. The length of variables containing integer values can be reduced as long as there are enough bits in the mantissa to store each value exactly. For variables which contain fractional values, the reduced length will most likely increase the problem of representation error. For this reason, you
Conclusion

By using a floating point binary representation to store numbers, you become vulnerable to representation error. Other numeric representations may not have the same problems with representation that floating point has, but they have other limitations that make them less than desirable for general purpose use. In most cases the representation error that may be present in a floating point number will not cause a problem to the SAS application programmer. If you recognize that representation error may affect an application, you can take steps to account for representation error and eliminate unexpected results.

Acknowledgements

The author would like to acknowledge Thomas Zack for his contributions in research for this article.

References

Henrici, P., Elements of Numerical Analysis, New York: John Wiley & Sons, Inc.

***/
/** The following examples are provided to illustrate the concepts discussed in this article */
***/
/
/* The following DATA step is a typical example of unexpected results due to representation error. Note the hex representations of the variable as it is accumulated. */

data _null_;

x=0;

do i = 1 to 10;
 x+0.1;
 put x= hex16. '(hex) ' x= '(formatted dec)';
end;
if x = 1 then put 'x is equal to 1';
else put 'what happened?';

run;

This DATA step demonstrates how to calculate the maximum integer that can be represented with confidence. Set the BASE and MAX_DIGT variables based on the platform you are running on.

data _null_;

base = 16; /* 16 for IBM, 2 for VAX and IEEE */
max_digt = 14; /* 14 for IBM, 56 for VAX, 53 for IEEE */

/* Compute maximum integer and display */
max_int = base ** max_digt;

put @2 max_int= hex16. '(hex) ' max_int comma22. ' (dec)' ;

/* This DO loop attempts to store the five integers before and after the maximum. Notice how some of the integers after the maximum cannot be stored exactly */
put / @2 'I' @8 'MAX_INT + I (in hex)' @31 'MAX_INT + I (in dec)' / @1 '---' @8 '------------------------' @31 '------------------------';
do i = -5 to 5;
x = max_int + i;
proc means data=example output=newdata; * This DATA step demonstrates how the fuzz factor used in the ROUND function may lose significance. This loss of significance may lead to some values being rounded incorrectly. The point at which the loss of significance occurs is based on the value to be rounded as well as the round off unit. */
run;

proc means data=example output=newdata; input x:
* This DATA step demonstrates how the order of operands in an expression can result in loss of significance. The point at which the loss of significance occurs is based on the order of the operands. */
run;
/* IBM systems */

x=255.115; x_rnd=round(x,.01);
y=256.115; y_rnd=round(y,.01);

put @10 'IBM systems' / _all_ / ;

/* VAX systems */

x=4095.175; x_rnd=round(x,.01);
y=4096.175; y_rnd=round(y,.01);

put @10 'VAX systems' / _all_ / ;

/* IEEE systems */

x=255.155; x_rnd=round(x,.01);
y=256.155; y_rnd=round(y,.01);

put @10 'IEEE systems' / _all_ / ;

run;

/***
 * The following macro defines an EQFUZZ operator. The subsequent DATA step demonstrates how this operator can be used to test for equality within a certain tolerance.

%macro eqfuzz(var1, var2, fuzz=1e-12);
abs((&var1 - &var2) / &var1) < &fuzz
%mend;

data _null_;

x=0;
y=1;
do i = 1 to 10;
 x+0.1;
end;
if x=y then put 'x exactly equal to y';
else if %eqfuzz(x,y) then put 'x close to y';
else put 'x nowhere close to y';
run;

 thuận lợi khi vị trí của y

/* ***/
/* The following macro demonstrates how a rounding routine */
/* can be defined in an application. This rounding routine */
/* adjusts the fuzz factor based on the magnitude of the */
/* values to be rounded. The macro is named ROUND so that it */
/* may be easily incorporated into existing applications. */
/* ***/
%macro round(var,unit,base=16,fz_digit=12);

 /* macro parameters are as follows: */
 /* var: variable to be rounded */
 /* unit: round off unit */
 /* base: base used for numeric representation on the */
 /* platform being used */
 /* (base 16 for IBM, base 2 for VAX and IEEE) */
 /* fz_digit: digit in representation where fuzz occurs */
 /* (for IBM: maximum value is 14 */
 /* suggested value is 12 */
 /* for VAX: maximum value is 56 */
 /* suggested value is 50 */
 /* for IEEE: maximum value is 53 */
fuzz factor is computed as follows:

The log in the base of the representation is
determined by taking the natural log of the value
and dividing it by the natural log of the base.

The resulting value is raised to the next integer
to determine the magnitude of the value. The
fz_digit parameter is subtracted from the magnitude
of the value to determine the magnitude of the fuzz
factor. The base is then raised to this magnitude
and multiplied by the sign of the value to create
the actual fuzz factor. This fuzz factor is added
to the variable value and the ROUND function is
called.

round((&var+
 (sign(&var)*
 &base**(ceil(log(abs(&var))/log(&base))-&fz_digit))),
 &unit)

%mend round;

/**/
/* This DATA step demonstrates how the previously defined */
/* ROUND macro can be used in your application. */
/**/

data _null_;

/* IBM systems */

x=255.115; x_rnd=%round(x,.01);
y=256.115; y_rnd=%round(y,.01);

put @10 'IBM systems' / _all_ / ;
/* VAX systems */

x=4095.175; x_rnd=%round(x,.01);
y=4096.175; y_rnd=%round(y,.01);

put @10 'VAX systems' / _all_ / ;

/* IEEE systems */

x=255.155; x_rnd=%round(x,.01);
y=256.155; y_rnd=%round(y,.01);

put @10 'IEEE systems' / _all_ / ;

run;

%macro eqfuzz(var1, var2, fuzz=1e-3);
abs(&var1 - &var2) <= &fuzz
%mend;

/* Variables in the input data sets are as follows: */
/* BYVAL: is the variable to merge the data sets by */
/* A_VAL and B_VAL: is a character representation of the byval */
/* A_GROUP and B_GROUP: show the data set, by group, and */
data a;

 input byval a_val $ a_group $;

cards;
1.0001 A1.0001 A-1-1
1.9999 A1.9999 A-2-1
4.0000 A4.0000 A-4-1
4.9999 A4.9999 A-5-1
5.0000 A5.0000 A-5-2
5.9999 A5.9999 A-6-1
6.0001 A6.0001 A-6-2
7.0000 A7.0000 A-7-1
7.0001 A7.0001 A-7-2
7.0001 A7.0001 A-7-3
;

data b;

 input byval b_val $ b_group $;

cards;
2.0001 B2.0001 B-2-1
3.0000 B3.0000 B-3-1
3.9999 B3.9999 B-4-1
4.0001 B4.0001 B-4-2
DATA c;
length a_val b_val a_group b_group $ 8;
/* get next by value from each data set */
retain a_count b_count 1;
if a_count <= a_nobs then
 set a(keep=byval rename=(byval=next_a)) point=a_count nobs=a_nobs;
if b_count <= b_nobs then
 set b(keep=byval rename=(byval=next_b)) point=b_count nobs=b_nobs;
/* determine which data set needs to be advanced to merge */
/* current by group */
if %eqfuzz(next_a,next_b) then do;
 read_a = 1;
 read_b = 1;
 end;
else if next_a < next_b then do;
 read_a = 1;
 read_b = 0;
/*****************************/
/* The following DATA step does the merge */
/*****************************/
else do;
 read_a = 0;
 read_b = 1;
end;

/* if the end of one of the data sets has been reached, then */
/* get the remaining observations from the other data set */

if a_count > a_nobs then do;
 read_a = 0;
 read_b = 1;
end;
if b_count > b_nobs then do;
 read_a = 1;
 read_b = 0;
end;

/* check for beginning of a new by group */

if (read_a and not (%eqfuzz(next_a,byval))) or
 (read_b and not (%eqfuzz(next_b,byval)))
then do;
 /* reset variables to missing */
 a_val = ' ';
 b_val = ' ';
 a_group = ' ';
 b_group = ' ';
end;
/* advance data set and write merged observation */

if read_a then do;

 set a;
 a_count+1;
 end;
if read_b then do;
 set b;
 b_count+1;
 end;

drop next_a next_b read_a read_b;

run;

/***/
/* The following DATA steps demonstrate the results of a MERGE */
/* if the BY values matched exactly. */
/***/
data a2;
 set a;
 byval=round(byval);

data b2;
 set b;
 byval=round(byval);

data c2;
 merge a2 b2;
 by byval;
run;
CREATE TABLE D AS

SELECT A.BYVAL, A_VAL, B_VAL, A_GROUP, B_GROUP
FROM A FULL JOIN B
ON %EQFUZZ(A.BYVAL, B.BYVAL);
CREATE TABLE D2 AS

SELECT A2.BYVAL, A_Val, B_VAL, A_Group, B_GROUP
FROM A2 FULL JOIN B2
ON A2.BYVAL = B2.BYVAL;