
1

Figure 1

Getting Started with Dynamic Data Exchange

Howard Schreier, U.S. Department of Commerce, Washington DC

Abstract

There are numerous ways to move information
between SAS® and third-party applications, such as
spreadsheets and data base packages, especially in
the Microsoft Windows environment. Dynamic Data
Exchange (DDE) is a versatile approach, because it
provides a DATA step interface rather than data set
conversion. This presentation will explain the basic
techniques of using DDE to move data to and from
SAS.

Introduction

SAS is, to say the least, a versatile software
product. It can do lots of things. Nevertheless, most
of us occasionally use other products; if we don't,
our customers do. From this comes the frequent
need to move data back and forth between SAS and
various other proprietary file formats.

One method of accomplishing such data
transfers is Dynamic Data Exchange (DDE), which
is a feature of Microsoft Windows and IBM® OS/2®

operating systems.
DDE is a client-server process. SAS can

function only as a DDE client. The client is the
application which initiates the communication, which
can be a request for the server to receive data or a
request for the server to send data.

Here is an example. Like all of the examples in
this tutorial, it was run using Release 6.12/TS020 of
the SAS System under Windows 95 and uses
Microsoft Excel Version 5.0 as the target (server)
application. However, it's important to remember
that many other applications also support DDE.

Figure 1 presents an Excel spreadsheet (named
"easy"), and the object of the example is to read
these data into a SAS data set. Here is the SAS

code which invokes DDE to do exactly that:

 filename readata dde
 'Excel|[demo.xls]easy!R1C1:R3C4';
 data demo_1;
 infile readata;
 input state $ val_b val_c val_d;
 run;

To somebody who is familiar with SAS but
unfamiliar with DDE, this is a very ordinary-looking
DATA step following a very strange-looking
FILENAME statement. Indeed, all of the magic is in
the FILENAME statement.

Note the keyword "dde" and what is termed the
DDE-triplet in quotation marks. It is called a triplet
because it has up to three segments: (1) to the left
of the vertical bar (|) is the name of the server
application (in this case, Excel); (2) between the
vertical bar and the exclamation point (!) is the so-
called "topic", which in this situation is the name of
the Excel worksheet, prefixed by the bracketed
name of the container workbook; (3) following the
exclamation point is the "item", in this case a range
of cells.

The resulting SAS data set corresponds
perfectly to the spreadsheet:

 OBS STATE VAL_B VAL_C VAL_D

 1 Maryland 11.1 11.2 11.3
 2 Virginia 12.1 12.2 12.3
 3 Utah 13.1 13.2 13.3

Here's another example, working in the opposite
direction. We'll write the same data back out to
Excel, reversing the order of the variables for the
sake of variety. The program:

 filename otherway dde
 'Excel|[demo.xls]back2xl!R1C1:R3C4';
 data _null_;
 set demo_1;
 file otherway;
 put val_d val_c val_b state;
 run;

Note that the target spreadsheet must be open.
Unless otherwise indicated, all of the examples in
this tutorial reference worksheets which already
exist in open workbooks in the Excel workspace.

Figure 2 presents the resulting Excel
spreadsheet. With that we have demonstrated
simple data transfer in both directions between SAS
and Excel.

2

Figure 2

Figure 3

Alternatives

Before we delve into the nuts and bolts of DDE,
let's put it into context by considering other options
for moving data between SAS and various third-
party proprietary formats. Possibilities include:

! Object Linking and Embedding (OLE)
! Open Data Base Connectivity (ODBC)
! pipes
! specific SAS data engines (either SAS/ACCESS®

or third-party products)
! specific SAS conversion procedures
! file conversion utilities, such as DBMS/COPY.
! common-denominator strategies, using such
intermediate file formats as comma-separated text
or Hypertext Markup Language (HTML)
! "roll-your-own" methods based on reverse
engineering; an example of this approach is
Hockey's DBFTOSAS macro for reading dBase files

Deliberately not mentioned are the SAS Import
Wizard and Export Wizard, because they do not
actually represent an additional option. Rather, they
provide ease of use for some of the methods listed.

It may seem like there is overkill here, with an
excessive number of solutions to the problem.
However, the various methods have different
advantages and disadvantages. Kuligowski covers
most of them at some length;
meanwhile, here are things to
consider:

1. Are you working in a
visual/object orientation or in
a more traditional data
orientation? If the latter, are
you working with well-formed
tables (that is, structures
which correspond with the
variable-by-observation
organization of SAS data
sets) or with more intricate or
less regular structures which

require a lower-level approach? Figure 3 is an
example of a data structure which already strongly
resembles a SAS data set. While it certainly can be
processed by SAS via DDE, it also lends itself to
more high-level approaches, operating on the whole
table as an entity. Figure 4 is a spreadsheet
containing the same information, but in a more
complex design. It calls for a more low-level
approach, and that happens to be the real strength
of DDE. This is why DDE is often a good choice for
working with spreadsheets, which can be designed
along the lines of Figure 3 but are very often
structured more like Figure 4.

2. Do you have the target application licensed and
installed? DDE requires the target product (eg,
Excel) to be installed and running. This is because,
unlike most of the other methods, which work with
native files stored on disk, DDE communicates with
the running program.

3. Do you have available any additional software
product (either from SAS Institute or from a third
party) which is required? DDE support is provided in
base SAS software; no add-on product is required.

4. Are you doing a one-time conversion of a small
number of files? Or do you need a technique which
lends itself to automation, either because it is a
recurring operation or because the number of files is
large? DDE is fairly easy to automate.

5. On what platform or platforms are you running
SAS? DDE is available in the OS/2 and Windows
environments.

Keeping Tabs

Now we'll return to the mechanics of using DDE
with SAS.

The introductory examples used very well-
behaved data, which made it pretty simple to get
DDE working. It required just the magic FILENAME
statement.

3

Figure 4

Figure 5

Let's turn to a what is perhaps a more realistic
example. Look at the spreadsheet (named
"noteasy") in Figure 5. Notice the missing value ...
and the character value with a length exceeding
eight ... and the embedded blank within a character
value.

We'll try the technique which worked before:

 filename readata dde
 'Excel|[demo.xls]noteasy!R1C1:R3C4';
 data demo_2;
 infile readata;
 input state $ val_b val_c val_d;
 run;

The results reveal some difficulties. First look at
excerpts from the SAS log:

 NOTE: Invalid data for VAL_D in
 line 2 1-7.
 RULE:
----+----1----+----2----+----3
 2 Georgia 22.1 22.2 22.3 22
 STATE=Californ VAL_B=21.1 VAL_C=21.3
 VAL_D=. _ERROR_=1 _N_=1
 NOTE: Invalid data for VAL_B in
 line 3 5-8.
 3 New York 23.1 23.2 23.3 23
 STATE=New VAL_B=. VAL_C=23.1 VAL_D=23.2
 ERROR=1 _N_=2

 NOTE: SAS went to a new line when INPUT
 statement reached past the end of
 a line.

Now here's the SAS data set which was created:

 OBS STATE VAL_B VAL_C VAL_D

 1 Californ 21.1 21.3 .
 2 New . 23.1 23.2

The only thing that's right is the variable VAL_B in
the first observation! So we'll do a few things to
make this data transfer work better. The techniques
we're going to use are not specific to DDE; they are

potentially useful any time a DATA step reads from
an external file. Here's revised code:

 filename readata dde
 'Excel|[demo.xls]noteasy!R1C1:R3C4';
 data demo_3;
 infile readata missover dsd dlm=' ';
 input state:$15. val_b val_c val_d;
 put _infile_;
 run;

Three options have been added to the INFILE
statement. MISSOVER prevents SAS from jumping
to the next line of data when the INPUT statement
exhausts the current line. DSD makes multiple
consecutive delimiters significant (rather than
treating them as one). DLM= is used here to keep
the space character as the delimiter, since DSD
implicitly changes the default delimiter to the
comma.

Also, we've revised the INPUT statement to use
a format along with the colon modifier for the
character variable; this permits reading values
longer than eight characters without having to
specify the absolute column positions while still
allowing the delimiter character to terminate the
field.

One other change, the PUT statement, does not
affect the SAS data set being built, but does aid in
debugging. Note that _INFILE_ here is not a
variable; rather it is a keyword specification. The
statement causes the input buffer (that is, the
current line from the file to which the INFILE
statement points) to be dumped in the SAS log. It
works when reading a "normal" file and it also works
when the INFILE points to a DDE source.

Let's stop for a moment to put these techniques
in context. In terms of record layout, there are
basically two kinds of external files: fixed-format and
free-format. With fixed format, fields appear in
known column positions. With free format, if fields
vary in length from record to record their column
positions will vary, and the reading process depends
on the detection of consistently used separators or
delimiters. Our tune-up of the INFILE and INPUT

4

Figure 6

statements here exploits the SAS repertoire for free-
format input.

When our revised program is run, the log
includes the following:

 California 21.1 21.3
 Georgia 22.1 22.2 22.3
 NOTE: Invalid data for VAL_B in
 line 3 5-8.
 New York 23.1 23.2 23.3
 RULE:
----+----1----+----2----+----3
 3 New York 23.1 23.2 23.3 23
 STATE=New VAL_B=. VAL_C=23.1 VAL_D=23.2
 ERROR=1 _N_=3

The resulting SAS data set looks like this:

 OBS STATE VAL_B VAL_C VAL_D

 1 California 21.1 . 21.3
 2 Georgia 22.1 22.2 22.3
 3 New . 23.1 23.2

It's better, but still not right.
Before we do anything else, look at the buffers

dumped in the SAS log by the PUT statement. They
look like ordinary lines of data which might have
been keyed into an editor and saved in a plain text
file. That's why everyday INFILE and INPUT
techniques, not specific to DDE, are appropriate.
Another implication is that the DDE strategy for data
transfer is similar to the "common-denominator"
strategy using text files (in other words, exporting
plain text from one application and reading it into
the other application). DDE just does it on the fly
and avoids creation of an intermediate file on disk.
At this point, it should be clear that the DDE
approach to importing data operates at a low level;
there may be a lot of inherent structure in the source
(data typing and other field attributes), but DDE
does not see it. Rather, the SAS DATA step must be
crafted to detect and/or rebuild the structure on the
SAS side.

Getting back to our example, there still is a
problem with the embedded blank in "New York".
The format with the colon modifier causes it to be
mistaken for the end of the field.

So far, we have been refining the DATA step
code. Now we go back to the FILENAME statement.
Here's the code for our third try at this spreadsheet:

 filename readata dde
 'Excel|[demo.xls]noteasy!R1C1:R3C4'
 notab;
 data demo_4;
 infile readata missover dsd dlm='09'x;
 input state:$15. val_b val_c val_d;
 put _infile_;
 run;

The NOTAB option has been added to the
FILENAME statement. At the same time the value

of the DLM= option of the INFILE statement is
changed from a blank to a hexadecimal 09, which
denotes a tab character. This may not immediately
make sense, but the resulting SAS data set is at last
a correct reflection of the Excel spreadsheet:

 OBS STATE VAL_B VAL_C VAL_D

 1 California 21.1 . 21.3
 2 Georgia 22.1 22.2 22.3
 3 New York 23.1 23.2 23.3

Also, it's worthwhile looking at the dumped input
buffers in the SAS log. Up until now, we've just seen
text transcribed from the log window. In this case,
we will look at an actual screen shot from the SAS
Display Manager System (Figure 6). The little
rectangles represent tab characters.

Let's stop for a moment and go over what is
happening. Excel, as a DDE server, passes tab
characters to SAS as field separators; that much is
a given. The default behavior of SAS as a DDE
client is to replace these tabs with blanks. This is
fine as long as these are the only blanks (in other
words, if there are no blanks -- leading, trailing, or
embedded -- within the spreadsheet cells). That was
the situation in our initial example. If there are
blanks as part of the data, it is impossible to
distinguish these from the blanks which are
generated during DDE processing to replace the tab
separators.

The NOTAB option inhibits the substitution of
blanks for the tabs which Excel sends. Instead, the
tabs are passed through to the DATA step's input
buffer. That's why it was necessary to change the
DLM= option in the INFILE statement. Once these
changes were made, the INPUT statement knew to
recognize tabs as field separators and to consider
blanks as part of the data, and the import was done
correctly.

It's a bit confusing, because using the NOTAB

5

Figure 7

Figure 8

option means that you do get tab characters in your
data stream, and have to process them. NOTAB
really means that there is no automatic substitution
of blanks for tabs (perhaps it should have been
dubbed the "YESTAB" option).

The NOTAB option is also relevant when SAS is
sending data to Excel. The default behavior is for
SAS to replace each blank in a line of output with a
tab before it passes the line to Excel.

Here is a SAS data set which will illustrate the
issue:

 OBS CITY STATE

 1 Norfolk Virginia
 2 Cary North Carolina
 3 Virginia Beach Virginia

The following code will export it to Excel:

 filename otherway dde
 'Excel|[demo.xls]cities!R1:R3';
 data _null_;
 set cities;
 file otherway;
 put city state;
 run;

Remember that a simple list style PUT statement
like the one in this example inserts single blanks
between fields.

Figure 7 shows the result in Excel. The first row of
the spreadsheet is fine, because neither the city nor
the state has a blank within its name. The other
lines are not properly recorded; city or state names
with embedded blanks are split across cells.

The solution begins with adding the NOTAB
option to the FILENAME statement. Here's the
revised program:

 filename otherway dde
 'Excel|[demo.xls]cities2!R1:R3' notab;
 data _null_;
 set cities;
 file otherway;
 put city state;
 run;

Figure 8 presents the output. The NOTAB option
indeed inhibits the substitution of tabs for blanks. In
fact, because no tabs whatsoever were passed to
Excel, there is no separation and each line (city and
state) ends up in Column A of the spreadsheet. This
is the situation in which the term "NOTAB" does
makes sense in describing the behavior.

But we do want the cities and states separated
in Excel, so tab characters have to be supplied, and
once again, NOTAB means dealing with tabs. There
is no DLM= option available on the FILE statement,
but a hexadecimal constant can simply be included
in the PUT statement. Here's the final version of this
little program:

 filename otherway dde
 'Excel|[demo.xls]cities3!R1:R3' notab;
 data _null_;
 set cities;
 file otherway;
 put city '09'x state;
 run;

Look at the results, in Figure 9. Now we have the
city names in Column A and the state names in
COLUMN B. Once again, the solution was to
arrange things so that tab characters are separators
and blanks are data.

To sum up the discussion of the NOTAB option:
there are cases in which it is not needed, but as a
rule it is needed and it is generally good practice to
code it and make the necessary adaptations in the
DATA step.

Other Pitfalls

Understanding the NOTAB option and its
implications is easily the most important thing in
getting up to speed with SAS and DDE, but there
are some other pitfalls to consider.

Data typing is an issue. Numeric values are
passed as formatted strings. This can lead to loss of
precision. Date and time values require particular
attention.

It is sometimes necessary to code the LRECL=

6

Figure 9

option on the FILE or INFILE statement to override
the default value and avoid truncating the records
which are transferred via DDE.

Server-Side Activity

We've now concluded our discussion of the
basic mechanics of DDE in transferring data
between SAS and Excel. However, there are other
aspects of DDE, involving activity on the Excel
(server) side of things. Up until now, we've assumed
that all is static there -- no data or format changes
going on, no disk input or output operations,
printing, etc.

In the examples so far which involved passing
data from Excel to SAS, we've assumed that the
Excel cells are not altered while the DDE link to
SAS is open. What if they in fact are changing? The
HOTLINK option on the FILENAME statement can
handle this circumstance. Every time a change
occurs anywhere within the range of cells identified
in the triplet, the entire data stream (reflecting all of
the cells in the range) is refreshed for SAS.

While HOTLINK extends the capability of DDE,
it is, to say the least, tricky to use. For one thing,
there are not going to be any changes on the Excel
side unless you have devised some sort of
synchronized activity. Second, HOTLINK disables
the "normal" DATA step behavior of looping through
input data then stopping automatically. Instead, you
have to define and/or detect a condition signifying
the end of the process and code a STOP statement
to terminate the DATA step. Using HOTLINK is
really beyond the scope of this tutorial, but see
below for an example.

There can also be synchronization concerns
when data are flowing in the opposite direction, from
SAS to the target application. Ordinarily, when SAS
sends data to Excel (or any other DDE server
application), the data stream is stored during
execution of the DATA step and delivered when
SAS does its housekeeping at the termination of the
step. However, by incorporating the string
'!DDE_FLUSH' in the output, you can force SAS to
deliver the output accumulated up to that point.
Note that this is not an option on a statement,

detected at compile time. Rather, it is a value to be
embedded in the output at execution time. In other
words, you would code a statement like:

 put '!DDE_FLUSH';

with quotation marks around the magic word.
In simple DDE applications such as our earlier

examples, the default behavior is appropriate and
there is no need for this feature. However, if you are
trying to synchronize the data transfer with Excel
operations (such as SAVE or PRINT), this buffer-
flushing technique becomes critically important and
useful.

But how can you do that (trigger activity on the
Excel side)? You could code references to the
SLEEP function in your DATA step, so that SAS
would suspend activity long enough for you to hot-
key over to Excel and work its menus. But that's
going to be precarious. You could use the HOTLINK
option to make your DATA step loop indefinitely. But
that's pretty advanced.

Another method is based on the support which
Excel (like some other applications) provides for a
special DDE "system" topic, which lets the client
application (for our purposes, this means SAS) send
commands which are then carried out as if they had
been initiated by keyboard or mouse activity or by
Excel macros.

Specifically, this is done by sending to Excel
references to its macro functions (using the Excel
Version 4 macro style, which predates the adoption
of Visual Basic for Applications, or VBA). The
function references, wrapped in brackets, are
transmitted and processed immediately; that is, they
are not buffered like data passed via "ordinary"
DDE.

Here is a rather trivial example, which shades
alternate rows of a worksheet:

 filename commands dde 'excel|system';
 data _null_;
 file commands;
 put
 '[WORKBOOK.SELECT'
 '("cities3","cities3")]';
 do row = 1 to 15 by 2;
 put '[SELECT("R' row +(-1)
 'C1:R' row +(-1) 'C2")]';
 put '[PATTERNS(4,48,4,TRUE)]';
 end;
 run;

The PUT statement preceding the DO loop makes a
particular worksheet ("cities3") active. The first PUT
statement within the loop selects a different range of
cells with each iteration of the loop by embedding
the loop index into the Excel macro function
reference. The last PUT statement sets a particular
color and pattern for the shading.
Figure 10 shows the spreadsheet after this little
program has been run.

7

Figure 10

Let's return to the question of synchronization.
Consider a DATA step which writes to two DDE
links, the "system" topic for Excel commands and an
ordinary spreadsheet (cell range) topic for data.
Recall that the data transfer will by default be
deferred to the end of the step, but not the
commands. Thus, if you send Excel 50 rows of data
then send a SAVE command, you will save an
empty spreadsheet because the SAVE happens
right away while the data are still "in the pipeline" --
unless you remember to pass the string
'!DDE_FLUSH' after the 50 rows of data. DDE
applications of this sort are beyond the scope of this
tutorial, although an example does appear below.

Conclusions and Recommendations

We will go over some more examples, but first
we can state some generalizations.

Spreadsheets are very popular, and are the
most comfortable environment for many people's
confrontations with data. So, DDE, which lets SAS
read and write spreadsheets directly, is a useful
addition to the SAS kit of tools.

DDE has its difficulties, however. We've
discussed or at least mentioned most of them.

In addition, the documentation is fragmented,
because you have to piece together information
from the SAS side with instructions or examples
from the server application side, which as a rule will
not even mention SAS. Sometimes this
documentation is sketchy, and scattered between
conventional manuals and online help. Some
important SAS documentation appears only in Tech
Support papers. The situation is far from completely
discouraging, though. The "SAS companion" item
which is on the Help menu in recent releases
delivers much of the key information about DDE.
And of course the Internet can be a rich source of
information and support.

System commands are helpful, but mostly for
essential housekeeping incidental to data transfer.
In theory, you can control complex behavior of the

DDE server (Excel), but it's difficult to get
information back to SAS on the outcomes of
commands sent to Excel, and suppressing user
prompts is also a problem. You are probably better
off using native (Excel) macro facilities for anything
at all intricate, but that is beyond the scope of a
beginning tutorial.

Use of System commands and (for input) the
HOTLINK option permit SAS to sweep through
multiple files. This is powerful, but keep in mind that
there is an alternative: use of the SAS macro facility
to repeat SAS steps which carry out simpler DDE
actions. Again, we are getting away from
"beginning" subject matter.

More Examples

This example sweeps through multiple
spreadsheets and transfers data to SAS. For input,
we will use the two spreadsheets used in earlier
examples (Figure 1 and Figure 5).

Here is the code:

 filename commands dde 'excel|system';
 filename pasted dde
 "Excel|[demo.xls]forpaste!R1C1:R3C4"
 hotlink notab;
 data demo_5;
 infile pasted missover dsd dlm='09'x;
 do pp = 'easy ', 'noteasy'; drop pp;
 file commands;
 put '[WORKBOOK.SELECT("' pp +(-1)
 '","' pp +(-1) '")]';
 put '[SELECT("R1C1:R3C4","R1C1")]';
 put '[COPY()]';
 put '[WORKBOOK.SELECT'
 '("forpaste","forpaste")]';
 put '[SELECT("R1C1")]';
 put '[PASTE()]';
 do line = 1 to 3; drop line;
 input state:$15. val_b
 val_c val_d;
 output;
 end;
 end;
 stop;
 run;

The second FILENAME statement points to a
worksheet ("forpaste") which will be used to hold
data temporarily. The outer DO loop iterates through
the worksheet names ("easy" and "noteasy"), and
the first reference to Excel's WORKBOOK.SELECT
function embeds these names so that the
worksheets are selected in turn. The next four PUT
statements are pretty straightforward; they select a
three-by-four range of cells, copy it to the clipboard,
change the worksheet selection to the work area
which has been set up for DDE, and select the
upper left cell in the DDE range. The final PUT
statement is straightforward too; it causes Excel to
paste the contents of the clipboard. However, the
use of the HOTLINK option adds a wrinkle; each

8

Figure 11

time the paste operation is performed, the DDE
range is changed and a fresh copy of the range is
fed to SAS. Thus, SAS will see data from each
spreadsheet addressed by the outer DO loop. The
inner DO loop simply reads the data using the
technique which we developed earlier. The STOP
statement is necessary to keep the DATA step from
running indefinitely.

Recall that the cell range set up for DDE here
contains three rows; the following line from the SAS
log confirms that the HOTLINK option causes it to
be read twice:

NOTE: 6 records were read from the
 infile PASTED.

Here is the result, which correctly concatenates the
spreadsheets into a single SAS data set.

 OBS STATE VAL_B VAL_C VAL_D

 1 Maryland 11.1 11.2 11.3
 2 Virginia 12.1 12.2 12.3
 3 Utah 13.1 13.2 13.3
 4 California 21.1 . 21.3
 5 Georgia 22.1 22.2 22.3
 6 New York 23.1 23.2 23.3

Now for our final example. Instead of sweeping
through multiple spreadsheets as input, we will
develop a method to generate multiple spreadsheet
files.

We will start with the data set created in the
very first example:

 OBS STATE VAL_B VAL_C VAL_D

 1 Maryland 11.1 11.2 11.3
 2 Virginia 12.1 12.2 12.3
 3 Utah 13.1 13.2 13.3

As output, we will generate a separate spreadsheet
file for each state, with the state name followed by
the three numeric values running down the first
column of the first worksheet. Here is the program:

 filename commands dde 'excel|system';
 filename multout dde
 'Excel|[shell.xls]Sheet1!C1';
 data _null_;
 file commands;
 put '[NEW(5)]';
 put '[SAVE.AS("c:\sesug\shell.xls",'
 '1,"",FALSE,"",FALSE)]';
 run;
 data _null_;
 set demo_1 end=done;
 file multout;
 put state / val_b / val_c / val_d;
 put '!DDE_FLUSH';
 file commands;
 put '[SAVE.AS("c:\sesug\' state +(-1)
 '.xls",1,"",FALSE,"",FALSE)]';
 if done then put "[FILE.CLOSE()]";
 run;

There are two DATA steps here. The first one
simply creates and saves a new Excel workbook
(shell.xls) which will be used as a vehicle. The
second DATA step begins with very ordinary-looking
SET, FILE, and PUT statements. The second PUT
statement adds the magic string '!DDE_FLUSH',
and since it is unconditional, this causes the DDE
buffer to be flushed at this point on each pass
through the DATA step. The remaining PUT
statements are directed to the DDE "system" topic.
The first of these saves the workbook, embedding
the variable STATE into the file name. The other
one closes the active workbook at the conclusion of
processing.

Here is one interesting line from the log.

 NOTE: 15 records were written to the
 file MULTOUT.

Now there are three states and four variables for
each state (including the state name). That accounts
for twelve records. The other three are records
containing the string '!DDE_FLUSH', which are just
ordinary data when they are generated by the DATA
step, and only have special significance to DDE.

Figure 11 shows the data in one of the Excel
workbook files. Similar files are created for the other
states represented in the input data.

The '!DDE_FLUSH' is critical. Without it, the
entire stream of data would be held and passed to
Excel after completion of the last pass through the
DATA step, after the Excel files were saved; we
would get files containing no data.

This example also illustrates how very tricky
some of these more advanced DDE techniques are.
Consider that when the first observation is
processed, the SAVE.AS operation gives the active
workbook in the Excel environment the name of the
first state, so there is no longer a workbook named
"shell.xls". Nevertheless, the DDE link which was set
up for "shell.xls" continues to operate as intended.
In fact, if the program is changed so that shell.xls is
opened anew for each pass through the DATA step,
it will not work correctly. Such little mysteries tend

9

SAS and SAS/ACCESS are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
® indicates USA registration. IBM and OS/2 are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.

Author Contact Information

Howard Schreier
Stop H-2815

U.S. Dept. of Commerce
Washington DC 20230

(202) 482-4180
Howard_Schreier@ita.doc.gov

to be hard to unravel because the feedback is
usually limited. Typically there are uninformative
generic error indicators, or no indicator at all except
for the absence of expected data.

References

Bodt, Mark, "Talking to PC Applications Using
Dynamic Data Exchange", Observations®: The
Technical Journal for SAS Software Users, Volume
5, Number 3

Hockey, Richard, "dbftosas reincarnated", in
Newsgroup comp.soft-sys.sas, also in SAS-L
Archives
(gopher://jse.stat.ncsu.edu:70/11/othergroups/sasl),
6 July 1993

Kuligowski, Andrew, "You Can RUN; But Your Data
Cannot Hide: Advanced Methods to Introduce
External Data into the SAS® System", SAS Users
Group International Conference Proceedings, 1998

SAS Institute Inc., SAS® Companion for the
Microsoft Windows Environment, Cary NC: SAS
Institute Inc., 1996. 302 pp.

SAS Institute Inc., SAS® Language: Reference,
Version 6, First Edition, Cary NC: SAS Institute Inc.,
1990. 1042 pp.

SAS Institute Inc., SAS® Technical Note TS-325,
The SAS System and DDE, Cary NC: SAS Institute
Inc., 1995. 18 pp.

SAS Institute Inc., SAS® Technical Report P-222,
Changes and Enhancements to Base SAS®

Software, Release 6.07, Cary NC: SAS Institute
Inc., 1991. 344 pp.

