

1

PROC SQL for DATA Step Die-hards
Christianna S. Williams, University of North Carolina, Chapel Hill, NC

ABSTRACT
PROC SQL can be rather intimidating for those who have learned SAS� data management techniques exclusively
using the DATA STEP. However, when it comes to data manipulation, SAS often provides more than one method
to achieve the same result, and SQL provides another valuable tool to have in one’s repertoire. Further, Struc-
tured Query Language is implemented in many widely used relational database systems with which SAS may in-
terface, so it is a worthwhile skill to have from that perspective as well.

This tutorial will present a series of increasingly complex examples. In each case I will demonstrate the DATA
STEP method with which users are probably already familiar, followed by SQL code that will accomplish the same
data manipulation. The simplest examples will include subsetting variables (columns, in SQL parlance) and ob-
servations (rows), while the most complex situations will include MERGEs (JOINS) of several types and the sum-
marization of information over multiple observations for BY groups of interest. This approach will clarify for which
situations the DATA STEP method or, conversely, PROC SQL would be better suited. The emphasis will be on
writing clear, concise, debug-able SAS code, not on which types of programs run the fastest on which platforms.

INTRODUCTION
The DATA step is a real workhorse for virtually all SAS users. Its power and flexibility are probably among the key
reasons why the SAS language has become so widely used by data analysts, data managers and other “IT pro-
fessionals”. However, at least since version 6.06, PROC SQL, which is the SAS implementation of Structured
Query Language, has provided another extremely versatile tool in the base SAS arsenal for data manipulation.
Still, for many of us who began using SAS prior to the addition of SQL or learned from hardcore DATA step pro-
grammers, change may not come easily. We are often too pressed for time in our projects to learn something
new or venture from the familiar, even though it may save us time and make us stronger programmers in the long
run. Often SQL can accomplish the same data manipulation task with considerably less code than more tradi-
tional SAS techniques.

This paper is designed to be a relatively painless introduction to PROC SQL for users who are already quite adept
with the DATA step. Several examples of row selection, grouping, sorting, summation and combining information
from different data sets will be presented. For each example, I’ll show a DATA step method (recognizing that
there are often multiple techniques to achieve the same result) followed by an SQL method. Throughout the pa-
per, when I refer to “DATA step methods”, I include under this term other base SAS procedures that are commonly
used for data manipulation (e.g. SORT, SUMMARY). In each code example, SAS keywords are in ALL CAPS,
while arbitrary user-provided parameters (i.e. variable and data set names) are in lower case.

THE DATA

First, a brief introduction to the data sets. Table 1 describes the four logically linked data sets, which concern the
hospital admissions for twenty make-believe patients. The variable or variables that uniquely identify an observa-
tion within each data set are indicated in bold; the data sets are sorted by these keys. Complete listings are in-
cluded at the end of the paper. Throughout the paper, it is assumed that these data sets are located in a data
library referenced by the libref EX.

Hands-On WorkshopsNESUG 18

2

Table 1. Description of data sets for examples

Data set Variable Description

admissions pt_id patient identifier

 admdate date of admission

 disdate date of discharge
 hosp hospital identifier
 bp_sys systolic blood pressure (mmHg)
 bp_dia diastolic blood pressure (mmHg)
 dest discharge destination
 primdx primary diagnosis (ICD-9)
 md admitting physician identifier

patients id patient identifier

 lastname patient last name
 firstname patient first name
 sex gender (1=M, 2=F)
 birthdate date of birth
 primmd primary physician identifier

hospitals hosp_id hospital identifier

 hospname hospital name
 town hospital location
 nbeds number of beds
 type hospital type

doctors md_id physician identifier

 hospadm hospital at which MD has admitting privileges

 lastname physician last name

EXAMPLE 1: SUBSETTING VARIABLES (COLUMNS)
In this first, extremely simple example, we just want to select three variables from the ADMISSIONS data set.

DATA step code:

DATA selvar1 ;
 SET ex.admissions (KEEP = pt_id admdate disdate);
RUN;

In the DATA step, the KEEP= option on the SET statement does the job.

SQL code:

PROC SQL;
 CREATE TABLE selvar2 AS
 SELECT pt_id, admdate, disdate
 FROM ex.admissions ;
QUIT;

The SQL procedure is invoked with the PROC SQL statement. SQL is an interactive procedure, in which RUN
has no meaning. QUIT forces a step boundary, terminating the procedure. An SQL table in SAS is identical to a
SAS data set. The output table could also be a permanent SAS data set; in such case, it would be referenced by a

Hands-On WorkshopsNESUG 18

3

two-level name (e.g. EX.SELVAR2). A few other features of this simple statement are worth noting. First, the
variable names are separated by commas rather than spaces; this is a general feature of lists in SQL – lists of
tables, as we’ll see later are also separated by commas. Second, the AS keyword signals the use of an alias; in
this case the table name SELVAR2 is being used as an alias for the results of the query beginning with the
SELECT clause. We’ll see other types of aliases later. Third, the FROM clause names what entity we are query-
ing. Here it is a single input data set (EX.ADMISSIONS), but it could also be multiple data sets, a query, a view
(either a SAS view or a SAS/ACCESS view), or a table in an external database (made available within SAS, for
example, by open database connect [ODBC]). Examples of the first two types will be presented below.

SQL can also be used to write reports, in which case the statement above would begin with the SELECT clause.
The resulting report looks much like output from PROC PRINT. SAS views, which are stored queries, can also be
created with SQL. To do this, the keyword TABLE in the CREATE statement above would simply be replaced with
the keyword VIEW. In this paper, since I am focusing on the generation of new data sets meeting desired specifi-
cations, virtually all the SQL statements will begin with “CREATE TABLE…”.

One final point before we move on to some more challenging examples: interestingly, although the results of the
DATA step and the PROC SQL are identical (Neither PROC PRINT nor PROC COMPARE reveal any differ-
ences), slightly different messages are generated in the log.

For the DATA step:

NOTE: The data set WORK.SELVAR1 has 22 observations and 3 variables.

For PROC SQL:

NOTE: Table WORK.SELVAR2 created, with 22 rows and 3 columns.

This demonstrates a distinction in the terminology that stems from the fact that SQL originated in the relational
database arena, while, of course, the DATA step evolved for “flat file” data management. Table 2 shows these
equivalencies.

Table 2. Equivalent SAS terms between the DATA step and PROC SQL

DATA step PROC SQL

data set table

observation row

variable column

EXAMPLE 2A: SELECTING OBSERVATIONS (ROWS)

Almost all of the rest of the examples involve the selection of certain observations (or rows) from a table or combi-
nations of tables. Here we simply want to select admissions to the Veteran’s Administration hospital (HOSP EQ 3
on the ADMISSIONS data set).

DATA step code:

DATA vahosp1 ;
 SET ex.admissions (WHERE = (hosp EQ 3));
RUN;

The WHERE clause on the SET statement is used to choose those observations for which the hospital identifier
corresponds to the VA. This is more efficient than a subsetting IF, though the result is the same.

SQL code:

PROC SQL FEEDBACK;
 CREATE TABLE vahosp2 AS
 SELECT *
 FROM ex.admissions
 WHERE hosp EQ 3;
QUIT;

Hands-On WorkshopsNESUG 18

4

Here, the WHERE clause performs the same function as the subsetting IF above. Note that it is still part of the
CREATE statement. A few additional features of SQL are demonstrated here in this simple query. First, the * is a
“wild card” syntax, which essentially means “Select all the columns”. The FEEDBACK option on the PROC SQL
statement requests an expansion of the query in the log. Useful in conjunction with the asterisk wild card, this re-
sults in the following statement in the SAS log:

NOTE: Statement transforms to:
select ADMISSIONS.PT_ID, ADMISSIONS.ADMDATE, ADMISSIONS.DISDATE,
ADMISSIONS.MD, ADMISSIONS.HOSP, ADMISSIONS.DEST, ADMISSIONS.BP_SYS,
ADMISSIONS.BP_DIA, ADMISSIONS.PRIMDX
from EX.ADMISSIONS
where ADMISSIONS.HOSP=3;

NOTE: Table WORK.VAHOSP2 created, with 6 rows and 9 columns.

A subset of variables is shown in the output below.

Example 2a: Selecting observations: VA Admits

PT_ID ADMDATE DISDATE HOSP

003 15MAR1997 15MAR1997 3
008 01OCT1997 15OCT1997 3
008 26NOV1997 28NOV1997 3
014 17JAN1998 20JAN1998 3
018 01NOV1997 15NOV1997 3
018 26DEC1997 08JAN1998 3

EXAMPLE 2B: CREATING A NEW VARIABLE

In this example we want to create a variable called DXGRP that categorizes the primary diagnosis into one of
three categories (myocardial infarction [MI], congestive heart failure [CHF] or other), based on the ICD-9 code.

DATA step code:

DATA grouping ;
 SET ex.admissions ;
LENGTH dxgrp $5 ;
 IF primdx EQ: '410' THEN dxgrp = 'MI' ;
 ELSE IF primdx EQ: '428' THEN dxgrp = 'CHF';
 ELSE dxgrp = 'other' ;
RUN;

The useful EQ: comparison operator (or, equivalently =:) allows us to select all values of PRIMDX that begin with
the specified string of characters, regardless of subsequent characters.

SQL code:

PROC SQL;
 CREATE TABLE grouping2 AS
 SELECT *,
 CASE
 WHEN primdx LIKE '410%' THEN 'MI'
 WHEN primdx LIKE '428%' THEN 'CHF'
 ELSE 'other'
 END AS dxgrp
 FROM ex.admissions;
QUIT;

Hands-On WorkshopsNESUG 18

5

Here, the CASE clause of PROC SQL is used in conjunction with the LIKE keyword and the % wildcard to define
the new variable DXGRP. Below is a partial listing of the results.

EXAMPLE 2b: Creating a character variable - DXGRP

PT_ID ADMDATE PRIMDX DXGRP

001 07FEB1997 410.0 MI
001 12APR1997 428.2 CHF
001 10SEP1997 813.90 other
001 06JUN1998 428.4 CHF
003 15MAR1997 431 other
004 18JUN1997 434.1 other
005 19JAN1997 411.81 other
005 10MAR1997 410.9 MI
005 10APR1997 411.0 other
007 28JUL1997 155.0 other
007 08SEP1997 155.0 other

EXAMPLE 2C: SELECTING ROWS BASED ON A CREATED VARIABLE

In this example we want to create a variable corresponding to the number of days of the hospital stay and select
only those stays with duration of at least 14 days. Usually, both the admission date and discharge date are con-
sidered days of stay.

DATA Step code:

DATA twowks1 ;
 SET ex.admissions (KEEP = pt_id hosp admdate disdate) ;

 ATTRIB los LENGTH=4 LABEL='Length of Stay';
 los = (disdate - admdate) + 1;

 IF los GE 14 ;
RUN;

SQL code:

PROC SQL;
 CREATE TABLE twowks2 AS
 SELECT pt_id, hosp, admdate, disdate,
 (disdate-admdate) + 1 AS los LENGTH=4 LABEL=’Length of Stay’
 FROM ex.admissions
 WHERE CALCULATED los GE 14;
QUIT;

Here, we see the creation of a new column and the assignment of a column alias (LOS). Attributes can also be
added; they could include a FORMAT as well. There is also one more subtle feature here: the CALCULATED
keyword is required to indicate that the column LOS doesn’t exist on the input table (EX.ADMISSIONS) but is cal-
culated during the query execution.

Hands-On WorkshopsNESUG 18

6

Example 2c: Selecting observations based on created variable

PT_ID HOSP ADMDATE DISDATE LOS

001 1 12APR1997 25APR1997 14
007 2 28JUL1997 10AUG1997 14
008 3 01OCT1997 15OCT1997 15
009 2 15DEC1997 04JAN1998 21
018 3 01NOV1997 15NOV1997 15
018 3 26DEC1997 08JAN1998 14
020 1 08OCT1998 01NOV1998 25

On the other hand, it is not required to assign an alias to a calculated column. The following would be perfectly
valid and would select the same observations:

SELECT pt_id, hosp, admdate, disdate, (disdate - admdate) + 1
 FROM ex.admissions
 WHERE (disdate - admdate) + 1 GE 14;

However, SAS will assign an arbitrary, system-dependent variable name to this column in the resulting table.
However, if this column had a LABEL, it would print at the top of the column in the output, though the underlying
variable name would still be the undecipherable _TEMA001.

EXAMPLE 2D (OR 2A REVISITED): SELECTING ROWS IN ONE TABLE BASED ON INFORMATION FROM
ANOTHER TABLE

Returning to the example of selecting admissions to the Veteran’s Administration hospital, let’s say we didn’t know
which value of the HOSP variable corresponded to the VA hospital. The information that provides a “cross-walk”
between the hospital identifier code and the hospital name is in the HOSPITALS data set.

DATA Step Code:

PROC SORT DATA = ex.admissions OUT=admits;
 BY hosp ;
RUN;

DATA vahosp1d (DROP = hospname) ;
 MERGE admits (IN=adm)
 ex.hospitals (IN=va KEEP = hosp_id hospname
 RENAME = (hosp_id=hosp)
 WHERE = (hospname EQ: 'Veteran'));
 BY hosp ;
 IF adm AND va;
RUN;

PROC SORT;
 BY pt_id admdate;
RUN;

We first need to sort the ADMISSIONS data set by the hospital code, and then merge it with the HOSPITALS data
set, renaming the hospital code variable and selecting only those observations with a hospital name beginning
“Veteran”. If we want the admission to again be in ascending order by patient ID and admission date, another sort
is required. The resulting data set is the same as in Example 2A.

Hands-On WorkshopsNESUG 18

7

PROC SQL Code:

PROC SQL ;
 CREATE TABLE vahosp2d AS
 SELECT *
 FROM ex.admissions
 WHERE hosp IN
 (SELECT hosp_id
 FROM ex.hospitals
 WHERE hospname LIKE "Veteran%")
 ORDER BY pt_id, admdate ;
QUIT;

This procedure contains an example of a subquery, or a query-expression that is nested within another query-
expression. The value of the hospital identifier (HOSP) on the ADMISSIONS data set is compared to the result of
a subquery of the HOSPITALS data set. Using IN (rather than EQ) in the WHERE clause allows for the possibility
that the subquery might return more than a single value (i.e. if more than one hospital had a name beginning “Vet-
eran”). Note that no columns are added to the resulting table from the HOSPITALS data set, although this could
be done too, as we’ll see in a later example. No explicit sorting is required for this subquery to work. The ORDER
BY clause dictates the sort order of the output data set. The output is identical to that shown for Example 2A.

EXAMPLE 3: USING SUMMARY FUNCTIONS

Our next task is to count the number of admissions for each of the patients with at least one admission. We also
want to calculate the minimum and maximum length of stay for each patient.

DATA Step Code:

DATA admsum1 ;
 SET ex.admissions ;
 BY pt_id;

 ** (1) Initialization;
 IF FIRST.pt_id THEN DO;
 nstays = 0;
 minlos = .;
 maxlos = .;
 END;

 ** (2) Accumulation;
 nstays = nstays + 1;
 los = (disdate - admdate) + 1;
 minlos = MIN(OF minlos los) ;
 maxlos = MAX(OF maxlos los) ;

 ** (3) Output;
 IF LAST.pt_id THEN OUTPUT ;

 RETAIN nstays minlos maxlos ;
 KEEP pt_id nstays minlos maxlos ;
RUN;

We process the input data set by PT_ID. The DATA step has three sections. First, when the input observation is
the first one for each subject, we initialize each of the summary variables. Next, in the accumulation phase we
increment our counter and determine if the current stay is the longest or shortest for this patient. The RETAIN
statement permits these comparisons. Finally, when it is the last input observation for a given PT_ID, we output
an observation to our summary data set, keeping only the ID and the summary variables. If we kept any other
variables, their values in the output data set would be the values they had for the last observation for each subject,
and the output data set would still have one observation for each patient in the ADMISSIONS file (i.e. 14).

Hands-On WorkshopsNESUG 18

8

PROC SQL code:

PROC SQL;
 CREATE TABLE admsum2 AS
 SELECT pt_id, COUNT(*) AS nstays,
 MIN(disdate - admdate + 1) AS minlos,
 MAX(disdate - admdate + 1) AS maxlos
 FROM ex.admissions
 GROUP BY pt_id ;
QUIT;

Two new features of PROC SQL are introduced here. First, the GROUP BY clause instructs SQL what the group-
ings are over which to perform any summary functions. Second, the summary functions include COUNT, which is
the SQL name for the N or FREQ functions used in other SAS procedures. The COUNT(*) syntax essentially says
count the rows for each GROUP BY group. The summary columns are each given an alias. The output is below.

Example 3: Using Summary Functions

PT_ID NSTAYS MINLOS MAXLOS

001 4 2 14
003 1 1 1
004 1 7 7
005 3 4 9
007 1 14 14
008 3 3 15

If we selected any columns other than the grouping column(s) and the summary variables, the resulting table
would have a row for every row in the input table (i.e. 23) with the summary information duplicated across rows
with a common value of the grouping variable (PT_ID), and we’d get the following messages in the log:

NOTE: The query requires remerging summary statistics back with the
original data.

NOTE: Table WORK.ADMSUM2 created, with 23 rows and 5 columns.

Sometimes this “re-merging” is useful as in Example 4b below, but it is not what we want for this situation.

EXAMPLE 4A: SELECTION BASED ON SUMMARY FUNCTIONS

Let’s say we want to identify potential blood pressure outliers. We’d like to select all those observations that are
two standard deviations or further from the mean.

DATA Step Code:

PROC SUMMARY DATA= ex.admissions ;
 VAR bp_sys ;
 OUTPUT OUT=bpstats MEAN(bp_sys)= mean_sys STD(bp_sys) = sd_sys ;
RUN;

DATA hi_sys1 ;
 SET bpstats (keep=mean_sys sd_sys)
 ex.admissions ;
 IF _N_ EQ 1 THEN DO;
 high = mean_sys + 2*(sd_sys) ;
 low = mean_sys - 2*(sd_sys) ;
 DELETE;
 END;
 RETAIN high low;
 IF (bp_sys GE high) OR (bp_sys LE low) ;

Hands-On WorkshopsNESUG 18

9

 DROP mean_sys sd_sys high low ;
RUN;

PROC SUMMARY generates the statistics we need. We concatenate this one-observation data set with our ad-
missions data set, RETAINing the high and low cutoffs so we can make the comparison we need to choose the
potential outliers.

PROC SQL Code:

PROC SQL ;
 CREATE TABLE hi_sys2 AS
 SELECT * FROM ex.admissions
 WHERE (bp_sys GE
 (SELECT MEAN(bp_sys)+ 2*STD(bp_sys)
 FROM ex.admissions))
 OR (bp_sys LE
 (SELECT MEAN(bp_sys) - 2*STD(bp_sys)
 FROM ex.admissions));
QUIT;

The summary functions are used here in two similar subqueries of the same table to generate the values against
which the systolic blood pressure for each observation in the outer query is compared. There is no GROUP BY
clause because we are generating the summary values for the entire data set.

Example 4A: Selection based on Summary Functions

PT_ID ADMDATE BP_SYS BP_DIA DEST
--
001 12APR1997 230 101 1
003 15MAR1997 74 40 9
009 15DEC1997 228 92 9

EXAMPLE 4B: SELECTION BASED ON SUMMARY FUNCTION WITH “RE-MERGE”

This example adds a small twist to the last one by requiring that we select admissions with extreme systolic blood
pressure values by the discharge destination. The variable DEST is 1 for those who are discharged home, 2 for
those discharged to a rehabilitation facility and 9 for those who die.

DATA Step Code:

PROC SUMMARY DATA= ex.admissions NWAY;
 CLASS dest ;
 VAR bp_sys ;
 OUTPUT OUT=bpstats2 MEAN(bp_sys)=mean_sys STD(bp_sys)=sd_sys ;
RUN;

PROC SORT DATA = ex.admissions OUT=admissions;
 BY dest ;
RUN;

DATA hi_sys3 ;
 MERGE admissions (KEEP = pt_id bp_sys bp_dia dest)
 bpstats2 (KEEP = dest mean_sys sd_sys);
 BY dest ;

Hands-On WorkshopsNESUG 18

10

 IF bp_sys GE mean_sys + 2*(sd_sys) OR
 bp_sys LE mean_sys - 2*(sd_sys) ;

FORMAT mean_sys sd_sys 6.2;
RUN;

We use a CLASS statement this time with PROC SUMMARY and include the NWAY option so the BPSTATS2
data set does not include the overall statistics. The ADMISSIONS data set must be sorted by DEST before merg-
ing in the destination-specific means and standard deviations. A subsetting IF pulls off the desired observations.

PROC SQL Code:
PROC SQL;
 CREATE TABLE hi_sys4 AS
 SELECT pt_id, bp_sys, bp_dia, dest,
 MEAN(bp_sys) AS mean_sys FORMAT=6.2,
 STD(bp_sys) AS sd_sys FORMAT=6.2
 FROM ex.admissions
 GROUP BY dest
 HAVING bp_sys GE (mean_sys + 2*sd_sys)
 OR bp_sys LE (mean_sys – 2*sd_sys) ;
QUIT;

In some ways this example, in which the statistics are generated and the selection of rows are made separately for
each BY group, is simpler than the last one where the process was done for the sample as a whole. This example
doesn’t require a subquery. Rather it relies on a “re-merging” of the summary statistics for each GROUPing back
with the ungrouped data, permitting the row by row comparisons needed to select the outliers. One new keyword
is introduced here as well. HAVING acts on groups in a manner analogous to the way a WHERE clause operates
on rows. A HAVING expression usually is proceeded by a GROUP BY clause, which defines the group that the
HAVING expression evaluates, and the query must include one or more summary functions.

Example 4B: Select using Summary Functions with re-merge

PT_ID BP_SYS BP_DIA DEST MEAN_SYS SD_SYS
--
001 230 101 1 165.82 30.48
018 199 9 2 151.09 21.28

EXAMPLE 4C: IDENTIFYING DUPLICATES

This example demonstrates another use of a HAVING expression. We wish to select observations from the
DOCTORS data set that are not unique with respect to the physician identifier. In other words we want to pull out
all the records for the doctors who have admitting privileges at more than one hospital. We’d like them in order by
the physician’s last name.

DATA Step Code:
DATA selmd1 ;
 SET ex.doctors (KEEP = md_id lastname hospadm
 RENAME = (hospadm=hospital));
 BY md_id ;
 IF NOT (FIRST.md_id AND LAST.md_id) ;
RUN;

PROC SORT DATA=selmd1 ;
 BY lastname, hospital ;
RUN;

Processing BY md_id with this subsetting IF will produce the desired result.

Hands-On WorkshopsNESUG 18

11

PROC SQL Code:

PROC SQL ;
 CREATE TABLE selmd2 AS
 SELECT md_id, lastname, hospadm AS hospital
 FROM ex.doctors
 GROUP BY md_id
 HAVING COUNT(*) GE 2
 ORDER BY lastname, hospital ;
QUIT;

Applying the GROUP BY clause, the query first counts how many rows are associated with each doctor. The
HAVING expression then selects the rows that meet the following condition: being part of a group having more
than one row.

Example 4C: Identifying duplicates

MD_ID LASTNAME HOSPITALS

7803 Avitable 2
7803 Avitable 3
1972 Fitzhugh 1
1972 Fitzhugh 2
3274 Hanratty 1
3274 Hanratty 2
3274 Hanratty 3
2322 MacArthur 1
2322 MacArthur 3

EXAMPLE 5A: CREATION OF TWO DATA SETS FROM ONE

For the next example suppose we want to create separate data sets for the admissions in 1997 and 1998.

DATA Step Code:
DATA admits97 admits98 ;
 SET ex.admissions ;
 IF YEAR(admdate) = 1997 THEN OUTPUT admits97;
 ELSE IF YEAR(admdate) = 1998 THEN OUTPUT admits98;
RUN;

This is readily accomplished by including two data set names in the DATA statement and directing observations to
the appropriate output data set based on the value of the YEAR function. Note that the result of the YEAR func-
tion is always a four-digit year.

PROC SQL Code:

PROC SQL ;
 CREATE TABLE admits97 AS
 SELECT * FROM ex.admissions
 WHERE YEAR(admdate) = 1997;
 CREATE TABLE admits98 AS
 SELECT * FROM ex.admissions
 WHERE YEAR(admdate) = 1998;
QUIT;

Hands-On WorkshopsNESUG 18

12

This invocation of PROC SQL includes two separate but nearly identical CREATE statements, one for each output
table. Almost all of the functions that are available in the DATA step are also available in PROC SQL. Below is a
partial listing of each of the output tables.

Example 5a: Two data sets from one (1997)

pt_id admdate md hosp

001 07FEB1997 3274 1
001 12APR1997 1972 1
001 10SEP1997 3274 2
003 15MAR1997 2322 3
004 18JUN1997 7803 2

Example 5a: Two data sets from one (1998)

pt_id admdate md hosp

001 06JUN1998 3274 2
010 30NOV1998 2322 1
014 17JAN1998 7803 3
015 25MAY1998 4003 5
015 17AUG1998 4003 5

EXAMPLE 5B: CONCATENATION

If we were starting with separate data sets for each year and wanted to combine into a single data set, ordered as
in our original data set (by PT_ID and ADMDATE), the following code would serve.

DATA Step Code:

DATA alladm1 ;
 SET admits97 admits98 ;
 BY pt_id ;
RUN;

The BY statement is needed to ensure the desired ordering. Without it, all the 1997 admissions would precede all
the 1998 admissions.

PROC SQL Code:

PROC SQL ;
 CREATE TABLE alladm2 AS
 SELECT * FROM admits97
 UNION
 SELECT * FROM admits98
 ORDER BY pt_id;
QUIT;

Generally the UNION set operator concatenates the component data sets so that the resulting table is in the same
sort order as each of the original components. However, the ORDER BY clause ensures that this is the case.

EXAMPLE 6A: INNER JOIN OF TWO TABLES

A join combines data from two or more tables to produce a single result table; the table resulting from an inner join
contains rows that have one or more matches in the other table(s).

Hands-On WorkshopsNESUG 18

13

DATA Step Code:
DATA admits1 ;
 MERGE ex.admissions (IN=adm KEEP = pt_id admdate disdate hosp md)
 ex.patients (IN=pts KEEP = id lastname sex primmd
 RENAME = (id=pt_id));
 BY pt_id ;
 IF adm AND pts;
RUN;

Selection based on the IN= temporary variables does the trick. Note that this produces the desired result partly
because although there may be multiple admissions for each patient, the PATIENTS data set has only one obser-
vation for each value of the key variable PT_ID. The information on each record for a given PT_ID in the
PATIENTS data set is replicated onto each observation in the output data set.

PROC SQL code:
PROC SQL ;
 CREATE TABLE admits2 AS
 SELECT pt_id, admdate, disdate, hosp, md, lastname, sex, primmd
 FROM ex.admissions AS a,
 ex.patients AS b
 WHERE a.pt_id = b.id
 ORDER BY a.pt_id, admdate ;
QUIT;

The table aliases A and B are used here to clarify which ID variables are coming from which data set. They are
not required here because there are no columns being selected here that exist on both input data sets. Note that
the AS keyword is not required, but it emphasizes that an alias is being assigned. The code above is more com-
monly used for a simple inner join, but the following also produces the same result.

Alternative PROC SQL code:
PROC SQL ;
 CREATE TABLE admits2 AS
 SELECT pt_id, admdate, disdate, hosp, md, lastname, sex, primmd
 FROM ex.admissions INNER JOIN
 ex.patients
 ON pt_id = id
 ORDER BY pt_id, admdate ;
QUIT;

This is also an example of an “equijoin” because the selection criteria is equality of a column in one table with a
column in the second table. SAS MERGEs are always equijoins. In the output below, only a subset of the 25 se-
lected rows and 8 columns are shown.

Example 6A: Inner Join of two tables

PT_ID ADMDATE HOSP MD LASTNAME PRIMMD

001 07FEB1997 1 3274 Williams 1972
001 12APR1997 1 1972 Williams 1972
001 10SEP1997 2 3274 Williams 1972
001 06JUN1998 2 3274 Williams 1972
003 15MAR1997 3 2322 Gillette .
004 18JUN1997 2 7803 Wallace 4003
005 19JAN1997 1 1972 Abbott 1972
005 10MAR1997 1 1972 Abbott 1972
005 10APR1997 2 1972 Abbott 1972

Hands-On WorkshopsNESUG 18

14

EXAMPLE 6B: JOIN OF THREE TABLES WITH ROW SELECTION

We now wish to identify patients who died in the hospital (DEST = 9); we want their age at death and the number
of beds in the hospital. This requires obtaining information from three of our tables, with differing key fields.

DATA Step Code:

DATA died1 (RENAME = (disdate=dthdate)) ;
 MERGE ex.admissions (IN=dth KEEP = pt_id disdate hosp dest
 WHERE = (dest=9))
 ex.patients (IN=pts KEEP = id birthdate RENAME = (id=pt_id));
 BY pt_id ;
 IF dth AND pts ;

 agedth = FLOOR((disdate-birthdate)/365.25) ;

 DROP dest birthdate ;
RUN;

PROC SORT DATA=died1;
 BY hosp;
RUN;

DATA died1b ;
 MERGE died1 (IN=dth RENAME=(hosp=hosp_id))
 ex.hospitals (IN=hsp KEEP=hosp_id nbeds);
 BY hosp_id ;

 IF dth AND hsp ;
 DROP hosp_id;
RUN;

PROC SORT;
 BY pt_id ;
RUN;

This requires two DATA steps and two SORTs.

PROC SQL code:

PROC SQL ;
 CREATE TABLE died2 AS
 SELECT pt_id, nbeds, disdate AS dthdate,
 INT((disdate-birthdate)/365.25) AS agedth
 FROM ex.admissions, ex.hospitals, ex.patients
 WHERE (pt_id = id) AND (hosp = hosp_id) AND dest EQ 9
 ORDER BY pt_id ;
QUIT;

Here we can query the combination of the three tables because there is no requirement of a single key that links
all of the inputs.

Example 6B: Join of three tables

PT_ID DTHDATE AGEDTH NBEDS

001 12JUN1998 66 645
003 15MAR1997 78 1176
009 04JAN1998 88 645

Hands-On WorkshopsNESUG 18

15

EXAMPLE 6C: LEFT OUTER JOIN

A left outer join is an inner join of two or more tables that is augmented with rows from the “left” table that do not
match with any rows in the “right” table(s). For this example we want to produce a table that has a row for each
hospital with an indicator of whether there were any admissions at that hospital.

DATA Step Code:

PROC SORT DATA = ex.admissions (KEEP = hosp)
 OUT=admits (RENAME=(hosp=hosp_id)) NODUPKEY;
 BY hosp ;
RUN;

DATA hosps1 ;
 MERGE ex.hospitals (IN=hosp)
 admits (IN=adm);
 BY hosp_id ;
 IF hosp ;
 hasadmit = adm ;
RUN;

If the duplicates were not removed from the ADMISSIONS data set, the output data set would have multiple ob-
servations for each hospital. The temporary boolean IN= variable is made permanent to create our indicator of
having at least one record in the ADMISSIONS data set.

PROC SQL code:

PROC SQL ;
 CREATE TABLE hosps2 AS
 SELECT DISTINCT a.*, hosp IS NOT NULL AS hasadmit
 FROM ex.hospitals a LEFT JOIN
 ex.admissions b
 ON a.hosp_id = b.hosp ;
QUIT;

The keyword DISTINCT causes SQL to eliminate duplicate rows from the resulting table. The expression “hosp IS
NOT NULL AS hasadmit” assigns the alias HASADMIT to a new column whose value is TRUE (i.e. 1) if a given
HOSP_ID from the HOSPITALS table has a matching HOSP value in the ADMISSIONS table.

Example 6c: Left Outer Join

HOSP_ID HOSPNAME HASADMIT

1 Big University Hospital 1
2 Our Lady of Charity 1
3 Veteran's Administration 1
4 Community Hospital 1
5 City Hospital 1
6 Children's Hospital 0

Hands-On WorkshopsNESUG 18

16

EXAMPLE 6D: INNER JOIN WITH A SUBQUERY

One of the items combined in a join can itself be a query. In this case we want to identify the admissions for which
patients were treated by their primary physicians. We want to include the doctor’s name and the patient’s name.

DATA Step Code:

DATA primdoc (DROP = primmd);
 MERGE ex.admissions (IN=adm KEEP = pt_id admdate disdate hosp md)
 ex.patients (IN=pts KEEP = id lastname primmd
 RENAME = (id=pt_id));
 BY pt_id ;
 IF adm AND pts AND (md EQ primmd) ;
RUN;

PROC SORT DATA=primdoc; BY md; RUN;

DATA doctors ;
 SET ex.doctors (KEEP = md_id lastname);
 BY md_id ;
 IF FIRST.md_id ;
RUN;

DATA primdoc1a ;
 MERGE primdoc (IN=p RENAME=(lastname=ptname md=md_id))
 doctors (RENAME = (lastname=mdname));
 BY md_id ;
 IF p ;
RUN;

PROC SORT DATA=primdoc1a ;
BY pt_id admdate;
RUN;

The first DATA step above selects the admissions for which patients saw their primary physicians. The second
DATA step eliminates duplicate records for the same physician. If this were not done, the final MERGE would be
a many-to-many merge and would not produce the desired result. This final DATA step simply adds the physician
name to the selected admissions. Both LASTNAME variables are RENAMEd to prevent the physician name from
overwriting the patient name.

PROC SQL Code:

PROC SQL ;
 CREATE TABLE primdoc2 AS
 SELECT pt_id, admdate, disdate, hosp, md_id,
 b.lastname AS ptname,
 c.lastname AS mdname
 FROM ex.admissions a, ex.patients b,
 (SELECT DISTINCT md_id, lastname
 FROM ex.doctors) c
 WHERE (a.pt_id EQ b.id) AND
 (a.md EQ b.primmd) AND
 (a.md EQ c.md_id)
 ORDER BY a.pt_id, admdate ;
QUIT;

The third “table” listed in the FROM clause is itself a query which selects non-duplicate physician ID’s and names
from the DOCTORS data set. The result of this subquery can be aliased just like a table, and here the aliases b
and c are required so that the two lastname columns can be distinguished. The ultimate row selection is very
straightforward. Sometimes for a complicated query like this it is helpful to break it down into separate queries.

Hands-On WorkshopsNESUG 18

17

Example 6D: Inner Join with a subquery

PT_ID ADMDATE PTNAME MDNAME

001 12APR1997 Williams Fitzhugh
005 19JAN1997 Abbott Fitzhugh
005 10MAR1997 Abbott Fitzhugh
005 10APR1997 Abbott Fitzhugh
007 28JUL1997 Nickelby Hanratty
007 08SEP1997 Nickelby Hanratty
010 30NOV1998 Alberts MacArthur
018 01NOV1997 Baker Fitzhugh
018 26DEC1997 Baker Fitzhugh

EXAMPLE 7: A CORRELATED SUBQUERY

A correlated subquery is a subquery for which the values returned by the inner query depend on values in the cur-
rent row of the outer query. For example, we want to display the names of physicians who had admissions to the
VA hospital.

DATA Step Code:
PROC SORT DATA = ex.admissions (KEEP=md hosp) OUT = admits;
 BY md;
RUN;

PROC SORT DATA = ex.doctors OUT=doctors NODUPKEY ;
 BY md_id ;
RUN;

DATA vadocs1 (DROP = hosp);
 MERGE doctors (IN=docs KEEP=md_id lastname)
 admits (IN=adm WHERE=(hosp = 3) RENAME = (md=md_id)) ;
 BY md_id;
 IF docs AND adm AND FIRST.md_id ;
RUN;

PROC SORT;
 BY lastname;
RUN;

First, we need to sort the admissions data set by its link to the physician data set and eliminate duplicate records
from the physician data set. Then we merge the VA admission records into the physician data; we must again
“de-dup.” because some of these physicians have more than one admission, and the information we are inter-
ested in would be redundant.

PROC SQL Code:
PROC SQL;
 CREATE TABLE vadocs2 AS
 SELECT DISTINCT md_id, lastname
 FROM ex.doctors AS d
 WHERE 3 IN
 (SELECT hosp FROM ex.admissions AS a
 WHERE d.md_id = a.md)
 ORDER BY lastname;
QUIT;

Hands-On WorkshopsNESUG 18

18

Because the subquery refers to a column in the outer query (MD_ID), it is evaluated for each row of the
DOCTORS table. So, for each row of the DOCTORS table that has a match in the ADMISSIONS table the
WHERE clause checks if 3 equals HOSP is TRUE; if so, the row is selected. The output is below.

Example 6: A correlated subquery

MD_ID LASTNAME

7803 Avitable
1972 Fitzhugh
3274 Hanratty
2322 MacArthur

CONCLUSION
I hope that the examples presented in this paper have convinced you that PROC SQL is an extremely versatile
tool for the manipulation of data sets. Row selection, summarization, the combination of information from multiple
input sources, and the ordering of the output can often be achieved in a single statement! Another compelling
reason for becoming comfortable with SQL is that many information systems store data in foreign databases, such
as ORACLE, Microsoft Access or SQL Server. If these data are to be manipulated and analyzed in SAS, fre-
quently PROC SQL provides the link (e.g. through ODBC).

Perhaps seeing some familiar DATA Step techniques followed by a call to the SQL procedure that achieves the
same result will give you the impetus to try SQL or dig into it a bit more deeply. I’ll close with three observations
that I hope will provide some encouragement.

First, it is always useful to have many different techniques to draw on when tackling a challenging data manage-
ment task. And using a new project or assignment as an opportunity to learn some new methods makes you a
more valuable employee – and probably a more fulfilled one as well.

Second, on the technical side, the most complicated nested query can usually be broken down into manageable
parts – start from the “inside” (the most nested expressions) and work your way out. While it may be possible to
do it all in one statement, you don’t have to. Try making each level of nesting into a separate SELECT statement,
using aliases with impunity, with a final statement that connects the results of these simpler statements. Once this
is working, you can start building the parts back together again.

Finally, in constructing these examples, I was struck that using SQL forces one to think about data sets in a
slightly different way, focussing more on the relationships among tables than the structure of any one table. In
fact, it makes one realize that a database is defined not only by the component tables but just as importantly by
the linkages among them. This broadened perspective can provide insight into building better databases as well
as writing better programs to access them.

ACKNOWLEDGMENTS
Many thanks to Peter Charpentier, Evelyne Gahbauer and Virginia Towle for their careful reading of and extremely
helpful comments on earlier versions of this paper.

SAS is a registered trademark or trademark of SAS Institute Inc. in the USA and other countries. Oracle is a regis-
tered trademark of the Oracle Corporation. �indicates USA registration. Other brand and product names are reg-
istered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
I welcome your comments or questions.
 Christianna S. Williams, PhD
 Cecil G. Sheps Center for Health Services Research
 University of North Carolina at Chapel Hill
 725 Martin Luther King Blvd.
 Campus Box # 7590
 Chapel Hill, North Carolina 27599
 Email: Christianna_Williams@unc.edu

Hands-On WorkshopsNESUG 18

19

APPENDIX: EXAMPLE DATA SETS

EX.ADMISSIONS

PT_ID ADMDATE DISDATE MD HOSP DEST BP_SYS BP_DIA PRIMDX
001 07FEB1997 08FEB1997 3274 1 1 188 85 410.0
001 12APR1997 25APR1997 1972 1 1 230 101 428.2
001 10SEP1997 19SEP1997 3274 2 2 170 78 813.90
001 06JUN1998 12JUN1998 3274 2 9 185 94 428.4
003 15MAR1997 15MAR1997 2322 3 9 74 40 431
004 18JUN1997 24JUN1997 7803 2 2 140 78 434.1
005 19JAN1997 22JAN1997 1972 1 1 148 84 411.81
005 10MAR1997 18MAR1997 1972 1 1 160 90 410.9
005 10APR1997 14APR1997 1972 2 1 150 89 411.0
007 28JUL1997 10AUG1997 3274 2 2 136 72 155.0
007 08SEP1997 15SEP1997 3274 2 2 138 71 155.0
008 01OCT1997 15OCT1997 3274 3 1 145 74 820.8
008 26NOV1997 28NOV1997 2322 3 2 135 76 V54.8
008 10DEC1997 12DEC1997 2322 9 2 132 78 V54.8
009 15DEC1997 04JAN1998 1972 2 9 228 92 410.1
010 30NOV1998 06DEC1998 2322 1 1 147 84 E886.3
012 12AUG1997 16AUG1997 4003 5 1 187 106 410.52
014 17JAN1998 20JAN1998 7803 3 1 162 93 414.10
015 25MAY1998 06JUN1998 4003 5 2 142 81 820.8
015 17AUG1998 24AUG1998 4003 5 2 138 79 038.2
016 25JUL1998 30JUL1998 7803 2 1 189 101 412.1
018 01NOV1997 15NOV1997 1972 3 2 170 88 428.1
018 26DEC1997 08JAN1998 1972 3 2 199 93 428.1
020 04JUL1998 08JUL1998 2998 4 1 118 75 414.0
020 08OCT1998 01NOV1998 2322 1 2 162 99 434.0

EX.PATIENTS

ID SEX PRIMMD BIRTHDATE LASTNAME FIRSTNAME
001 1 1972 10AUG1931 Williams Hugh
002 2 1972 17MAR1929 Franklin Susan
003 1 . 02JUL1918 Gillette Michael
004 1 4003 25MAY1916 Wallace Geoffrey
005 2 1972 31AUG1931 Abbott Celeste
006 1 2322 12APR1899 Mathison Anthony
007 1 3274 07FEB1900 Nickelby Nicholas
008 2 4003 09NOV1935 Lieberman Marianne
009 2 3274 15SEP1909 Jacobson Frances
010 2 2322 14OCT1939 Alberts Josephine
011 2 1972 04NOV1917 Erickson Karen
012 1 7803 16JUN1926 Collins Elizabeth
013 1 4003 03AUG1937 Greene Riley
014 2 8034 14DEC1932 Marcus Emily
015 2 3274 . Zakur Hannah
016 1 1972 17JUN1904 DeLucia Antonio
017 1 2322 17APR1922 Cohen Adam
018 1 1972 13FEB1938 Baker Shelby
019 2 4003 01FEB1924 Wallace Judith
020 2 7803 07AUG1906 Nelson Caroline

EX.HOSPITALS

HOSP_ID HOSPNAME TOWN NBEDS TYPE
1 Big University Hospital New Mitford 841 1
2 Our Lady of Charity North Mitford 645 2
3 Veteran's Administration West Mitford 1176 3
4 Community Hospital Derbyville 448 1
5 City Hospital New Mitford 1025 1
6 Children's Hospital East Mitford 239 2

Hands-On WorkshopsNESUG 18

20

EX.DOCTORS

MD_ID LASTNAME HOSPADM
1972 Fitzhugh 1
1972 Fitzhugh 2
2322 MacArthur 1
2322 MacArthur 3
2998 Rosenberg 4
3274 Hanratty 1
3274 Hanratty 2
3274 Hanratty 3
4003 Colantonio 5
7803 Avitable 2
7803 Avitable 3

Hands-On WorkshopsNESUG 18

