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Motivation & Problem Statement

• Classical (MAP) Rx: 

• Optimal in BER if channel model known & stationary

• Efficient & optimal if channel is AWGN: Algorithm Deficit [1] 

• Not optimal if channel model is unknown: Model Deficit [1] 

• Neural Network (NN) Rx typically as Black Box Systems: 

• NN transceivers are more robust

• Lacks bounds on BER→ Approach MAP performance for given data-set [2,3] 

• Lacks efficient model design → High hardware & training complexity [4,5] 

Problem Statement: To mathematically bridge the gap in explainability of a NN Rx → To achieve guarantees 

on BER & Structure and training complexity
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Overview of Wireless Transceivers

Holds for certain channel conditions
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Towards Explainable NN-based Receivers

• Explainability: Math of how a NN classifies symbols → Guarantees on BER & complexity

• Challenging for channels[6]
→ Derive Equivalent receiver

• Equivalence is empirically understood[7]
→ Needs proof

• Challenging Task: 

(i) Data-driven (empirical) vs Model-driven (Bayesian)

(ii) Parameter optimization vs Output optimization
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NN Rx

Classical Rx (MAP)

Allows us to understand disparity of NN & Classical Rx 
→ Derive tight BER bounds based on NN structure and training



NN-Rx with Complete Training (𝒏 → ∞):
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Lemma 1: NN and Classical Rx are equivalent under above design criteria for known and stationary channels

Equivalence Under Complete Training

Assumption: Stationary channel

(i) Law of Large Numbers (ii) Universal Approximation[8]

Posterior Mean
MSE Risk

Design Criteria: 
a. Outputs: Mx1 vector
b. Outputs add to 1
c. One-hot encoded labels

NN 
Function

Symbol 
Labels

[8] Cybenko, “Approximation by superpositions of a sigmoidal function,”

# Training 
samples

Symbol EstimatePosterior Probability

Classical Rx:

MAP estimate is the symbol with maximum Posterior Probability

Lemma 2: The BER of NN is related to BER of Classical Rx for known and stationary channels as,

MAP Rx function

Posterior



Channel Statistics: 

Calculated from data (or channel if known)
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Risk Statistics Under Incomplete Training

NN Statistics: 

Empirically determined for dif. NN architecture 
& complexity

If Channel Model is known (E.g., AWGN): Proposition 1

If Channel Model is unknown
Calculate from Data: Average value of the conditional variance

Incomplete Training:

NN Statistics Channel Statistic

Lemmas 3 & 4: Risk is Gaussian: Due to randomness in data, NN architecture, NN complexity

Expected NN  Function

Modulation ParameterSNR



Data-dependent BER bounds (SISO)
Theoretical

AWGN Channel

Feed-forward NN 

(FNN)

𝑛 = 103

Theorem 1 (SISO):

(Known Channel)

(Unknown Channel)

Experimental

16-QAM

Modulation Order

Take-Aways

• BER of NN-Rx lies within bounds (fixed size, arch. & data)

• Gap increases with 𝑀

• Equivalence under sufficient samples
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Assumption: Equally Likely Prior

Depends on:
Data (channel), mod.
NN arch. & complexity

Tight data-dependent bounds on BER for known or unknown channels

Depends on:
Data (channel) 
modulation



Data-dependent BER bounds (MIMO)
Theorem 2 (MIMO):

(Known Channel)

(Unknown Channel)

Modulation ParameterSNR

Take-Aways

• Gap between bounds increases with K

• Equivalence for MIMO fading channels 

(Assumption: frequency-flat fading)
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Depends on:
# Antennas, SNR
Data (channel), mod.
NN arch.& complex

Rayleigh Fading

Theoretical

Rayleigh Fading

Maximum Ratio Combine

Feed-forward NN

QPSK

𝑛 = 103

Experimental

QPSK

# Antennas

Assumption: Independent Fading



Insights on Model & Training Complexity
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• BER upper bound is a monotonically increasing function of the Risk statistics:

• 𝜎ℎ
2 is independent of NN model and training and is fixed for a given dataset

• 𝜇𝑛 𝑁 , 𝜎𝑛
2(𝑁) for FNN depend on NN structure (# parameters: 𝑁) and training set quality (# samples: 𝑛)

• Minimizing 𝜇𝑛 𝑁 , 𝜎𝑛
2(𝑁) ensures minimum worst case BER

• Inferences: 

• For given data-set, find least complex NN structure with min. worst case BER

• For given NN structure, find min. required training with min. worst case BER



Boundaries & Model Complexity

• Optimal Model is Determined

• Less Complex → Underfits

• More Complex → Overfits

Impact of Model Complexity
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Impact of Model Complexity

Minimum Complexity

• AWGN

• 16-QAM

• FNN

• n=1000

Empirical Approach for Least Complex Receiver Structure

Evaluate NN Statistics for Validation-Set

• Depends on: Quality of training, NN Architecture & Structure, 

Parameter Initialization 

• Least complex NN structure with min. worst BER is found for 

fixed training dataset (𝑛 = 1000)

Optimal (𝑁 = 100) Less Complex (𝑁 ≪ 100) More Complex (𝑁 ≫ 100)

𝑁: Number of parameters
𝑛 = 1000



Impact of Training Quality

10

• AWGN channel 

• 16-QAM

• FNN

• 𝑛 = 103

Impact of Training Schemes

Achieves min. error under:

• Training one model at all SNR

• Training one model per SNR

• Training one model at low SNR (≤ 6𝑑𝐵)

Impact of # Training Samples

• Min. training is found for a given NN structure

• Simple FNN is sufficient for equivalence

• 𝑛 samples are drawn from entire channel distribution

Minimum Training

• AWGN channel 

• 16-QAM

• FNN



Conclusions

• Through theoretical and empirical analysis we show that:

• NN Rx with MSE risk is equivalent to MAP Rx, under complete training

• Under incomplete training, BER of NN Rx lies within the derived tight data & model dependent 

BER upper bound for NN receivers

• Empirically derived least complex NN Rx structure and min. training to ensure min. worst BER
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THANK YOU.
QUESTIONS?
Paper contains all theorems and proofs presented

mabdulcareem@albany.edu

https://www.albany.edu/~ma952922
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