ON EQUIVALENCE OF NEURAL NETWORK RECEIVERS

Maqsood Careem*, Prof. Aveek Dutta*, Dr. Ngwe Thawdar** *University at Albany SUNY, Albany, NY **US Air Force Research Laboratory, Rome, NY

Motivation & Problem Statement

Overview of Wireless Transceivers

- Classical (MAP) Rx: _____
 - Optimal in BER if channel model known & stationary
 - Efficient & optimal if channel is AWGN: Algorithm Deficit [1]
 - Not optimal if channel model is unknown: Model Deficit [1]
- Neural Network (NN) Rx typically as Black Box Systems:
 - NN transceivers are more robust
 - Lacks bounds on BER→ Approach MAP performance for given data-set ^[2,3]
 - Lacks efficient model design → High hardware & training complexity ^[4,5]

Problem Statement: To mathematically bridge the gap in explainability of a NN Rx → To achieve guarantees on BER & Structure and training complexity

 O. Simeone, "A very brief introduction to machine learning with applications to communication systems"
 H.Kim, "Communication Algorithms via Deep Learning"

[4] T. Wang, "Deep Learning for Wireless Physical Layer: Opportunities and Challenges"

[5] F. Restuccia, "Physical-Layer Deep Learning: Challenges and Applications to 5G and Beyond"

Options for wireless transceivers	Explainab	Robust to any chanr	BER Guarantee
Classical approaches: SISO: [10,11,12] MIMO: [13,14,15]	~		(√)

 (\checkmark) Holds for certain channel conditions

Towards Explainable NN-based Receivers

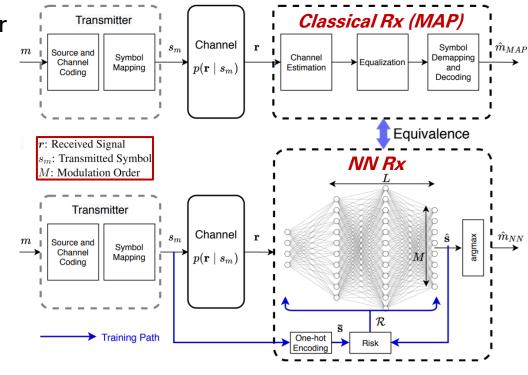
- *Explainability:* Math of how a NN classifies symbols → Guarantees on BER & complexity
- Challenging for channels^[6] → Derive *Equivalent* receiver
- Equivalence is empirically understood^[7] \rightarrow Needs proof
- Challenging Task:

(i) Data-driven (empirical) vs Model-driven (Bayesian)

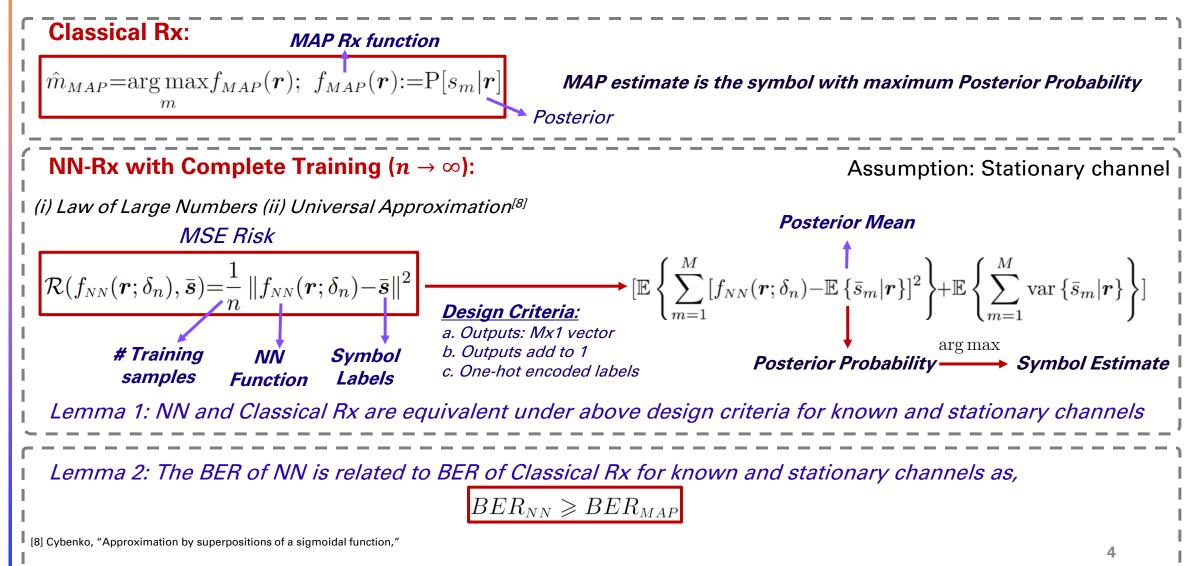
(ii) Parameter optimization vs Output optimization

Allows us to understand disparity of NN & Classical Rx → Derive tight BER bounds based on NN structure and training

[6] Guo, "Explainable Artificial Intelligence (XAI) for 6G: Improving Trust between Human and Machine"[7] Gruber et al., "On Deep Learning-Based Channel Decoding"



Equivalence Under Complete Training



Risk Statistics Under Incomplete Training

Incomplete Training: Lemmas 3 & 4: Risk is Gaussian: Due to randomness in data, NN architecture, NN complexity

NN Statistics

ics Channel Statistic

Channel Statistics:

Calculated from data (or channel if known)

$$\sigma_{h}^{2} = \mathbb{E}\left[\sum_{m=1}^{M} \operatorname{var}\left\{\bar{s}_{m} | \boldsymbol{r}\right\}\right]$$

If Channel Model is known (E.g., AWGN): Proposition 1

$$\sigma_{h}^{2} = \frac{M\lambda A_{M}}{\gamma_{b}\log_{2}M} \text{ where, } \lambda = \left(1 - \frac{2}{\pi}\right),$$
SNR Modulation Parameter

If Channel Model is unknown Calculate from Data: Average value of the conditional variance

NN Statistics:

Empirically determined for dif. NN architecture
 & complexity

$$\mu_{n} = \mathbb{E}\left[\left(\bar{f}_{NN}(\boldsymbol{r}) - f_{MAP}(\boldsymbol{r})\right)^{2}\right],$$

$$\sigma_{n}^{2} = \mathbb{E}\left[\mathbb{E}_{\mathcal{D}}\left[\left(f_{NN}(\boldsymbol{r};\delta_{n}) - \bar{f}_{NN}(\boldsymbol{r})\right)^{2}\right]\right]$$

Expected NN Function

 $\bar{f}_{NN}(\boldsymbol{r}) = \mathbb{E}_{\mathcal{D}}[f_{NN}(\boldsymbol{r};\delta_n)]$

Data-dependent BER bounds (SISO)

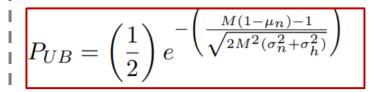
Theorem 1 (SISO): Assumption: Equally Likely Prior

 $P_{LB} \leqslant BER_{\scriptscriptstyle NN} \leqslant P_{UB}$

 $P_{LB} = BER_{MAP}$ $P_{LB} = \mathbf{Q} \left(\frac{M-1}{\sqrt{M^2 \sigma_L^2}} \right)$

(Known Channel)) (Unknown Channel) Modulation Order

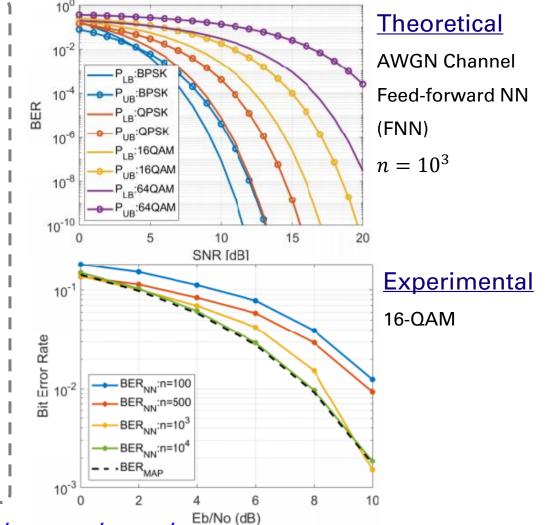
Depends on: Data (channel) modulation



Depends on: Data (channel), mod. NN arch. & complexity

Take-Aways

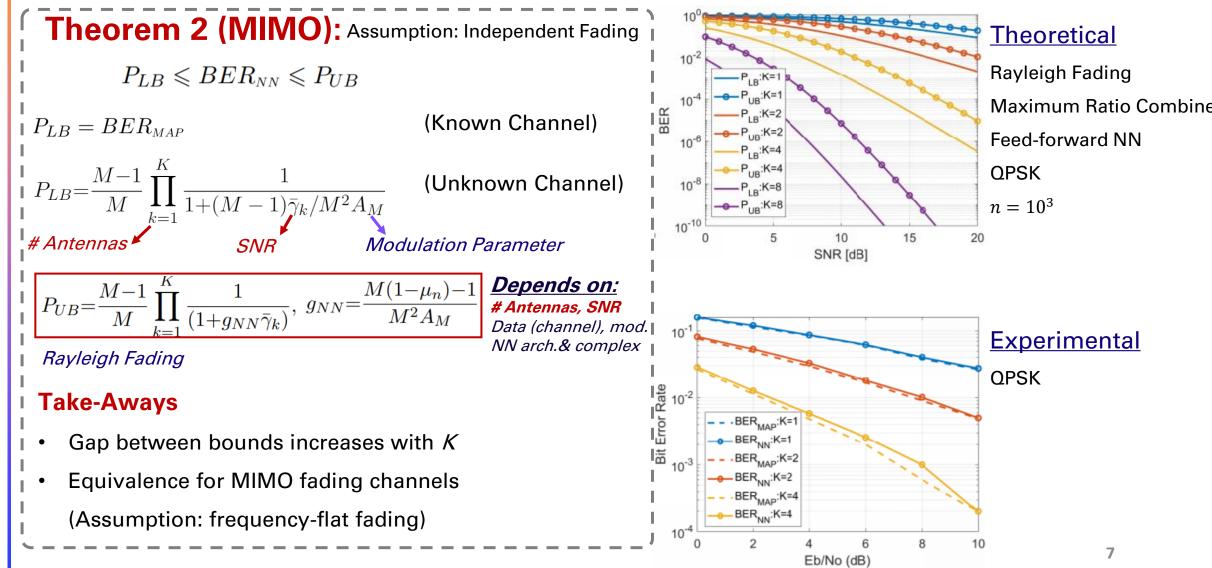
- BER of NN-Rx lies within bounds (fixed size, arch. & data)
- Gap increases with *M*
- Equivalence under sufficient samples



6

Tight data-dependent bounds on BER for known or unknown channels

Data-dependent BER bounds (MIMO)



Insights on Model & Training Complexity

• BER upper bound is a monotonically increasing function of the Risk statistics:

$P_{UB}(\mu_n(N), \sigma_n^2(N), \sigma_h^2)$

- σ_h^2 is independent of NN model and training and is fixed for a given dataset
- $\mu_n(N), \sigma_n^2(N)$ for FNN depend on NN structure (# parameters: N) and training set quality (# samples: n)
- Minimizing $\mu_n(N)$, $\sigma_n^2(N)$ ensures minimum worst case BER
- Inferences:
 - For given data-set, find least complex NN structure with min. worst case BER
 - For given NN structure, find min. required training with min. worst case BER

TABLE I: Simulation Parameters		
Parameters/Hyperparameters	Value/Model	
Neural Network Type	Deep Feed-Forward NN	
Empirical Risk (\mathcal{R})	Mean-Squared Error (MSE)	
Training Algorithm	Scaled Conjugate Gradient Descent(SCGD)	
Activation Function (ϕ_l)	Hidden:Tan-Sig [24], Output:Softmax	
Channel Models	AWGN, Rayleigh	
Antenna Configuration	SISO, MIMO	
Number of Hidden Layers	[1, 3, 5]	
Number of Input Neurons	2 (I,Q streams)	
Number of Output Neurons	M = [2, 4, 16, 64]	
Number of Samples (n)	$10^2 - 10^5$	
Number of Parameters (N)	10^{0} - 10^{5}	
Training, Validation, Testing	[60, 20, 20] %	

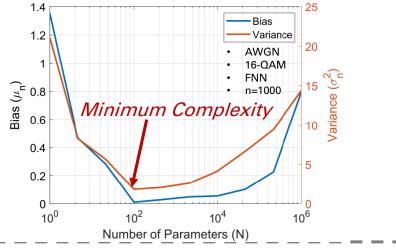
Impact of Model Complexity

Empirical Approach for Least Complex Receiver Structure

Evaluate NN Statistics for Validation-Set

- Depends on: Quality of training, NN Architecture & Structure,
 Parameter Initialization
- Least complex NN structure with min. worst BER is found for fixed training dataset (n = 1000)

Impact of Model Complexity



Less Complex ($N \ll 100$) More Complex ($N \gg 100$) Optimal (N = 100) **Boundaries & Model Complexity** Quadrature Amplitude **Optimal Model is Determined** Amplitude 0.5 Less Complex \rightarrow Underfits More Complex \rightarrow Overfits N: Number of parameters -0.5 0.5 -0.5 0.5 -0.5 -1 n = 1000In-phase Amplitude In-phase Amplitude In-phase Amplitude

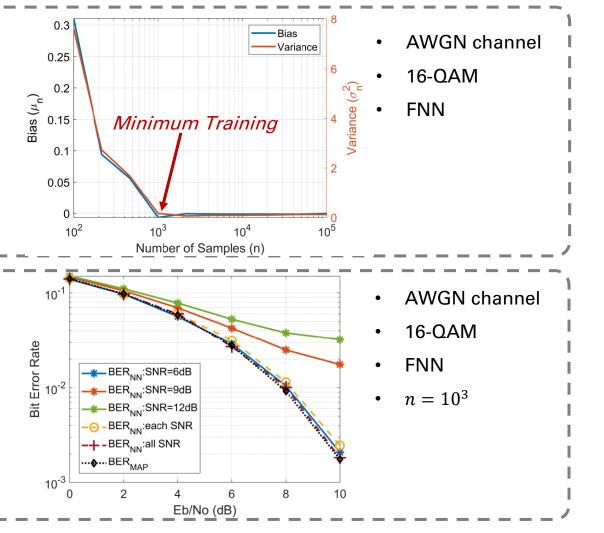
Impact of Training Quality

Impact of # Training Samples

- Min. training is found for a given NN structure
- Simple FNN is sufficient for equivalence
- *n* samples are drawn from entire channel distribution

Impact of Training Schemes

- Achieves min. error under:
- Training one model at all SNR
- Training one model per SNR
- Training one model at low SNR ($\leq 6dB$)



Conclusions

• Through theoretical and empirical analysis we show that:

- NN Rx with MSE risk is equivalent to MAP Rx, under complete training
- Under incomplete training, BER of NN Rx lies within the derived tight data & model dependent

BER upper bound for NN receivers

• Empirically derived least complex NN Rx structure and min. training to ensure min. worst BER

THANK YOU. QUESTIONS?

Paper contains all theorems and proofs presented

mabdulcareem@albany.edu

https://www.albany.edu/~ma952922