CHRONOS: A Cloud based Hybrid RF-Optical Network Over Synchronous Links

Maqsood Careem, Monette Khadr, Ahmed Hussien, Dola Saha, Hany Elgala and Aveek Dutta

Department of Electrical & Computer Engineering University at Albany, SUNY

State University of New York

Wireless Trends

Low Throughput and High Latency

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update (White Paper)

University at Albany, SUNY

2021

Higher Frequencies

• High bandwidth \rightarrow Harsh channel conditions \rightarrow Less explored

• Research on Isolated bands (sub-6GHz, mmWave and THz)

Solution

- Integrated, seamless and complementary communication across multiple bands
- Needs a complete rethinking and redesigning of network architecture
- CHRONOS: A Cloud based Hybrid RF Optical Network Over Synchronous Links to virtualize the Radio Access Network

CHRONOS

- A Multi-node, heterogeneous, wideband, scalable, hybrid and synchronous Cloud Radio Access Network (C-RAN)
- Enhancing core capabilities of C-RAN by integrating synchronous RF and Optical links (heterogeneity).

CHRONOS: Architecture

Novelty

1) Heterogeneous (RF-Optical) Edge:

2) Hybrid Cloud based DSP:

3) On-demand Edge Processing:

4) Synchronous Edge:

Testbed Setup

Testbed

Each HNE and HMT:

- RF & Optical Front Ends
- SDR (USRP B210)
 Intel NUC: i7-7567U, 16GB RAM

HBP (Cloud)

• i7 quad-core processor

Synchronization

- Clock Distribution OctoclockG
- Controller in Cloud •

Optical Frontends

- Optical Front-End:
 - Laser Diode sources
 - Photo Diode Detectors with Amplifiers (TIAs)
 - Collimating Lenses

Baseband Transmitter

• Currently postprocessing in MATLAB

Baseband Receiver

7/10/18

12

Simultaneous Transmissions

<pre>\$./tx_samples_file_simultaneousfreq1 80e6</pre>					
freq2 80e6rate 5e6gain1 80gain2 60					
subdev="A:A A:B"channel=0,1ant TX/RX					
ref=internalrepeatspb 10000					
file1 /media/ramdisk/RF/RFTx.dat					
file2 /media/ramdisk/Opt/OptTx.dat					

```
Creating usrp device with: serial=310733F...

-- Setting master clock rate selection: 'automatic'

-- Setting clock rate 16.000000 MHz...

Using Device: Single USRP: Device:B-Series B210

Setting TX Rate: 5.000000 Msps...

-- Setting clock rate 40.000000 MHz...

Setting TX Freq of channel 0: 80.000000 MHz

Setting TX Freq of channel 1: 80.000000 MHz

Setting TX Gain of channel 1: 60.000000 dB

Setting TX Gain of channel 1: 60.000000 dB

Detecting which channels to use --successful

-- Setting clock rate 20.000000 MHz...

Buffer Size: 10000

Num of simultaneous transmissions : 2
```

\$./rx_samples_file_simultaneous_sync --freq1 80e6 --freq2 80e6 --rate 20e6 --gain1 20 --gain2 20 --subdev="A:A A:B" --channel=0,1 --ref=external --nsamp 1000000 --sync=pps --secs=2.5 --file1 /media/ramdisk/file_13.dat --file2 /media/ramdisk/file_23.dat

Setting master clock rate selection: 'automatic'. -- Setting clock rate 16.000000 MHz... Setting RX Rate: 20.000000 Msps... -- Setting clock rate 20.000000 MHz... Setting device timestamp to 0... --1) catch time transition at pps edge --2) set times next pps (synchronously) External 10 MHz clock locked+++++ Setting RX Freq of channel 0: 80.000000 MHz... Setting RX Freq of channel 1: 80.000000 MHz Setting RX Gain of channel 0: 20.000000 dB Setting RX Gain of channel 1: 20.000000 dB Begin streaming 1000000 samples, 2.500000 seconds in the future ... Done! Buffer Size: 10000 Num of simultaneous transmissions : 2

Synchronization

Synchronous Transmission Output

Two RF chains in the same board

RF from 2 different boards, synced using PPS signal

RF and & Optical path in same board

Benchmarking Results

- Transmit/Receive simultaneously over RF & Optical links, each spanning upto 20MHz bandwidth.
- Used IEEE 802.11a/g to reach up to 54Mbps PHY data rate in one link.
- Aggregate PHY data rate of 108Mbps over both links

Testbed Benchmarking – Fidelity of Links

Can achieve high data rates via higher modulations in both links

Packet Loss & Performance

University at Albany, SUNY

Channel Dynamics & Reliability

Optical link performs better under the same channel as it is directed

7/10/18

University at Albany, SUNY

Related Work

TABLE I: Comparing CHRONOS with existing wireless testbeds

	C-RAN	sub-6GHz	Optical	mmWave
				& beyond
ORBIT [4]	\checkmark	\checkmark		
TurboRAN [5]	\checkmark	\checkmark		\checkmark
WiSER [6], ROAR [7], WiNEST [8], ArgosNet [9], CORNET [10],				
Emulab [11]/PhantomNet [12]		v v		
LiRa [13], LESA [14]			\checkmark	
WiMi [15], x60 [16], GigaNets [17], mmVital [18], TeraNova [19]				\checkmark
CHRONOS	\checkmark	\checkmark	\checkmark	work-in-progress

Limitations of Current Setup

- Multiple Tx/Rx chains but single local oscillator.
- Delay between RF & optical paths.
- Coherent detection for Optical transmission

Building a larger testbed

Conclusion

- Explored the features and performance of a next generation RFoptical C-RAN.
- Synchrony opens new avenues of research.
- Realized concrete steps required to scale-up the testbed.