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Communication theory relies on Statistical channel models or Channel State Information (CSI). 

Problem: Modern Channels are highly dimensional, nonlinear, non-stationary →

Suboptimal performance using conventional receivers. 

Learning not Trivial: Influenced by correlated, temporal, unknown variables. 

Acquired knowledge is ephemeral →Long term but Adaptive learning models

Intuition: Tx has to accurately learn and predict channel response →

Pre-equalized Signal Counteracts the channel effects.

I. Introduction
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Non-stationary Wireless Channels

● V2X (Vehicle to Everything) [1]

● HST (High-Speed Train) [2]

● Massive MIMO [3]

● mmWave Networks [4] 

[1] M. Boban, J. Barros, and O. K. Tonguz, “Geometry-Based Vehicle-to-Vehicle Channel Modeling for Large-Scale Simulation,”
[2] Y. Liu, C. Wang, J. Huang, J. Sun, and W. Zhang, “Novel 3-D nonstationary mmwave massive mimo channel models for 5g high-speed train wireless communications,”

[3] J.-q. Chen, Z. Zhang, T. Tang, and Y.-z. Huang, “A non-stationary channel model for 5g massive mimo systems”
[4] S. Wu, C. Wang, e. M. Aggoune, M. M. Alwakeel, and X. You, “A general 3-D non-stationary 5G wireless channel model,”

[5] Qualcomm, “C-V2X”
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Non-Stationary Channel Prediction

Scattering Zone

RSU: Road Side Unit

Example of a vehicular Edge network
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Intuition
Pre-Equalized Waveform

Intuition: Use observable inputs to predict channel & Pre-Equalize →

Accurate, Reliable, Low Latency Communications
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II. Channel Characterization

6

Channel Gain  AOD & AOA  Doppler            Delay

[6] Svensson et. al “WINNER II Channel Models”.



A typical Non-Stationary Channel Model

Model

Factors

Measurable

Latent 
(Uncorrelated) 

Factors

Measurable 
(Correlated) 

Factors

• Scatterering Environment
• Doppler frequency

• Angle of Departures & Arrivals (AoD & AoA)
• Channel gains and path delays, etc…

• Number of Scatterers (Ns)
• Locations (S)
• Antenna Configuration
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Non-Stationary Channel Prediction

• Problem Statement

• Prediction and Proactive Transmitter-side Pre-Equalization

Tx collects 
CSI & 

Observable 
Inputs

Extract 
Uncorrelated 

Latent 
Structure

Predict 
Downlink 
Channel

Pre-
Equalize Tx 
Waveform

Flat-Fading 
at Receiver

Track 
Temporal 
behavior

Deep Reinforcement Learning (DRL) Variational Auto Encoder (VAE)
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III. State-of-the-art Work

A. Classical Approaches

Receiver-Side:

• Estimation & Equalization: Frequency vs Time, Linear vs Nonlinear, Adaptive 

Transmitter-Receiver:

• Error Control Coding - Viterbi, LDPC, Rateless Coding

Transmitter Side:

• Precoding - MIMO, Beamforming

• Prediction & Pre-Equalization

Focus on WS Stationary channels, known Distributions using Bayesian inference.
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B. Deep Learning (DL) Approaches

DL for PHY Channel

Rx Side: 

Decoder, Detector, Estimator 

Tx-Rx Side:

Popular for Channel Coding

End-to-End Learning [DeepSig]

Tx Side:

LSTMs for prediction
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Benefits of DL for PHY

1. For unknown channel models

2. May improve BER for Heuristics

3. Potential for Online learning -
flexibility & reconfigurability

4. High parallelism

Drawbacks of DL PHY

Classical approach good enough
— PHY has solid math foundation
— Very good codes (LDPC, polar)
— PHY is sensitive to latency

DL State-of-the Art: Similar 
performance as classical, but high 
HW overhead 

Similar performance as classical, but high HW overhead 

Learning will be Beneficial for Non-Stationary Channels



IV. Proposed Methodology

Preliminary Research & Publications:
[1] Maqsood Careem and A. Dutta, “Real-time Prediction of Non-stationary Wireless
Channel,” IEEE TWC (Under Review).

[2] Maqsood Careem and A. Dutta, “Spatio-temporal recommender for v2x channels,” in
2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Aug 2018, pp. 1–7.

[3] Maqsood Careem and A. Dutta, "Channel Analytics for V2X Communication," 2018
IEEE 5G World Forum (5GWF), Silicon Valley, CA, 2018, pp. 433-436.
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Non-Stationary Channel Prediction System



Tensor Update

B. Tensor Factorization & Completion
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Results: Prediction and Pre-Equalization
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Channel Prediction Accuracy



Results: Performance at Receiver
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(a) BER for 16-QAM scheme (c) Throughput and BER for different modulations
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Higher Data Rates, Lower Latency, But Room for Improvement



Pre-Equalization over Post-Equalization
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Comparison with state-of-the-art receiver side techniques BER  varying  speeds  of  the  communicating nodes
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Significant Improvement over State-of-the-Art Approaches



B. Deep Reinforcement Learning for Non-stationarities
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Unique Advantage

More Accurate 
Channel Prediction

VAE Loss Function
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V. Intelligent Higher Layer Functions
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• Modern channels are non-stationary→ conventional receivers sub-optimal.

• Observable Inputs and Latent Factors helps address the Non-stationarity

• Learning will be beneficial over Non-stationary channels

Ongoing Work

• Real time hardware implementation

• Practical Evaluation using Rigorous measurement campaigns

• Investigate Causal Meta Learning strategies to address Non-Stationarity

VI. Conclusion and Discussion
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Thank you
Questions & Feedback


