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I. Introduction

Communication theory relies on Statistical channel models or Channel State Information (CSI).

Problem: Modern Channels are highly dimensional, nonlinear, non-stationary —

Suboptimal performance using conventional receivers.

Learning not Trivial: Influenced by correlated, temporal, unknown variables.

Acquired knowledge is ephemeral - Long term but Adaptive learning models

Intuition: Tx has to accurately learn and predict channel response —
Pre-equalized Signal Counteracts the channel effects.
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Non-stationary Wireless Channels

>

e V2X (Vehicle to Everything) [1]
e HST (High-Speed Train) [2]
e Massive MIMO [3]

GSM/UMTS / LTE/ 5G

e mmWave Networks [4]
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[1] M. Boban, J. Barros, and O. K. Tonguz, “Geometry-Based Vehicle-to-Vehicle Channel Modeling for Large-Scale Simulation,”

[2] Y. Liu, C. Wang, J. Huang, J. Sun, and W. Zhang, “Novel 3-D nonstationary mmwave massive mimo channel models for 5g high-speed train wireless communications,”
[3]J.-q. Chen, Z. Zhang, T. Tang, and Y.-z. Huang, “A non-stationary channel model for 5g massive mimo systems”

[4] S. Wu, C. Wang, e. M. Aggoune, M. M. Alwakeel, and X. You, “A general 3-D non-stationary 5G wireless channel model,”

[5] Qualcomm, “C-V2X”
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Non-Stationary Channel Prediction :
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Intuition T

Pre-Equalized Waveform

‘Moblle scat’terer\i———hﬁ,l_jo

‘ Static scatterer i

Intuition: Use observable inputs to predict channel & Pre-Equalize >

Accurate, Reliable, Low Latency Communications
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II. Channel Characterization

Channel Gain AOD & AOA Doppler Delay
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A typical Non-Stationary Channel Model
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Scatterering Environment Latent
Doppler frequency

Angle of Departures & Arrivals (AoD & AoA)
Channel gains and path delays, etc...

(Uncorrelated)
Factors

Measurable
Number of Scatterers (Ns) (Correlated)

Locations (S)
« Antenna Configuration

Measurable

Factors
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Non-Stationary Channel Prediction

* Problem Statement
* Prediction and Proactive Transmitter-side Pre-Equalization

Tx collects :
Track Extract Predict Pre- :
CSl & Uncorrelated ) . Flat-Fading
Temporal Downlink Equalize Tx :
Observable . Latent at Receiver
IRtk behavior e Channel Waveform

Deep Reinforcement Learning (DRL) Variational Auto Encoder (VAE)
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ITI. State-of-the-art Work

A. Classical Approaches

Receiver-Side:

- Estimation & Equalization: Frequency vs Time, Linear vs Nonlinear, Adaptive
Transmitter-Receiver:

- Error Control Coding - Viterbi, LDPC, Rateless Coding

Transmitter Side:

« Precoding - MIMO, Beamforming
« Prediction & Pre-Equalization

Focus on WS Stationary channels, known Distributions using Bayesian inference.
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B. Deep Learning (DL) Approaches

7~

Benefits of DL for PHY
1. For unknown channel models
2. May improve BER for Heuristics

3. Potential for Online learning -
flexibility & reconfigurability

4. High parallelism
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Drawbacks of DL PHY

Classical approach good enough

— PHY has solid math foundation
— Very good codes (LDPC, polar)

— PHY is sensitive to latency

DL State-of-the Art: Similar
performance as classical, but high
HW overhead
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DL for PHY Channel

Rx Side:

Decoder, Detector, Estimator
Tx-Rx Side:

Popular for Channel Coding
End-to-End Learning [DeepSig]
Tx Side:

LSTMs for prediction

Similar performance as classical, but high HW overhead

Learning will be Beneficial for Non-Stationary Channels
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IV. Proposed Methodology

Preliminary Research & Publications:

[1] Maqgsood Careem and A. Dutta, “Real-time Prediction of Non-stationary Wireless
Channel,” IEEE TWC (Under Review).

[2] Maqsood Careem and A. Dutta, “Spatio-temporal recommender for v2x channels,” in
2018 IEEE 88th Vehicular Technology Conference (VITC-Fall), Aug 2018, pp. 1—7.

[3] Maqsood Careem and A. Dutta, "Channel Analytics for V2X Communication,” 2018
IEEE 5G World Forum (5GWF), Silicon Valley, CA, 2018, pp. 433-436.
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B. Tensor Factorization & Completion
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Results: Prediction and Pre-Equalization
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Results: Performance at Recelver
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Pre-Equalization over Post-Equalization
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Significant Improvement over State-of-the-Art Approaches
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B. Deep Reinforcement Learning for Non-stationarities
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Unique Advantage
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V. Intelligent Higher Layer Functi
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Deep Reinforcement Learning at Physical Layer
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VI. Conclusion and Discussion

Modern channels are non-stationary — conventional receivers sub-optimal.
Observable Inputs and Latent Factors helps address the Non-stationarity

Learning will be beneficial over Non-stationary channels

Ongoing Work
Real time hardware implementation
Practical Evaluation using Rigorous measurement campaigns

Investigate Causal Meta Learning strategies to address Non-Stationarity
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Thank you

Questions & Feedback



