

SenseChain: Blockchain based Reputation System for Distributed Spectrum Enforcement MAQSOOD CAREEM AND AVEEK DUTTA

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY AT ALBANY, SUNY

Motivation

- Advent of Spectrum Sharing demands Enforcement of Spectrum policies.
- Spectrum enforcement requires fusion of sensing information from Sensors.
- Autonomous Agents Autonomous Vehicles (UAVs, UGVs) [1], Crowd mobile users [2].

Problem: Lack of Trust \rightarrow Incorrect or Biased inferences.

SenseChain: Distributed consensus in Blockchain to assign Reputation for sensors → Reliable & Accurate Sensing / Enforcement.

[1] Maqsood, A. Dutta and W. Wang, "Spectrum Enforcement and Localization Using Autonomous Agents With Cardinality," in *IEEE Transactions on Cognitive Communications and Networking*, vol. 5, no. 3, pp. 702-715, Sept. 2019.

[2] A. Dutta and M. Chiang, ""See Something, Say Something" Crowdsourced Enforcement of Spectrum Policies," in *IEEE Transactions on Wireless Communications*, vol. 15, no. 1, pp. 67-80, Jan. 2016.

I. Problem Statement: Reputation

III. SenseChain: Anomaly Detection

Anomalies and confidence score

8

IV. SenseChain: Blockchain-based Reputation

A. Difficulty of mining

Difficulty ∝ Validation Credibility (Power of the Crowd)

B. Most-Difficult-Chain consensus

Most-Difficult-Chain Consensus: At each round, the most difficult mined block is added to the blockchain.

V. Historical Reputation & Provenance

Most Credible Reputation Assignment → **Most Credible Inference**

VI. Evaluation & Results

A. Simulation Framework

1) Sensing Environment

2) Blockchain Simulator

TABLE I: Simulation Parameters

Parameters	Value/Model
Area	300m × 300m
Node Distribution	Uniform Distribution
Mobility Model	Random Waypoint
Propagation Model	Log-distance propagation model [14]
Path-loss exponent (γ)	3 (urban area)
Carrier Frequency (f)	600 MHz
Number of Validators	5
Number of Sensors	20
Antenna Type	Omnidirectional
Broadcast Range	100
Maximum Difficulty (D_{max})	16
Block-wait Time $(\tau_{\mathcal{B}})$	7 s
Target location error (d_{err})	Uniformly distributed in [20,30] m

B. Performance of anomaly detection

Truthfulness of Sensors can be Accurately inferred in Distributed Manner

C. Performance of Blockchain based Reputation

Reputation Assignment:

(a) Reputation with degree of falsification

(b) Reputation of falsifying Sensors over time

Reputation of Sensors represents the Degree of Maliciousness of Sensors

Conclusion

- 1. Distributed, peer-based **Anomaly Detection** algorithm
- 2. Novel Blockchain Design: Records Confidence scores. Difficulty of mining ∝ credibility of validation.
- 3. Network protocol: Achieve consensus using Most-Difficult-Chain rule.
- 4. Nonlinear Reputation metric: Aggregation of historical confidences and Difficulty.
- 5. Evaluation using combined Sensing and Blockchain simulator

SenseChain: Fast & Tamper-proof distributed consensus on the reputation of sensors, among trustless entities.

Choice of Maximum Difficulty: D_{max}

 $\mathbb{E}[t]$ Average time to mine a block R : Average Hashing or Mining Power of validators

Tradeoff

[Immutability & Credibility] vs [Computational Power & Convergence speed]

B. Performance of anomaly detection

Truthfulness of Sensors can be Accurately inferred in Distributed Manner

VII. Related Work

Anomalous behaviour Detection

Blockchains for sensor networks

